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SUMMARY
Model-based advanced control approaches are needed to
achieve high speed and acceleration and precision in robotic
operations. These control schemes need a proper dynamic
model. Many approaches have been proposed by different
authors in order to obtain the dynamic model of these
structures. However, most of them do not consider the
possibility to introduce redundant sensor data. In this paper,
a methodology for obtaining a compact dynamic model
considering passive joint sensor data is proposed. The
dynamic model is defined in compact and structured form,
which makes it appropriate to be used in advanced control
techniques.

1. Introduction
Parallel robots, mechanisms whose end-effector is joined
to the base by more than one kinematic chain, have
became an interesting alternative to classical serial robots.
Higher payload and stiffness and higher operating speed
and accuracy are some of the advantages of this structures.
In order to take the most of these advantages, great effort
has been made recently to design specific mechanisms for
particular tasks. However, their complex structure presents
some disadvantages, such as highly coupled kinematics
and dynamics, small workspace, presence of internal
singularities, and presence of unactuated or passive joints
among others.24

Extensive research has been made to correct these
disadvantages. Most of the authors have focused their efforts
in analyzing the complex kinematics of these mechanisms.
However, dynamics has been addressed by fewer authors due
to the complexity of its formulation.

Advanced control techniques can be used to fully exploit
the advantages of parallel robots in terms of high speed and
accuracy. These control approaches can increase significantly
the performance of parallel robots if an accurate dynamic
model is calculated. This makes dynamics an important area
of study when considering control performance of parallel
robots. In this paper, direct and inverse dynamic modelling of
planar parallel robots is formulated and then this formulation
is applied to the 3RRR parallel robot.
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In serial robotics literature, Lagrangian and Newton–Euler
formulations have been widely used to calculate the dynamic
model of robots,3 as Eq. (1) illustrates:

τ = D (q) · q̈ + C (q, q̇) · q̇ + G (q) . (1)

where τ is the vector of the actuator torque/forces, q is the
vector of the n articular coordinates, D is the symmetric
and positive-defined inertia matrix, C is the Coriolis matrix,
where (Ḋ − 2C) is skew-symmetric, and G is the gravity
terms vector. Friction terms have been neglected in this
model, although they can be introduced in it as an additional
term. This model has been used in the literature to implement
multi-articular model-based control techniques, such as
computed torque control and its properties ensure global
stability of the control system.7

However, obtaining a model with similar characteristics
in parallel robots is not an easy task due to the additional
kinematic constraints that relate the joint variables. Opposite
to serial robots, in parallel robots the numbers of degrees of
freedom (dof) is less than the number of joint variables, which
means that some of the joints are passive or nonactuated.
This increases the complexity of the kinematic and dynamic
problems. Some authors have proposed the use of sensors
in passive joints to simplify kinematic problems: Merlet23

determined the location of the minimum number of extra
sensors that have to be introduced in a Gough–Stewart
platfrom in order to calculate its direct kinematics in a closed
form; using the same platform, Baron and Angeles, in ref. [2],
describe a method that allows to decouple the translation
and orientation kinematics using sensor redundancy. Other
authors have tried to increase control performance: Marquet
et al.22 introduced an extra sensor in the pick and place H4
robot, and with the use of a redundant kinematic model,
they implemented a proportional-integral derivative (PID)
based control which reduces the errors in a 45 % respect to
its nonredundant counterpart. Using the same idea, Bauma
et al., in ref. [4], use the redundant sensors in order to increase
the position accuracy for various platforms. However, as far
as the authors know, no work has dealt with introducing extra
sensor data in the inverse dynamic model (IDM).

The introduction of extra passive sensors in the structure
of the mechanism can be difficult and increases its cost.
However, as it is shown in the previously cited works, its
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advantages can compensate these drawbacks. This work
shows the increase of control performance of a novel
computed torque control (CTC) approach using a redundant
dynamic model. In this novel CTC scheme, the control signal
is computed using both active and extra sensorized passive
joint data. This scheme proves to be more robust than the
classical nonredundant CTC approach and can significantly
reduce the positioning error of the parallel robot.

Therefore, redundant model-based control schemes proves
to be an interesting approach for the control of parallel
robots. This approach, however, requires the definition of
the dynamic model in terms of both active and some extra
sensorized passive joints. In this paper, the formulation of
the dynamic model of parallel robots for the implementation
of redundant control approaches is presented.

Three main classical approaches have been proposed to
obtain the dynamic model of parallel robots: Lagrangian
formulation, the use of Newton–Euler laws, and the use of
the principle of virtual work. The next sections analyze the
most interesting works in each approach.

1.1. Newton–Euler formulation
Traditional Newton–Euler (N-E) formulation requires the
definition of the equations of each body of the mechanical
system. This way, all the internal and external forces acting
in each body of the mechanism are calculated, leading
to a high-dimension equation system. In the literature,
most of the authors have applied this method to particular
mechanisms, especially to the Gough platform. That is the
case of Do and Yang10 that obtain a system of 36 linear
equations that represent the platform dynamics. Dasgupta
and Mrythyunjaya9 also calculate the dynamic model of
this robot, but propose a method to avoid calculating the
internal reactions of the mechanism, in order to reduce the
computational cost. However, the model is not obtained in a
structured form. Later, Riebe and Ulbrich28 use the Jacobian
matrices of the mechanism bodies to project all the equations
of motion into the cartesian space. The authors calculate the
IDM defined in the end-effector cartesian coordinates, with
the structure of Eq. (1), and use it to implement a CTC
technique.

On the other hand, other authors have tried to deduce
generic algorithms to calculate the dynamic model of general
parallel mechanisms. As most of parallel mechanisms are
composed by a mobile platform and a group of serial chains
connecting it to the base, a popular strategy consists on
splitting the mechanism in these two subsystems. This way,
Dasgupta and Choudhurry8 calculate the robot dynamics in
two steps: first, the dynamics of the legs are considered in
order to calculate the reaction force on the mobile platform
using N-E laws. Then, the dynamics of the full mechanism is
obtained applying N-E formulation to the mobile platform.
A similar strategy is proposed by Khalil and Guegan17 and
later extended by Khalil and Ibrahim18. In this approach,
reaction forces between the legs and the mobile platform
are first calculated using the dynamic model of the serial
subsystem. Then, these forces are projected via the legs
Jacobian matrices to the mobile platform coordinate system.
Finally, applying the N-E formulation to the platform, the
full dynamic model is obtained. A similar strategy is applied

by Guo and Li15 to the Gough–Stewart platform. The same
idea is used by Angeles in refs. [1, 33], where the coupling
of the models of the serial chain subsystem and the mobile
platform is made via the natural ortogonal complement that
maps the twist of the mobile platform in the actuated articular
coordinate space.

1.2. Principle of virtual work
One of the most popular approach to obtain the dynamic
model of parallel robots is the application of the principle
of virtual work. In this formulation, an energetic approach is
used.

Some authors have used directly this principle to calculate
the dynamic model of specific parallel robots. That is the
case of Zhu et al.35 that obtained the dynamic model of
Tau parallel robot. Similarly, Staicu et al.29 calculated the
dynamic model of a spatial 3 d.o.f. parallel manipulator.
Zhiyong et al.34 applied it to the 5R parallel robot. Honegger
et al.16 used it to model the Hexaglide parallel robot. Wang
and Gosselin32 and later Tsai31 obtained the dynamic model
for the Gough platform using this principle. This approach
showed an increase of 30 % in the efficiency of the algorithm
compared to the N-E approach.

On the other hand, there is another important trend based
on the use of the reduced model concept and the principle
of virtual work. This method considers parallel robots as
the combination of a set of free elements, called the free
system, and a number of constraints. The works in this
area focus on obtaining the relation between the dynamic
model of the free system without the restrictions and the
dynamic model of the constrained system. The formulations
proposed by Nakamura and Godoussi26, Murray and Lovell25

and Ghorbel et al.11−14 define this relationship in a similar
way, defining a transformation matrix T that relates the free
system model τr and the constrained model τ , τ = T T · τr .
Thus, the constraints are implicitly introduced in T .

1.3. Lagrange formulation
The Lagrangian Formulation has been widely used in
serial robotics to calculate the dynamic model. It is an
energy-based approach and, with a proper choice of the
generalized coordinates, it avoids the calculation of the
internal forces of the mechanism. This way, the reaction
forces between elements introduced in the N-E approach
are not calculated and the computational efficiency can be
increased. The Lagrangian method requires the definition
of the Lagrangian, which is calculated by subtracting the
potential energy of the system from the kinetic energy. Then
the Lagrangian is differentiated respect to the independent
set of coordinates of the system, and the dynamic model is
obtained. This, obviously, requires that the model is defined
only in terms of these independent coordinates. However,
in parallel robots not all the joints are actuated, and the
relation between passive or non-actuated joints and active
ones is, in general, difficult to formulate explicitly. Therefore,
a set of Lagrange multipliers and geometric or kinematic
constraints are introduced in order to simplify the resolution
of the problem. Thus, the number of the dynamic equations
increases but the relations between independent and non
independent coordinates are implicitly calculated.
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Using this formulation, Lee and Shah20 calculated the
dynamic model of a 3-dof tripod. Later, Lebret et al.19

obtained the dynamic model of the Gough platform in
terms of the end-effector cartesian coordinates without using
Lagrange multipliers. An interesting approach was proposed
by Bhattacharya et al.5, and later extended in ref. [6], where,
as previously explained, the parallel robot is split in two
subsystems: mobile platform and serial chain subsystems.
In this approach, two sets of Lagrangian equations are
constructed, one for each subsystem. The two sets are then
joined using the Jacobian matrix of the robot.

The three main approaches proposed in the literature
provide a wide variety of ways to solve the dynamic problem.
However, most of them do not consider the possibility of
including passive joint sensor data explicitly in the dynamic
model, in order to apply advanced control techniques based
on sensor redundancy as the one presented in ref. [36]. The
dynamic model explicitly defined in terms of active and
some extra sensorized passive joints is believed to be more
robust against model parameter uncertainties. Additionally,
as passive joints are directly measured, the computational
cost of calculating the model is reduced compared with
the model defined only in terms of actuated joints. In this
paper, a Lagrangian formulation approach is proposed. This
formulation allows to define the dynamic model in terms
of whatever generalized coordinates the designer selects,
which allows to calculate easily the dynamic model in terms
of redundant coordinates. Additionally, the approach avoids
the calculation of internal forces and, although it requires
complex derivations, these can be easily automatized with
the help of symbolic computation. The technique proposed
in this paper provides a guide to obtain the dynamic model
of planar parallel robots to be used in model-based control
approaches, considering either actuated or active joints and
some sensorized passive joints.

The rest of the paper is organized as follows: in Sec-
tion 2, the proposed formulation is introduced and its
basis described. Section 3 introduces the guidelines for the
dynamic modelling of planar parallel robots considering
either active and sensorized passive joints. Finally, Section
4 illustrates the methodology by applying it to the 3RRR
parallel robot. The calculated model is used to implement a
model-based control approach, which is validated by a set
of simulations. The most important ideas of the proposed
approach are summarized in Section 5.

2. Dynamic Modeling Based on the Lagrangian
Formulation
The proposed approach for the dynamic modelling of planar
parallel robots is based on three previous contributions,
explained in Section 1:

• Use of the transformation matrix T defined in Section 1.2,
as proposed in refs. [11–14, 25, 26].

• Consideration of the mechanism as a two subsystem set:
moving platform and serial chain subsystem, as presented
in refs. [1, 17, 18].

• Application of the Lagrangian formulation with
Lagrange multipliers to each subsystem independently,
as considered in refs. [5, 6].

Fig. 1. Serial chain and platform subsystems.

The use of reduced models is an easy way to obtain
the dynamic model of parallel robots when there is not a
moving platform, as in the case of the 5R planar parallel
robot. However, in the general case, the moving platform
must be attached to one of the serial subchains, increasing
the complexity of the problem. To avoid this, splitting the
mechanism into a platform and a serial chain subsystems
is proposed (Fig. 1). Besides, the use of the Lagrangian
Formulation allows the designer to choose the most suitable
generalized coordinates for the design of the dynamic model.
Thus, it is possible to consider passive joints directly in the
formulation.

Based on these three main ideas, a methodology for
obtaining the dynamic model of planar parallel robots is
proposed, where it is possible to consider only active joints, or
both active and some passive sensorized joints. The resulting
model is intended to be used to implement advanced control
techniques in order to improve the accuracy and trajectory-
tracking of the robot as it is demonstrated in ref. [36].

Next, the guidelines for easily obtaining the dynamic
model of a generic planar parallel robot are given.

3. Dynamic Model Considering Passive and Active
Joints
Suppose a mechanism with n = na ≤ 3 dof, whose mobile
platform is joined to the base by n serial chains.

Let qa be the set of active joints of the mechanism, of
dimension n, qp the set of the np passive joints of the
mechanism and qs the set of the ns passive sensorized joints.
Let the set of control coordinates be q = [qa qs]T and the set
of nr = n + np + ns generalized coordinates qr = [q qp]T .
Let x be the n dimensional independent task coordinates of
the end-effector.

The choice of the sensorized coordinates is determined
by the specific parallel robot to be modelled. Although it is
difficult to determine precise rules to make this choice, some
guidelines are described next:

• In general, parallel robots are composed by the end-
effector mobile platform and some serial chains joining it
to the base. Sensorizing the same passive joints on each
serial chain provides, in general, a symmetric dynamic
model with high robustness.

• Sensors have to be placed in each kinematic chain so
that the combined information of the active and passive
sensors result in an increase of the accuracy of the Tool
Center Point (TCP) positioning.

• In general, only revolute (R) and prismatic (P ) passive
joints will be sensorized, as there exist multiple and
relatively low-cost sensor solutions for the measurement
of the position and speed of these joints.
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Next, the guidelines for calculating the dynamic model are
introduced. As the dynamic model will be used for real-time
control purposes, a simplified approach will be considered,
neglecting the effects of friction and element elasticity.

3.1. Closure loop equations of the mechanism
Initially, a set of independent closure loop equations have
to be defined. These equations characterize the constraints
of the mechanism and the relation between the different
coordinates. Thus, their definition is an important step in
the dynamic modelling of a parallel robot.

In order to relate the different sets of coordinates of the
robot, three different sets of closure loop equations have to
be defined:

• The n independent closure loop equations that relate the
task coordinates x and the active articular coordinates qa

φi (x, qa) = 0, i = 1, . . . n, (2)

• The closure loop equations that relate x and the
generalized coordinates qr

� (x, qr ) = 0 ∈ R
nr → x = fi(qr ), i = 1, . . . n (3)

� (x, qr ) can be easily calculated formulating the vector
equations that link the TCP with the origin of the cartesian
frame.

• The closure loop equations relating active joints qa and
passive qp and sensorized joints qs.
In general, it is easier to define these parameters in terms
of active joints and the independent task coordinates:

fs(qa, x, qs) = 0
fp(qa, x, qp) = 0 . (4)

3.2. Position problem
Making use of Eqs. (2) and (3) the direct and inverse
position problem can be calculated. In the general case,
a closed form solution to the direct kinematics problem
will not be available. In that case, numerical methods such
as Newton–Raphson method, interval analysis techniques
or iterative geometric approaches like Geometrical-lterative
Method GIM27 can be used to solve the direct kinematic
problem. Making use of Eq. (4), the positions of passive
parameters can be obtained.

3.3. Velocity problem
The velocity problem can be calculated directly taking the
derivative of the closure loop equations, which is an easy
task in simple planar robots. Alternatively, it is possible to
directly calculate the vectorial velocity equations from the
mechanism, which is easier in more complex robots.

From the velocity equations of the mechanism, Jacobian
matrices can be obtained. These include implicitly the
constraints of the mechanism and will be a valuable asset
to map the dynamic model into different coordinate systems.
Thus, the objective of this step is to calculate the following
relations.

3.3.1. Jacobian matrix of the robot JR. It is defined as

ẋ = JR︸︷︷︸
n×n

(x, qa) · q̇a. (5)

This expression is usually obtained by differentiating
Eq. (2):

∂φ(x,qa)
∂x · ẋ + ∂φ(x,qa)

∂qa
· q̇a = 0

Jxa︸︷︷︸
n×n

(x, qa) · ẋ + Jqa︸︷︷︸
n×n

(x, qa) · q̇a = 0

ẋ = −J−1
xa · Jqa

· q̇a = JR · q̇a

. (6)

3.3.2. Constraint Jacobian matrix JC. It relates the velocities
of the task coordinates of the mobile platform ẋ and
the velocities of the generalized coordinates of the serial
subsystem q̇r . It is obtained by differentiating Eq. (3) or
by defining directly the vectorial velocity equations of each
kinematic loop. The objective is to obtain an expression:

v = JC(x, qr ) · q̇r , (7)

where JC(x, qr ) ∈ R
n×(n+ns+np).

A general procedure to calculate JC follows: let qi be the
coordinates of the ith serial subchain i = 1, . . . n, composed
by active, passive, and sensorized joints, then, it is easy to
obtain a relation such as:

q̇i = Ji · v, i = 1, . . . n, (8)

where Ji is the Jacobian of i-th the serial subchain. If Eq. (8)
is calculated for each chain and its terms are reordered,

q̇a = Jqa︸︷︷︸
n×n

·ẋ

q̇s = Jqs︸︷︷︸
ns×n

·ẋ

q̇ p = Jqp︸︷︷︸
np×n

·ẋ
. (9)

So,

q̇r = [Jqa
Jqs

Jqp
]Tnr×n · ẋ = J inv

C︸︷︷︸
nr×n

·ẋ. (10)

In order to calculate JC , J inv
C has to be inverted. For

that purpose the Moore–Penrose generalized inverse (11)
is used. This inverse is generally implemented using an
orthogonalization algorithm such as QR decomposition:

A† = (AT · A)−1 · AT . (11)

So,

ẋ = (J inv
C )† · q̇r = JC︸︷︷︸

n×nr

·q̇r . (12)

Alternatively, it can be obtained on a similar way from that
proposed for the Jacobian matrix of the robot JR . However,
as the partial Jacobians are not square, the Moore–Penrose
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generalized inverse will have to be used in order to calculate
JC .

3.3.3. Transformation matrix T. The transformation matrix
T , relates the active joints q̇a and the generalized coordinates
of the serial subsystem q̇r :

q̇r =
⎡
⎣ q̇a

q̇s

q̇ p

⎤
⎦ = [ In×n Js Jp ]T q̇a = T · q̇a, (13)

where Js ∈ R
ns×n and Jp ∈ R

np×n are the Jacobian matrices
relating the sensorized qs and passive qp joints of the robot
and the active ones qa. These matrices can be obtained by
differentiating the closure loop equations (4) or calculating
the vectorial velocity equations of each kinematic loop.

For planar robots, these Jacobians are, in general, easy to
obtain. However, a more general procedure is proposed next.

Using the previously calculated Eq. (9) and the Jacobian
matrix of the robot JR (5):

q̇s = Jqs
· ẋ = Jqs

· JR q̇a = Js︸︷︷︸
ns×n

·q̇a

q̇ p = Jqp
· ẋ = Jqp

· JR q̇a = Jp︸︷︷︸
np×n

·q̇a
. (14)

3.3.4. Transformation matrix Tq. This transformation matrix
relates the control coordinates q̇ and the generalized
coordinates of the serial subsystem q̇r . This way, the serial
subsystem model defined in terms of q̇r can be projected to
the space defined by the control coordinates:

q̇r =
[

q̇

q̇ p

]
= [

I(n+ns )×(n+ns ) Jqp/q

]T
q̇

= Tq · q̇,

(15)

where Jqp/q = ∂q p

∂q is the Jacobian matrix relating the passive
joints and the control coordinates. These expressions are
easy to calculate directly defining a closure loop equation
that relates all these coordinates. However, in more complex
mechanisms, the previously defined velocity equations can
be used. Reordering Eq. (8):

q̇ = Jq︸︷︷︸
(ns+n)×n

·v

q̇ p = Jqp︸︷︷︸
(np)×n

·v . (16)

In order to eliminate ẋ from Eq. (16) the Moore–Penrose
generalized inverse (11) is used. So Jqp/q is defined as

Jqp/q = Jqp
· J †

q . (17)

3.4. Acceleration problem
The acceleration equations are obtained by differentiating
the velocity Eqs. (7), (13) and (15). The main interest in this
section is to determine the three following relations:

• Relation between the cartesian coordinate acceleration ẍ
and the generalized coordinate acceleration q̈r

ẍ = JC · q̈r + J̇C · q̇r (18)

• Relation between the generalized coordinate acceleration
q̈r and the active joint acceleration q̈a

q̈r = T q̈a + Ṫ q̇a (19)

where Ṫ = [ 0n×n J̇s J̇p ]T .
• Relation between the generalized coordinate acceleration

q̈r and the control coordinate acceleration q̈

q̈r = Tq q̈ + Ṫq q̇ (20)

where Ṫq = [0(n+ns )×(n+ns ) J̇qp/q ]T .

3.5. Lagrangian equation
Once the necessary kinematic relations have been obtained
(Sections 3.1–3.4), the dynamic model of the parallel robot
can be calculated.

The Lagrangian formulation is used to obtain the dynamic
model of the parallel robot. For that purpose, the mechanism
will be split in two subsystems as explained before. That
way, the Lagrangian equation of the mobile platform Lp and
the serial chain system Ls will be calculated and the dynamic
model of each subsystem deduced. Note that while the mobile
platform equations will be defined in terms of the task
coordinates x, the n serial chain subsystem equations will
be defined in terms of the generalized articular coordinates
qr :

L =
n∑

i=1

Lsi
(qr, q̇r ) + Lp (x, ẋ)

= Ls (qr, q̇r ) + Lp (x, ẋ)

. (21)

3.6. Differential equations of the mobile platform and
serial chain subsystems
Once the Lagrangian has been defined, the differential
equations associated to each subsystem can be calculated.
As the Lagrangian of the mobile platform Lp and the serial
chain subsystem Ls are defined in different coordinates, two
sets of differential equations can be defined, one for each
subsystem. Thus, the model will be defined in terms of n + nr

coordinates, so, as only n coordinates are independent, nr

Lagrange multipliers will have to be introduced in order
to calculate the model30. This way, in order to model
the constraints that join the serial chains to the platform,
the closure loop equation relating the coordinates defining
each subsystem (3) and nr Lagrange multipliers λi are
introduced:

• Dynamic equations associated to the serial chain
subsystem j = 1, . . . nr

d

dt

(
∂Ls

∂q̇rj

)
− ∂Ls

∂qrj

=
nr∑

i=1

λi · ∂�i(x, qr )

∂qrj

+ τrj
, (22)
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where τrj
represent the virtual forces/torques of the

subsystem formed by the generalized articular coordinates
qr .

• Dynamic equations associated to the platform k =
1, . . . n

d

dt

(
∂Lp

∂ẋk

)
− ∂Lp

∂xk

=
nr∑

i=1

λi · ∂�i(x, qr )

∂xk

+ Qxk
, (23)

where Qxk
are the external known forces/torques applied

to the mobile platform. This vector is defined in the fixed
frame

Using the kinematic relations previously calculated and
considering that the Lagrange multipliers, λ, are associated
to the internal constraints forces that join the platform and the
serial chain subsystem, the equation system can be rewritten
as5

Dr (qr )q̈r +Cr (qr, q̇r )q̇ + Gr (qr ) =
[
∂�(x, qr )

∂qr

]T

︸ ︷︷ ︸
nr×nr

λ + τr ,

Dx(x)ẍ + Cx(x, ẋ)ẋ + Gx(x) =
[
∂�(x, qr )

∂x

]T

︸ ︷︷ ︸
n×nr

λ + Qx .

(24)
Additionally it can be demonstrated that (see

Appendix),

−
(

∂�(x, qr )
∂q

)T
[(

∂�(x, qr )
∂x

)T
]†

= JT
C, (25)

where Dr , Dx represent the Inertia matrices, Cr the Coriolis
terms, Gr , Gx the Gravity terms of the dynamic model of
each subsystem and JC the Jacobian matrix of the constraints.
τr is the vector of the virtual forces τrj

associated to
the generalized articular coordinates qr . Qx is the vector
of the external forces and torques applied to the mobile
platform Qxk

. Note that JC is needed to project this vector
to the generalized coordinate space in the dynamic equation
corresponding to the serial chain subsystem.

3.7. Dynamic model
The dynamic model can be obtained in terms of the active
joints and the sensorized passive joints. For that purpose, first
the internal forces are eliminated from the equation system
(24); then, the expressions (15) and (20) are introduced to
replace qr with q:

τ = D(x, qr )q̈r + C(x, qr, ẋ, q̇r )q̇r
+ G(x, qr ) + Fext

(26)

with,

D = T T
[
Dr + J T

C DxJC

] · Tq

C = T T
[(

Cr + J T
C

(
DxJ̇C + CxJC

)) · Tq

+ (
Dr + J T

C DxJC

) · Ṫq

]
G = T T

[
Gr + J T

C Gx
]

Fext = −T T J T
C · Qx

where D, C ∈ R
n×nr and τ , G, Fext ∈ R

n.

Equation (26) determines the dynamic model of the robot
considering active joints and passive sensorized joints as the
control variables. This model is only valid if the robot is not
in a singular position. Besides, this model cannot be inverted
in order to define the direct dynamic model.

For a better understanding, the process of obtaining the
inverse dynamic model is summarized in Algorithm 1.

Algorithm 1 Methodology for the calculation of the inverse
dynamic model

1: Calculation of the closure-loop equations relating qa and
x (2); qr and x (3); qp and q (4).

2: Resolution of the direct and inverse position problems
as stated in 4.2.

3: Resolution of the velocity problem: JR (5), JC (7), T

(13) and Tq (15).
4: Resolution of the acceleration problem: J̇C (18), Ṫ (19)

and Ṫq (20).
5: Calculation of the Lagrangian equation of the

mechanism (21).
6: Resolution of the differential equations related to the

serial chain subsystem (22) and the platform subsystem
(23).

7: Calculation of τ considering both active qa and extra
sensorized passive joint data qs (26).

It is important to note that the formulation proposed in
this section focuses in planar parallel robots whose end-
effector is attached to a mobile platform. However, there
are some mechanisms, as the 5R planar parallel manipulator,
that do not have a mobile platform. In these cases, the mobile
platform is considered to be a point without mass nor inertia.
The proposed methodology is then also valid for these kind
of mechanisms.36

Obtaining the dynamic model in terms of only the active
joints qa is a particular case of this formulation. In this
case, qs is an empty vector, q = qa and Tq = T . Using these
considerations and following the same procedure as the one
described in this section, the dynamic model in terms of only
active joints can be obtained.

4. Case of Study: 3RRR Planar Parallel Robot
The 3RRR is a 3-dof planar parallel manipulator. It is
composed by a moving platform and three RRR serial
subchains that join it to the base (Fig. 2).

Let P (x, y) be the end-effector position in the plane and
θz its orientation. Let O be the origin of the fixed reference
frame and Ai , Bi , Ci , i = 1, 2, 3 define the rotational
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Table I. Parameters of 3RRR parallel robot.

Body Length Mass Inertia Center

AiBi Li mLi
[Izz]Li

lcLi

BiCi li mli [Izz]li lcli

C1C2C3
hi(i+1) = CiCi+1
di = CiP

mp [Izz]p P (x, y)
Load – mc [Izz]c P (x, y)
Sensor – msi

[Izz]s Bi(x, y)

Fig. 2. 3RRR parallel manipulator.

articulations of each leg. The parameters of the mechanism
are defined in Table I.

Let qa = [qa1 qa2 qa3 ]T be the actuated joint vector, qp =
[qp1 qp2 qp3 ]T the passive joint vector and x = [x y θz]T

the cartesian coordinate vector.
In this particular case, the choice of the sensorized joints

is straightforward. The passive rotational joints qpi
, with i =

1, 2, 3, will be sensorized. This way, the direct kinematic
problem of the robot will have an unique solution, as each
of the 2-dof serial subchains will be fully sensorized. This
configuration will provide symmetry to the dynamic model
of the mechanism, simplifying its parametric formulation.
Besides, the practical implementation of these sensors can
be easily done using rotational encoders.

The masses will be considered to be concentrated in the
gravity center of each body and friction is neglected.

If qpi
are considered sensorized, then qs = [qp1 qp2 qp3 ]T

and qr = q = [qa qp]T . The sensors will be located in Bi

points.
To obtain the dynamic model, the guidelines proposed in

Section 2 are followed.

4.1. Closure loop equations of the mechanism
Based on Fig. 2, the three vectorial closure loop equations
can be expressed as follows.

−→
OP = −−→

OAi + −−→
AiBi + −−→

BiCi + −−→
CiP , i = 1, 2, 3

(27)

Using these equations the closure loop equations relating
qa and x can be defined:

�i(x, qa) = 0

0 = −l2
i + (

x − OAxi − Li cos qai

− di cos(θz + φi))2 + (
y − OAyi

− Li sin qai
− di sin(θz + φi)

)2
,

i = 1, 2, 3

(28)

where φi is a constant value, whose value depends of the
geometry of the platform. In this case φi = (4(i−1)+1)π

6 .
Similarly, the closure loop equations relating qr = q and

x can be obtained from the vector closure loop Eq. (27). In
order to obtain the closure loop that relates qs = qp and qa
another vectorial closure loop equations must be defined:

0 = −−→
OA1 +−−→

A1B1 +−−→
B1C1 +−−→

C1C2 − −−→
B2C2 − −−→

A2B2 − −−→
OA2

0 = −−→
OA2 +−−→

A2B2 +−−→
B2C2 +−−→

C2C3 − −−→
B3C3 − −−→

A3B3 − −−→
OA3

0 = −−→
OA3 +−−→

A3B3 +−−→
B3C3 +−−→

C3C1 − −−→
B2C2 − −−→

A1B1 − −−→
OA1

(29)

From Eq. (29) and imposing the constraint |−−−−→
CiCi+1|2 =

h2
i(i+1), the three independent closure loop equations that

relate qs = qp and qa can be obtained:

fi(qa, qs) = 0

0 = −h2
i(i+1) + [

li cos(qai
+ qpi

)

+ Li cos qai
+ OAxi − OAx(i+1)

− Li+1 cos qai+1 − li cos(qai+1 + qpi+1 )
]2

+ [
li sin(qai

+ qpi
) + Li sin qai

+ OAyi − OAy(i+1) − Li+1 sin qai+1

− li sin(qai+1 + qpi+1 )
]2

, i = 1, 2, 3. (30)

4.2. Position problem
As the serial subchains are fully sensorized, the redundant
direct position problem of the robot, which calculates x =
[x y θz]T using qa and qp can be calculated using Eq. (27).
First, the vertexes of the triangular platform are calculated:

−−→
OCi = −−→

OAi + −−→
AiBi + −−→

BiCi , i = 1, 2, 3{
OCix = OAxi + Li cos qai

+ li cos(qai
+ qpi

)

OCiy = OAyi + Li sin qai
+ li sin(qai

+ qpi
)

. (31)

In order to increase the robustness against parameter
uncertainty, the end-effector position is defined using all the
data available. The center of mass of the triangle, where the
tool center point

−→
OP = [x, y]T is located, is calculated as

follows:

x = 1
3 (OC1x + OC2x + OC3x)

y = 1
3 (OC1y + OC2y + OC3y)

. (32)
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Similarly, in order to calculate the orientation of the
platform, the data from all sensors is used. For that purpose,
first the vectors that join the different vertexes are defined:

−−→
CiP = −→

OP − −−→
OCi, i = 1, 2, 3. (33)

Then, using these vectors, the orientation angle can be
obtained:

θz = 1

3

[
arctan

(
C1P y

C1P x

)
+ arctan

(
C2P y

C2P x

)

+ arctan

(
C2P y

C2P x

)
− 5π

2

]
. (34)

The inverse position problem can be calculated using
Eq. (28):

qai
= 2 · arctan

⎛
⎝−bi ±

√
b2

i − 4aici

2ai

⎞
⎠ , i = 1, 2, 3,

(35)
where ⎧⎨

⎩
ai = −Kxi − Ki

bi = 2Kyi

ci = Kxi − Ki

,

and

⎧⎨
⎩

Kxi = x − OAxi − di cos(θz + φi)
Kyi = x − OAyi − di sin(θz + φi)

Ki = l2
i −K2

xi−K2
yi−L2

i

−2Li

.

After calculating the active joints value, passive joints can
be derived:

qpi
= 2 · arctan

⎛
⎝−bpi ±

√
b2

pi − 4apicpi

2api

⎞
⎠ − qai

,

i = 1, 2, 3, (36)

where ⎧⎨
⎩

api = −Kpxi − Kpi

bpi = 2Kpyi

cpi = Kpxi − Kpi

,

and

⎧⎨
⎩

Kpxi = x − Li cos qai
− di cos(θz + φi)

Kpyi = x − Li sin qai
− di sin(θz + φi)

Kpi = OA2
xi+OA2

yi−K2
pxi−K2

pyi−l2
i

−2li

.

Note that the sign in Eqs. (35) and (36) determine the
working modes21 of the mechanism.

4.3. Velocity problem
In order to determine the velocity equations and the Jacobian
Matrices, the previously calculated closure loop Eqs. (3),
(28), and (30) are differentiated.

Jacobian matrices relating ẋ and q̇a:

∂φ(x, qa)

∂x
ẋ + ∂φ(x, qa)

∂qa
q̇a = Jxa︸︷︷︸

3×3

·ẋ + Jqa︸︷︷︸
3×3

·q̇a = 0.

(37)

In order to calculate the constraint matrix, the Jacobian
matrices relating ẋ and q̇ have to be calculated. For that
purpose the alternative method proposed in Section 3.3.2 is
used:

∂�(x, q)

∂x
ẋ + ∂�(x, q)

∂q
q̇ = Jx︸︷︷︸

6×3

·ẋ + Jq︸︷︷︸
6×6

·q̇ = 0. (38)

Using Eq. (38), and with the use of the Moore–Penrose
generalized inverse (11) the constraint matrix can be defined
as:

JC = −J †
x · Jq. (39)

The transformation matrix T is required to calculate the
model. For that purpose, first the Jacobian matrices relating
q̇a and q̇s have to be found:

∂f (qa, qs)

∂qa
q̇a + ∂f (qa, qs)

∂qs
q̇s = Jqas︸︷︷︸

3×3

·q̇a + Jqs︸︷︷︸
3×3

·q̇s = 0.

(40)
Using Eq. (40) the transformation matrix can be

defined:

q̇ = ∂q
∂qa

q̇a =
∂

[
qa
qs

]
∂qa

q̇a

= [I3×3 − J−1
qs

Jqas
]T q̇a = T · q̇a. (41)

4.4. Acceleration problem
To obtain the acceleration expresions, the velocity equations
(37), (38), (40), and (41) must be differentiated:

Jxa ẍ + Jqa
q̈a + J̇qa

q̇a + J̇xa ẋ = 0, (42)

Jx ẍ + Jq q̈ + J̇q q̇ + J̇x ẋ = 0, (43)

Jqas
q̈a + Jqs

q̈s + J̇qas
q̇a + J̇qs

q̇s = 0, (44)

q̈ = T q̈a + Ṫ q̇a. (45)

4.5. Lagrangian equation
As stated in Section 2, two subsystems are considered in
order to formulate the Lagrangian equation. This way, the
kinetic Kp and potential energy Up of the platform is defined
as:

Kp = 1
2 ẋT Dx ẋ, (46)
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where

Dx =
⎡
⎣mp + mc 0 0

0 mp + mc 0
0 0 [Izz]cp + [Izz]cc

⎤
⎦ ,

Up =
⎡
⎣ 0

mp · g

0

⎤
⎦ · y = Gx · y,

and g is the gravity.
Thus, the platform Lagrangian is

Lp = Kp − Up. (47)

For the serial subchain subsystem, the dynamic model of
each leg correspond to a 2-dof. serial planar manipulator,
whose Lagrangian equation is

Ls = 1
2

∑3
i=1

[
mLi

l2
cLi

+ msi
L2

i

+ mli

(
L2

i + l2
cli

+ 2Lilcli
cos qpi

)
+ [Izz]cLi

+ [Izz]cli + [Izz]csi

] · q̇2
ai

+∑3
i=1 mli

(
l2
cli

+ Lilcli
cos qpi

)
q̇ai

q̇pi

+ 1
2

∑3
i=1

[
mli l

2
cli

+ [Izz]cli

]
q̇2

pi

−∑3
i=1

[(
mLi

lcLi
+ msi

Li + mliLi

)
g sin qai

+
− mli lcli

g sin
(
qai

+ qpi

)]
.

(48)

Combining Eqs. (46) and (48) the Lagrangian equation of
the whole system is obtained:

L = Lp + Ls. (49)

4.6. Diferential equations of the mobile platform and serial
chain subsystems
Using Eq. (49), the Lagrange multiplier formulation is
applied to obtain the differential equations associated to the
platform and the serial chain subsystem.

4.6.1. Differential equations associated to the platform
(k = 1, . . . 3).

d

dt

(
∂Lp

∂ẋk

)
− ∂Lp

∂xk

=
6∑

i=1

λi · ∂�i(x, q)

∂xk

+ Qxk, (50)

where [Qxk] = Qx are the external forces and torques
applied to the platform. The partial derivatives that define
Eq. (50) can be obtained as follows:

∂Lp

∂ẋ
= Dxẋ

d
dt

∂Lp

∂ẋ
= Dxẍ

∂Lp

∂x
= −Gx

. (51)

Making use of Eqs. (50) and (51) the differential equation
is defined. Identifying the inertia, Coriolis, and gravity

matrices, the following expression is obtained:

Dx ẍ + Gx − Qx = J T
x λ. (52)

4.6.2. Differential equations associated to the serial
subchain subsystem (j = 1, . . . 6).

d

dt

(
∂Ls

∂q̇rj

)
− ∂Ls

∂qrj

=
6∑

i=1

λi · ∂�i(x, q)

∂qrj

+ τrj
(53)

Following the same procedure used for the platform
equations, the inertia, Coriolis, and gravity matrices can be
identified:

Dq q̈ + Cq q̇ + Gq = τr + J T
q λ, (54)

Dq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

da11 0 0 d14 0 0

0 da22 0 0 d25 0

0 0 da33 0 0 d36

d31 0 0 dp11 0 0

0 d52 0 0 dp22 0

0 0 d63 0 0 dp33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (55)

where:

• daii
= mLi

· l2
cLi

+ msi
L2

i + mli

(
L2

i + l2
cli

+
2Lilcli

cos qpi

) + [Izz]cLi
+ [Izz]cli + [Izz]csi

, i = 1, 2, 3
• dpii

= mli l
2
cli

+ [Izz]cli , i = 1, 2, 3

• dij = dji = mli

(
l2
cli

+ Lilcli
cos qpi

) + [Izz]cli ,
(ij ) = (14), (25), (36)

Cq =

⎡
⎢⎢⎢⎢⎢⎣

c11 0 0 c14 0 0
0 c22 0 0 c25 0
0 0 c33 0 0 c36

c41 0 0 0 0 0
0 c52 0 0 0 0
0 0 c63 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (56)

where:

• hi = −mliLilcli
sin qpi

, i = 1, 2, 3
• cii = hiq̇pi

, i = 1, 2, 3
• cij = hi(q̇ai

+ q̇pi
), ij = (14), (25), (36)

• cij = hiq̇ai
, ij = (41), (52), (63)

Gq = [ga1 ga2 ga3 gp1 gp2 gp3 ]T , (57)

where:

• gai
= (mLi

lcLi
+ mli Li + msi

Li)g cos qai

+mli lcli
g cos(qai

+ qpi
), i = 1, 2, 3

• gpi
= mli lcli

g(cos qai
+ qpi

), i = 1, 2, 3.

4.7. Dynamic model
As it has been described in Section 3, in order to obtain
the dynamic model in terms of the control coordinates q =
[ qa qs ]T a series of transformations have to be applied to the
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Fig. 3. Extended CTC approach.

differential equations (52) and (54). Using the robot Jacobian
matrix, defined in Eq. (39) and the relations (41) and (43) the
full dynamic model can be obtained considering both active
and sensorized joints:

Dq̈ + C q̇ + G − Fext = τqa ,

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D = T T (Dq + J T
C DxJC)

C = T T (Cq + J T
C DxJ̇C)

G = T T (Gq + J T
C Gx)

Fext = T T J T
C Qx

.

(58)

Following this methodology, passive joint sensor data
is directly and explicitly considered in the model. This
model can be calculated in a systematic, matrix-based
way. Although its computational cost is higher due to this
structure, this form is very useful for control engineers to
implement novel control laws and demonstrate their stability.
This way, as the authors demonstrated in ref. [36], model-
based control techniques using this redundant dynamic model
will be more robust against parameter uncertainty due to
the redundant data, and their performance will increase
significantly. This leads to better positioning accuracy and
less trajectory tracking error.

4.8. Simulation results
The developed redundant dynamic model can be used to
implement advanced control approaches. In [36] a novel
computed torque control scheme considering a redundant
dynamic model was proposed. This scheme, called Extended
CTC approach (Fig. 3), is more robust than classical CTC
approach when parameter uncertainties are high. The control
law is shown in Eq. (59):

τ = D · (Kp · e + Kv · ė) + (D · q̈re f + C · q̇ + Gr ).

(59)

In order to validate the proposed dynamic model, the
Extended CTC approach is compared to the classical CTC
approach. For that purpose, a set of simulations have been
conducted using the 3RRR robot. The classical CTC scheme
and the Extended CTC scheme are implemented using the
previously defined dynamic model. A circular nonsingular
trajectory with center (x, y) = (0, 0), radius of 0.1 m and
θz = 0◦ has been defined on the task space. Using the inverse
kinematic problem defined in Section 3.2, the trajectories for
both active and passive joints have been derived, considering
a fixed working mode21. The model has been implemented
in Matlab/Simulink environment, with a computational cost

Table II. Performance indexes.

ISE IAE ITAE∫ 0
∞ e2(t) dt

∫ 0
∞ |e(t)| (t) dt

∫ 0
∞ t · |e(t)| dt

of 5 ms running on a Pentium D 2.4 Ghz, which allows its
implementation in real-time.

The comparative analysis of control schemes consists of
studying the ISE, IAE, and ITAE performance indexes of
the end-effector positioning error e(t) (Table II), for the
predefined trajectory.

Model parameters have been defined as follows. Base
point coordinates: OA1 = [−0.15, −0.84] (m), OA2 =
[0.69, −0.17] (m), OA3 = [−0.66, 0.21] (m). Link lengths:
Li = 0.5(m), li = 0.4(m), i = 1, 2, 3. Link center of
mass position: lcLi

= 0.25 (m), lcli
= 0.2 (m), i = 1, 2, 3.

Link masses: mLi
= 0.4239 (kg), mli = 0.3391 (kg), i =

1, 2, 3. Link inertia moments: ILi
= 0.0088 (kg · m2), Ili =

0.0045 (kg · m2), i = 1, 2, 3. Platform geometry constants:
di = 0.1732 (m), i = 1, 2, 3. Platform masses: mp =
1.3576 (kg), mc = 0.5 (kg). Platform inertia moments:
Ip = 0.0085 (kg · m2), Ic = 8.3333 · 10−4 (kg · m2) Passive
sensor masses: msi

= 0.0656 (kg), i = 1, 2, 3. Sensor inertia
moments: Isi

= 3.687 · 10−6 (kg · m2), i = 1, 2, 3.
The Kp and Kv gains on both extended and classical CTC

scheme have been tuned to obtain a maximum overshoot of
10 % and a peak time of 0.1 s.

To show the effect of parameter uncertainty in the model
identification, the real robot parameters have been randomly
modified from 1 %–5 % of their nominal values. In order to
obtain statistical data, each simulation iteration is repeated
10 times for each case. For that purpose in a first step
the parameter modification templates are created, that is,
each model parameter (length, inertia, mass) is randomly
assigned a 0, −1 or 1 value, meaning no value change,
increment in of its nominal value or decrement of its nominal
value, respectively. Ten different parameter templates are
generated randomly, one for each simulation iteration. When
the simulations are launched, for each parameter variation
percentage and simulation iteration the modified parameters
are calculated using the templates. For a given variation
percentage, the average behavior of the controller in each
set of iterations is considered.

Fig. 4. Integral of the square error vs. % of parameter variation.
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Fig. 5. Integral of the absolute error vs. % of parameter variation.

Fig. 6. Integral of the time absolute error vs. % of parameter
variation.

Fig. 7. Evolution of the TCP positioning error.

Statistical results are summarized in Figs. 4–6. As it
could be expected, the performance indexes increase with
the parameter variation. However, the extended CTC scheme
that implements the proposed redundant dynamic model has a
lower increase ratio than the traditional CTC scheme in all the
performance indexes. This demonstrates that the proposed
dynamic model is more robust against model parameter
uncertainties.

In Figs. 7–9 the trajectories of the error signals, the TCP
coordinates and the joint coordinates for a case in which
parameters have been modified by 5 % of their nominal
values are shown. In solid line the evolution of the extended
CTC approach is shown, and in dashed line the classical
CTC. The reference trajectory is plotted using triangles. As
it can be seen, positioning errors are decreased with the

Fig. 8. Evolution of the TCP position.

use of extended CTC scheme, which validates the proposed
redundant approach.

5. Conclusions
A useful formulation for the calculation of the dynamic
model of planar parallel robot is proposed. For that purpose,
first the closure loop equations of the mechanism that
relate the active and passive joint coordinates and the task
coordinates are calculated. Based on these equations, the
direct and inverse position problems can be formulated. The
velocity Jacobian matrices are obtained differentiating the
closure loop equations. A second derivation leads to the
solution of the acceleration problem, which completes the
kinematic analysis of the mechanism. For the calculation of
the dynamic model the Lagrangian Formulation is applied.
First, the mechanism is divided in two subsystems: end-
effector platform and serial chain subsystem. Then, the
Lagrangian equation of each subsystem is obtained, and the
differential equations associated to each subsystem derived.
Finally, the two differential equation system are combined
using the kinematic relations defined previously.

The proposed methodology is a systematic, matrix-based,
powerful method that can be easily followed. The main
advantage of the formulation is that the model can be defined
in terms of only active joints, or in terms of active and some
extra sensorized passive joints making it redundant. The
consideration of extra sensors explicitly in the model can
be used in model-based control techniques in order to obtain
a better control performance, improving robustness against
parameter uncertainty and reducing tracking and positioning
errors as demonstrated in previous works.

An example based on the 3RRR parallel robot is developed
in order to illustrate the proposed approach. This robot can
be considered as the benchmark platform in planar parallel
robots. The calculated redundant model is validated by the
implementation of the model in an extended CTC control
scheme. It is demonstrated that this approach, based on the
redundant model is more robust and more accurate than the
traditional CTC approach, in which the model is defined in
terms of the active joints. The computational cost guarantee
its implementation in Real-Time.
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Fig. 9. Evolution of the joint coordinates position.
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Appendix: Constraint matrix JC
In this section further explanations regarding the relation
between the constraint Jacobian (7) and the Jacobian of the
constraint equations (3) are introduced:

The nr constraints of the mechanism can be calculated
formulating the vector equations that link the TCP with the
origin of the cartesian frame:

�(x, q) = 0 ∈ R
nr×1, (A 1)

which defines a set with nr equations. Differentiating it
and using the proposed coordinate partitioning, the velocity
equation can be rewritten as

∂�

∂x︸︷︷︸
nr×n

ẋ + ∂�

∂q︸︷︷︸
nr×nr

q̇ = 0. (A 2)

So, clearing ẋ,

ẋ = −
[
∂�

∂x

]†
︸ ︷︷ ︸

n×nr

∂�

∂q︸︷︷︸
nr×nr

q̇. (A 3)

Thus, by direct comparison with Eq. (24), it is demon-
strated that

−
(

∂�

∂q

)T
[(

∂�

∂x

)T
]†

= JT
C, (A 4)

which demonstrates that the relation in Eq. (25) arises
naturally because of the applied formulation, based on the
coordinate partitioning.
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