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Abstract. A fluid model is used to describe the propagation of envelope structures in
an ion plasma under the influence of the action of weakly relativistic electrons and
positrons. A multiscale perturbative method is used to derive a nonlinear Schrödinger
equation for the envelope amplitude. Criteria for modulational instability, which
occurs for small values of the carrier wavenumber (long carrier wavelengths), are
derived. The occurrence of rogue waves is briefly discussed.

1. Introduction
Dense plasmas are an exotic form of matter, occurring
in ultra high densities and/or low temperatures. Such
plasma configurations, tacitly believed to occur in su-
perdense astrophysical objects, e.g. white and brown
dwarfs, neutron stars, and magnetars, are nowadays
also realized in the laboratory during ultra-intense laser-
matter interaction experiments (Shapiro and Teukolsky
1983; Koester and Chanmugam 1990; Lai 2001; Hansen
et al. 2004; Fortov 2009). According to the standard
qualitative picture, matter in the interior of such astro-
physical objects is compressed to such a high density
that the thermal energy is negligible in comparison
with the Fermi energy, which arises due to the overlap
of fermion wavefunctions. In regions of high density
and low temperature, therefore, pressure due to particle
interactions is thus amplified by the degenerate fermion
kinetic energy. This is a purely quantum-mechanical
effect, and is thus not sensitive to the particle tem-
perature, so pressure does not go down as the star
cools. Electron degeneracy pressure thus sustains dense
objects by balancing their own gravitational pull. Due to
a very high particle number density, which may exceed
1030cm−3, the electron Fermi energy becomes compar-
able with the electron rest energy and the electron speed
attains relativistic values. Consequently, the equation
of state (EoS) changes from P ∼ n5/3 (non-relativistic
expression) to P ∼ n4/3 (ultra-relativistic limit), for the
pressure as function of the particle density n, making the
white dwarf gravitationally unstable for masses roughly
larger than MC = 1.4 × M�, where M� represents the
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solar mass. The critical mass limit MC is referred to as
the Chandrasekhar limit (Chandrasekhar 1939, 1935),
i.e. the mass threshold above which the star collapses.

High-density dynamical astrophysical environments,
such as the interior of white dwarfs, are characterized
by electron and positron coexistence, alongside a small
fraction of ions also likely to be present (Lallement et al.
2011; Rahman et al. 2013a). As energy is gradually
lost, stellar material cools down and ions may behave
as quasiclassical particles, although still subject to the
quantum features of the environment (e.g. Fermi–Dirac
degeneracy effect of electrons). It is obvious that the
ion component significantly modifies the response of
electron–positron (e-p) plasmas, hence it may be associ-
ated with slow dynamical scales occurring in electron–
positron–ion (e-p-i ) plasmas. Collective interactions in
dense e-p-i plasmas have been the focus of various
studies in last few years (Haider et al. 2012; Zeba et al.
2012; Khan 2013; Rahman et al. 2013a).

Wave propagation in complex matter configurations,
such as plasmas, is characterized by nonlinear amplitude
modulation, in turn associated with harmonic generation
and modulational instabilities in plasmas. This may
occur due to either simple nonlinear self-interaction
of the carrier wave, parametric wave coupling, or the
interaction, e.g. between high- and low-frequency modes.
The standard method employed to study this mechanism
is a multiple space and time scale perturbation technique
(Asano et al. 1969; Taniuti and Yajima 1969) which
leads to a nonlinear Schrödinger-type equation (NLSE)
describing the evolution of the wavepacket’s envelope.
Modulated waves are known to undergo Benjamin–
Feir-type (modulational) instability (MI), referring to
modulated envelope collapse due to small external per-
turbations (Dauxois and Peyrard 2005; Kourakis and
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Shukla 2005). This mechanism favors energy localization
via the formation of envelope localized structures (envel-
ope solitons), i.e. long-lived localized excitations, which
are sustained by a mutual balance between dispersion
and nonlinearity and can propagate in the medium
over long distances, remarkably surviving impacts with
each other. Let us add, for the sake of rigor, that
we have chosen to neglect pair-annihilation (recom-
bination) processes, for simplicity in the analysis, in
agreement with earlier studies (Svensson 1982; Akbari-
Moghanjoughi 2010; Rahman et al. 2013b), suggesting
that recombination processes can be ignored for a range
of density values of relevance in astrophysical plasmas.

In this paper, we employ the generalized
Chandrasekhar (1939) equation of state, combined with
a fluid-dynamical formulation, to investigate the non-
linear dynamics of modulated ion-acoustic wavepackets.
This is clearly a simplistic approach to the analytical
modeling of dense relativistic plasma which, thanks to
its analytical tractability and simplicity of formulation,
provides some insight in the dynamics, compared with
the classical, non-relativistic description. Influence is
drawn from earlier work (Akbari-Moghanjoughi 2011),
relying on a similar model to describe the dynamics
via the Sagdeev pseudopotential method. We consider
a dense plasma composed of a non-relativistic non-
degenerate cold ion fluid and relativistically degenerate
electrons and positrons. Our aim is to investigate, from
first principles, the occurrence of modulational instabil-
ity and the existence of envelope solitary structures
associated with ion acoustic waves.

2. Quantum ion-fluid model
Ions are assumed to constitute a system of ‘cold’ particles
with an individual charge of Zie (Zi denotes the ion
charge state, while e is the electron charge), subject to
the influence of the electrostatic potential φ. Adopt-
ing a one-dimensional fluid formulation, the evolution
equations for the ion density ni, fluid speed v, and
electron/positron pressure Pe/p, in terms of φ, read as
follows:

∂ni

∂t
+

∂

∂x
(niv) = 0,

∂v

∂t
+ v

∂v

∂x
+
Zie

m

∂φ

∂x
= 0,

ene
∂φ

∂x
− ∂Pe

∂x
= 0,

enp
∂φ

∂x
+
∂Pp

∂x
= 0,

∂2φ

∂x2
= 4πe(ne − Zini − np).

(2.1)

Electrons and positrons are treated as a degenerate
ensemble; we adopt (for species denoted by index j =
e, p) the relativistic equation of state (Chandrasekhar
1939),

Pj =
πm4

j c
5

3h3

[
ηj

(
2η2

j − 3
) (

1 + η2
j

) 1
2 + 3 sinh−1(ηj)

]
,

(2.2)

where ηj = pFj/mjc =
√
γ2
j − 1, pFj =

√
2mjEFj =

(3h3nj/8π)
1
3 is the Fermi momentum and γj =

√
1 + η2

j ;

sinh−1 denotes the inverse hyperbolic sine function.
The third and fourth equations in (2.1) can be in-

tegrated as 1
ne,p

∂Pe,p
∂x

=
mc2ηe,p

(1+η2
e,p)

1
2

∂ηe,p
∂x

. The number densities

can then be expressed as functions of φ, viz.

ne,p =
8πm3

e,pc
3

3h3

[
e2φ2

m2
e,pc

4
± 2eφ

me,pc2
(1 + η2

e,p0)
1
2 + η2

e,p0

] 3
2

(2.3)
and therefore reduce the number of equations to three.
In (2.3), ηj0 = (3h3nj0/8πm

3c3)
1
3 is the value of the

relativity parameter, ηj , at equilibrium.
The model is rewritten in terms of dimensionless

variables. The number densities are rescaled by their
equilibrium values, nj0. By L0, t0, and V0 = L0/t0 we
denote, respectively, the characteristic length, time, and
speed scales. Finally, φ0 is the scale parameter for the
potential. The physical scales actually adopted need only
be determined later, based on physical arguments and
analytical convenience. The reduced system reads as
follows:

∂ñi

∂t̃
+

∂

∂x̃
(ñiṽ) = 0,

∂ṽ

∂t̃
+ ṽ

∂ṽ

∂x̃
+ a

∂φ̃

∂x̃
= 0,

∂2φ̃

∂x̃2
= b(βñe − ñi − αñp). (2.4)

The choice of scale(s) affects the fluid equations through
parameters, a, b, α, and β, namely as: a = Zieφ0

miV
2
0
, b =

4πZieni0L
2
0

φ0
, α =

np0
Zini0

, and β = ne0
Zini0

. A natural choice of
scales, leading to a = b = 1, will be adopted: space and

time are scaled by Ci/ωpi and ω−1
pi =

(
mi/4πni0Z

2
i e

2
)1/2

,
respectively, while the electrostatic potential is scaled by

φ0 = EFe0
Zie

, and the ion fluid speed by Ci =
(
EFe0/mi

)1/2
.

Poisson’s equation at equilibrium implies: β = 1 + α.
(The e-i plasma case is recovered for β = 1). If the
system does not deviate too far from equilibrium, the
electron and positron number densities can be approx-
imated by the Taylor expansion, hence

∂2φ̃

∂x̃2
+ b(ñi − 1) � c1φ̃+ c2φ̃

2 + c3φ̃
3, (2.5)

where the (constant) coefficients on the right-hand side
are defined as

c1 =
3βbγe0

2
+

3αbEFe0γp0
2EFp0

,

c2 =
3βb

8
(2γ2

e0 − 1) − 3αbE2
Fe0

8E2
Fp0

(2γ2
p0 − 1),

c3 =
βbγe0

16
(2γ2

e0 − 3) +
αbE3

Fe0γp0

16E3
Fp0

(2γ2
p0 − 3), (2.6)

EFj0 = mjc
2η2
j0/2 and γj0 =

√
1 + η2

j0. For the remainder

of this work, the scaled variables will be used (dropping
the tilde where obvious).
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Figure 1. (Colour online) Plots of the angular frequency (ω) and of the group velocity (vg) for ηe0 = 1.19, corresponding to
ne0 ≈ 1030 cm−3.

3. Multiple scales perturbative analysis
Following the method by Taniuti and coworkers (Taniuti
and Yajima 1969), we assume that each of n, v, and φ

takes the form of a supersposition of phase harmonics.
We assume that the carrier depends on (x, t), but the
wave envelope depends on an infinite set of (slow)
variables, {X1, X2, ..., T1, T2, ...}, where Tr = εrt and Xr =
εrx (for r = 1, 2, 3, ...) and ε � 1 is a free (real, small)
parameter. Furthermore, the variables are expanded
around their equilibrium values: n ≈ 1+εn1 +ε2n2 + · · ·,
v ≈ εv1 + ε2v2 + · · ·, and φ ≈ εφ1 + ε2φ2 + · · ·. Each
of these uj (say, any of nj , vj , φj) is split into a

sum of Fourier components: uj =
∑j

r=−j u
(r)
j eir(kx−ωt).

The number densities, speed, and potential are real-
valued quantities, so u

(−r)
j = ū

(r)
j (the bar here denoting

the complex conjugate). The stretched variables are
treated as independent variables. With this in mind, the
model equations are transformed into a series of coupled
polynomials whose solutions provide expressions for
state variables in terms of their harmonic amplitudes.

Linear analysis. The equations in the first order of
ε can be expressed in the form of a singular matrix
equation, the operator of the equation possessing a
non-trivial kernel. The vanishing determinant of this
operator forms the dispersion relation, ω2 = k2ab

c1+k2 . The
dispersion relation is depicted in Fig. 1, choosing an
arbitrary value for the electron density, ne0 ≈ 1030 cm−3,
of relevance to densities in the interiors of white dwarfs
(Koester and Chanmugam 1990; Fortov 2009). The
linear equations in φ1, ni1, and v1 are under-determined,
so letting the electric potential (amplitude) φ(1)

1 = ψ be
a free variable, we obtain: φ1 = ψei(kx−ωt) + ψ̄e−i(kx−ωt),

where ni1 = kv1
ω

= c1+k
2

b
φ.

Nonlinear analysis and nonlinear Schrödinger equation.
The equations for the first-harmonic components at
second order are singular, forcing the following condi-
tion to be imposed for secular term annihilation: ∂ψ

∂T1
+

vg
∂ψ
∂X1

= 0, where vg = dω/dk =
(
abc1/(c1 + k2)2

)
k/ω,

thus the envelope moves at the group velocity.

The first-harmonic components depend on ∂ψ/∂X1.
The second-harmonic components are found to be pro-
portional to ψ2, while the zeroth-harmonics are propor-
tional to |ψ|2.

The solution has the form: φ ≈ εψei(kx−ωt) +
ε2

(
1
2
C0

23
|ψ|2 + C2

23
ψ2e2i(kx−ωt)) + c.c.

The equations for the first-harmonic at the third
order in ε require ψ to obey the nonlinear Schrödinger
equation:

i
∂ψ

∂τ
+ P

∂2ψ

∂ξ2
+ Q|ψ|2ψ = 0, (3.1)

where we have defined the (slow) moving coordinates
ξ = X1 − vgT1 = ε(x − vgt) and τ = T2 = ε2t. The
dispersive coefficient, P , is equal to half the gradient
of the group velocity. The nonlinearity coefficient, Q, is
more complicated and is written below:

Q=
ω[2c2(C

0
23

+ C2
23

) + 3c3]

2(c1 + k2)
− k(C0

22
+ C2

22
)

− ω

2
(C0

21
+ C2

21
). (3.2)

They are depicted in Fig. 2 for different values of the
parameter, α, and for fixed value(s) of ηe0. C

m
2 l are

associated with the second- (for m = 2) and zeroth-
harmonic (for m = 0) components of the ion-density,
speed, and potential, respectively, for l =1, 2, 3. These
are provided in the Appendix.

4. Modulational stability profile and
rogue waves

The stability of plane–wave solutions to periodic per-
turbation is determined by the relative signs of P and Q
(Dauxois and Peyrard 2005): when they are of the same
sign, i.e. for small value of k (see Fig. 3), the perturbation
will either grow or collapse exponentially. This can be
seen from the dispersion relation for the disturbance
of a plane wave, ρ0e

iQρ2
0τ by a periodic function of the
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Figure 2. (Colour online) Plots of P (=1
2
d2ω
dk2

) and of Q versus the wavenumber, k.
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Figure 3. (Colour online) The product PQ is plotted against the wavenumber, k (left panel). The dependence of this critical
wavenumber on the ratio α = np0/(Zini0) is shown in the right panel, for fixed electron number density. Here we have taken
ηe0 = 1.19, corresponding to ne0 ≈ 1030 cm−3.

variable κξ − Ωτ, namely Ω2 = (Pκ2)2
(
1 − 2Q

Pκ2 |ρ0|2
)

(Dauxois and Peyrard 2005; Kourakis and Shukla 2005).
It is straightforward to see that the frequency Ω takes

imaginary values if κ is less than
(

2Q
P

|ρ0|2
)1/2

. This
instability does not occur if PQ < 0, i.e. for large carrier
wavenumber values k (see Fig. 3). Note the difference
between the wavenumbers k and κ, referring to the
carrier wave and an external perturbation (e.g. turbu-
lence, or noise), respectively. A wavenumber threshold is
thus defined, which depends in fact on relevant plasma
parameters (see Fig. 3b).

It might be appropriate to discuss the degeneracy

effect, which may be traced in principle by investigating

the impact of the relativistic parameter ηj , in fact a
function of electron density. However, this task would

require significant space here, and has thus been left for

future work, i.e. a detailed study currently in preparation.
On the other hand, the degeneracy effect can be qualit-
atively traced in the deviation from the classical results,

e.g. the known wavenumber thresholds (for modulation
instability) in classical plasmas. As a matter of fact,
quantum statistics in our case increases the instability
threshold, in comparison with the classical model. To

see this, first recall that the instability (wavenumber)
threshold is equal to a factor 1.47 times the inverse
Debye length (λ−1

D ), for classical ion-acoustic waves
(Kourakis and Shukla 2004), and note that here the
wavenumber threshold is of the order of ∼4–7 times
(see Fig. 3) the inverse Fermi length (recall the spatial
scale definition following (2.4) above), which is �λ−1

D , by
a factor (kBTe/EF )

1/2�1.
Details on the Benjamin–Feir-type modulational in-

stability mechanism are considered here, and its ana-
lytical description can be found elsewhere (Dauxois and
Peyrard 2005; Kourakis and Shukla 2005) and is omitted
here. Note that the instability threshold is expressed in
terms of the perturbation wavenumber in this theory.
Various instability scenarios have been discussed in the
past. For a rigorous analysis of modulational instability
mechanisms and associated instability thresholds, in
particular described via a kinetic formulation, we refer
the interested reader to Popel et al. (1995a, b) and
Vladimirov and Popel (1995, 1996).

Rogue waves (or freak waves) are extreme events
characterized by their sudden appearance from and sub-
sequent disappearance into an oscillating background.
During its brief display, the rogue wave attains a height
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Figure 4. (Colour online) Plots of (a) Peregrine’s ‘soliton’; (b) Akhmediev’s breather; (c) the Kuznetsov–Ma breather.

that exceeds the average turbulence by some margin
(Peregrine 1983; Dysthe and Trulsen 1999; Akhmediev
et al. 2009).

Three types of rogue waves are depicted in Fig. 4.
The first is Peregrine’s ‘soliton’, which first appeared
in literature 30 years ago. This solution features only a
single rogue structure whose amplitude decreases in both
time and space. Its relevance in nonlinear optics has been
established recently (Kibler et al. 2010). Akhmediev’s
breather is periodic in space, but highly localized in
time. The Kuznetsov–Ma breather is highly localized
in space, but periodic in time. The basic formulary for
these solutions can be found in Veldes et al. (2013), so
details are omitted here.

5. Conclusions
We have investigated, from first principles, the amplitude
modulation of electrostatic wavepackets propagating in
dense quantum plasmas, consisting of ‘classical’ ions and
degenerate electrons and positrons. While the former
(ions) were considered as inertial species, via a fluid
model, a relativistic equation of state was adopted for the
latter two species (electrons and positrons). The model
was reduced to a nonlinear Schrodinger-type partial-
differential equation, describing the evolution of the
envelope. The analysis showed that the wave envelope
is subject to modulational instability for small values of
the carrier wavenumber (long carrier wavelengths). The
occurrence of rogue waves was briefly discussed. It may
be added, for the sake of rigor, that the model employed
here is introduced as ‘toy-fluid model’, which reproduces
the essential features of the physics of dense quantum
plasmas in the presence of relativistic light charged
particles. A more sophisticated approach for plasma
modeling at highly relativistic conditions should be more
elaborate (albeit presumably less tractable, analytically),
yet goes beyond our scope here.

A more detailed study incorporating ion thermal
effects and a detailed parametric analysis are in pre-
paration.
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Appendix
The coefficients for the second-harmonic components
are listed below. The indices in Cj

i k denote the order of
epsilon (i = 0, 1, 2), the harmonic (j = 0, 1, 2), and the
variable (k = 1, 2, 3 for density, velocity, and potential,
respectively).

C0
21

=
c1

(
c1+k

2

b

)2 (
2vgω

k
+ ω2

k2

)
− 2ac2

c1

c1v2g − ab
,

C0
23

=
b

c1
C0

21
− 2c2

c1
,

C0
22

= vgC
0
21

− 2

(
c1 + k2

b

)2
ω

k
,

C2
23

=
3
(

(c1+k
2)2

2b

)
− c2

3k2
,

C2
21

=
c1 + 4k2

b
C2

23
+
c2

b
,

C2
22

=
ω

k
C2

21
−

(
c1 + k2

b

)2
ω

k
.
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