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HENKIN CONSTRUCTIONS OFMODELS WITH SIZE CONTINUUM

JOHN T. BALDWIN ANDMICHAEL C. LASKOWSKI

Abstract. We describe techniques for constructing models of size continuum in � steps
by simultaneously building a perfect set of enmeshed countable Henkin sets. Such models
have perfect, asymptotically similar subsets. We survey applications involving Borel models,
atomic models, two-cardinal transfers and models respecting various closure relations.

§1. Introduction. In the novelWhite Light [22], Rudy Rucker proposes a
metaphor for the continuum hypothesis. One can reach ℵ1 by a laborious
climb up the side of Mt. ON, pausing at �0. Or one can take Cantor’s
instantaneous elevator through the center of the mountain. In this paper,
working in ZFC, we take Shelah’s elevator, which is a bit slower. After
countably many floors, each with finitely many rooms, we reach an object
of cardinality 2ℵ0 . The underlying construction applies for finding atomic
models, two-cardinal theorems, a collection of continuum many points that
are asymptotically similar (a weak form of indiscernibility), and a coloring
with a Borel square of size continuum.
In his seminalDenumerablemodels of complete theories, [31], Vaught intro-
duced the notion of an atomic model.1 He showed that if the isolated types
were dense2 in S(T ) then T has an atomic model. Interestingly, Hirschfeldt,
Shore, and Slaman [12] showed that this central model theoretic theorem is
not equivalent to any of the so-called ‘big five’ standard systems of reverse
mathematics. Vaught further showed that a countable atomic model of a
complete theory T could be elementarily embedded in every other model;
that is, it is prime.
The construction of uncountable atomic models begins with Vaught’s
proof [31] that if a countable atomic model has a proper atomic elementary
extension then it has an atomic elementary extension of cardinality ℵ1. He
constructs a continuous elementary chain of �1 countable atomic models
and, using the facts that elementary chains of atomic models are atomic and
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1Recall that a formula ϕ(w), where lg(w) = n, is complete for T if for every formula

�(w), ϕ(w) decides �(w) in T . I.e., T � ∀w[ϕ(w) → �(w)] or T � ∀w[ϕ(w)→ ¬�(w)].
A modelM is atomic if every finite tuple from A satisfies a complete formula. Here, atomic
means ϕ is an atom in the Boolean algebra Fn(T ) and has nothing to do with the quantifier
rank of the formula ϕ.
2For every formula ϕ(x) consistent with T there is a complete formula �(x) such that

T � ∀x[�(x)→ ϕ(x)].
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2 JOHN T. BALDWIN ANDMICHAEL C. LASKOWSKI

any two elementarily equivalent countable atomic models are isomorphic,
deduces that the union of the chain is atomic. However the construction of
atomic models in cardinals beyond ℵ1 is a long standing problem. The study
of atomic models of complete first-order theories translates to the study of
complete (decides every L�1,�-sentence) sentences of L�1,� sentences. (See,
e.g., Section 3.3 of this paper or Chapter 6 of [2].)
Knight [16] showed that the construction could stop at ℵ1; there is a first-
order theory with no atomic model of cardinality greater than ℵ1. A series
of works [17, 19] culminating in Hjorth [8] show that for each countable
ordinalα there is a complete sentence ofL�1 ,� that has amodel of cardinality
ℵα but no larger model. Thus, it is consistent that these sentences have no
model in the continuum.
Given an atomic modelM of cardinality ℵ1 in a countable vocabulary, we
describe simple sufficient conditions to construct an elementarily equivalent
model N of cardinality 2ℵ0 , which is atomic and Borel. We modify Henkin’s
construction to build a complete diagram on a family of 2ℵ0 variables. The
traditional two conditions for a Henkin construction, completeness, which
ensures that each sentence is decided and Henkin witnesses, which ensures
that each existential commitment is met, are supplemented by a crucial
splitting condition which guarantees the final model has the cardinality of
the continuum.
This method generalizes Shelah’s construction of a kind of ‘tree indis-
cernibility’, which we call ‘asymptotic similarity’ to give a unified treatment
of results in several areas of model theory. While we stressed atomic models
in the first two paragraphs, the method applies as well to transfer cardinals
in which a type is omitted and for two cardinal transfers.
In the first five sections we describe the general method. Section 2 is an
overview of both the classical Henkin construction and hints at the new con-
struction. Section 3 lists a number of desirable properties we might wish the
finalmodel satisfied.Section4gives considerablymoredetail.Therewedefine
finite maximal antichains (fmacs)A of 2<�,A-commitments, and generating
sequences. Theorem 5.4 of Section 5 is the main result of the paper.
The second half of the paper discusses applications of this technique.Most
of the results are known, but Theorem 6.13 is new. Our first application
in Section 6.1 constructs highly controlled models of theories with trivial
definable closure, which is a notion studied by Ackerman, Freer, and Patel
in [1]. In Section 6.2 we introduce the notion of a sufficient pregeometry
and prove, e.g., if M is uncountable and atomic and (M, cl) is a sufficient
pregeometry, then there is an atomicmodelN of size continuumelementarily
equivalent to M . This result immediately entails the new theorem that a
pseudominimal theory has anatomicmodel of size continuum. InSection6.4
we show that old results of Hrushovski and Shelah from [11] fit nicely into
our rubric. In particular, if a superstable theory T has an atomic model of
size ℵ1, it has an atomic model of size �1 (i.e., the continuum).
Section 7 is devoted to streamlining our method under the additional
assumption that the theory T has Skolem functions. In Section 7.1 we show
that Shelah’s celebrated two-cardinal transfer theorem (ℵ�,ℵ0)→ (2ℵ0 ,ℵ0)
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from [24,25] fits this framework. In Section 7.2, we discuss results of Shelah
from [29] that describe a cardinal ��1(ℵ0) that is large enough so that any
structure M of at least this size can witness arbitrarily long splittings. As
one application, we expound Shelah’s proof of the consistency with ZFC +
2ℵ0 > ℵ�1 of the statement: ‘A sentence of L�1,� that has a model in ℵ�1 has
one in the continuum.’
This analysis also connects with the philosophical discussion of the nature
ofmathematical explanation.Hafner andMancosu [10] criticized theResnik
and Kushner [21] assertion that Henkin’s proof [7] of the completeness
theorem for first-order logic and type theory is explanatory. They asked
‘what the explanatory features of this proof are supposed to consist of?’. By
its explicit connections with the deductive system Henkin’s original proof
was more explanatory of first-order completeness than Gödel’s reduction to
propositional logic [3]. This paper broadens that debate by noting that the
Henkin construction extends from a transfer from a syntactic hypothesis to
a semantic conclusion to a transformation from one model to another. That
is, Henkin’s essential contribution is to explain the ingredients to construct
a model. So the significance of the method is seen in a larger context than
the original proof.

§2. General strategy. We suppose throughout that we are working with a
countable language L with equality. Our objective will be to describe tech-
niques, which are highly analogous to a Henkin construction of a countable
model, for constructing a modelM of size continuum.
Classically, the key notion is that of a Henkin set of formulas, whose
definition is rather tedious, but provides the bridge between proof systems
and structures. In their proofs of the completeness theorem bothHenkin and
Gödel worked in a framework in which equality was just another relation
symbol. Each author added an addendum that the proof transferred to the
situation where equality was required to be interpreted as identity. This
addendum weakened Henkin’s conclusion that the model constructed for
a vocabulary of size κ had cardinal κ to ‘at most κ’. Similarly, with this
interpretationGödel’s version for countable languages allowedfinitemodels.
Here, we are not giving a proof of the completeness theorem. Rather, we are
transferring the existence of a model with specified properties to a model
with the similar properties, but having cardinality 2ℵ0 . Because of this we
assume predicate logic includes the equality axioms, so all witness sets will
satisfy the usual equality axioms. An advantage of this convention is that our
definition of a ‘witnessed Henkin set’ does not require additional equality
conditions.
Henkin’s most fundamental innovation (e.g., [3]) was to replace the
Skolem functions in Gödel’s proof by carefully described constants. This
allowed the transformation from Gödel’s universal vocabulary with relation
symbols of all arities to a vocabulary tailored for the topic at hand.

Definition 2.1. Let L be any countable language. Let Z be a distin-
guished set of indexed variable symbols. After Henkin, Z was viewed as
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a countably infinite set of constant symbols. Here we treat the witnesses
as variables so as to encode restrictions on the relations among variables
introduced at different levels as transparent validities.
For any L-formula ϕ with at most k free variables and for any set of
variables V , we introduce the notion of a V -instantiated formula. For any
(v1, . . . , vk) ∈ V k, let ϕ(v1, . . . , vk) be the result of substituting the vari-
able symbol vj for the jth free variable for each j. We call ϕ(v1, . . . , vk) a
V -instantiated formula; Fm(V ) denotes the set of all formulas obtained by
this procedure.
A witnessed Henkin set is a subset H ⊆ Fm(Z) with the following three
properties:

• Satisfiability: If ϕ(z1, . . . , zk) ∈ H, then there is some L-structure N
and (a1, . . . , ak) ∈ Nk such that N |= ϕ(a1, . . . , ak).

• Completeness: For every ϕ ∈ Fm(Z), exactly one of ϕ,¬ϕ ∈ H; and
• Henkin witnesses: If ∃wϕ ∈ Fm(Z), then either ¬∃wϕ(w) ∈ H or
ϕ(z∗) ∈ H for some z∗ ∈ Z.

It is routine to see that for any witnessed Henkin set H ⊆ Fm(Z), the
binary relation z ∼ z ′ iff (z = z ′) ∈ H is an equivalence relation. As
notation, for each z ∈ Z, let [z] denote the image of z under the canonical
projection 	 : Z → Z/∼. The following proposition is proved by a routine
induction on the complexity of formulas; the ‘Henkin witnesses’ clause is
precisely what is needed to allow quantifiers to be interpreted correctly.

Proposition 2.2. IfH ⊆ Fm(Z) is a witnessed Henkin set, then there is a
unique L-structureM with universe Z/∼ that satisfies

M |= ϕ([z1], . . . , [zk]) ⇐⇒ ϕ(z1, . . . , zk) ∈ H.

In particular, the relation∼ induced by the equality symbol inH is a congruence
on Z.
Moreover, if T is any L-theory and every ϕ(z1, . . . , zk) ∈ H is satisfied by
some model N of T (i.e., N |= ϕ(a1, . . . , ak) for some (a1, . . . , ak) ∈ Nk),
thenM is a model of T .

Note that the whole of the discussion so far does not depend on the size of
Z! In the classical construction of a Henkin set, Z is countably infinite, and
H is generated by an � sequence of formulas 〈ϕn(z̄n) : n ∈ �〉, where, for
each n, z̄n is a subsequence of z̄n+1 and ϕn+1(z̄n+1) � ϕn(z̄n). In particular,
at each finite stage and for each finite z̄ ∈ Zk only ‘finitely much information’
aboutH is determined.
In analogy with this construction, we want to create a template which can
be customized to create a model of size 2ℵ0 with desirable properties. We
begin with an indexed set Z of variable symbols of cardinality 2ℵ0 , which is
subdivided as

Z =
⋃

{Zs : s a nonempty finite subset of 2�}

where each Zs is countably infinite and Zt ⊆ Zs whenever t ⊆ s .
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We will construct a witnessed Henkin set H ⊆ Fm(Z) in � steps. Our
subdivision of Z gives rise to sets Fm(Zs) of instantiated formulas, whose
intersection with H yields a family {H(Zs) : s a nonempty finite subset of
2�} of countable witnessed Henkin sets. The restrictions of the congruence
∼ on Z naturally induce congruences on each Zs . Thus, exactly as in the
classical case outlined above, each of the Henkin sets H(Zs ) gives rise to a
canonical countable L-structure M (s) with universe Zs/∼. Our construc-
tion will ensure that M (t) is an elementary submodel of M (s) whenever
t ⊆ s .
Additionally, the entire Henkin set H(Z) determines a canonical L-
structureM with universeZ/∼. Since any finite tuple z̄ from Z is contained
in some Zs ,M can be identified with

M =
⋃

{M (s) : s a nonempty finite subset of 2�}.

In particular, any ‘finitary information’ aboutM will be inherited from the
directed family {M (s)} of countable models. As examples,
• M (s) 
M for each finite s ⊆ 2�, hence for any T ,M |= T if and only
if some (equivalently, every)M (s) |= T ;

• For Δ any partial type,M omits Δ if and only if everyM (s) omits Δ; so
• M is atomic (Section 3.2) if and only if everyM (s) is atomic.
Obviously, if we want to conclude thatM has size 2ℵ0 , we need some addi-
tional mechanism to ensure the construction is nondegenerate. In particular,
as each M (s) is countable, it would be very unfortunate if M (s) = M (t)
for all finite subsets s, t!
To ensure this, we now introduce the actual set of variable symbols used
in the construction. We will write Z = X ∪ Y , where, X is indexed as
{x
 : 
 ∈ 2�}or sometimeswemust doubly indexX as {x
,i : 
 ∈ 2�, i ∈ �}.
The intent is that the elements of X are ‘independent’ in some sense; but
at a minimum, we will require that for distinct 
, 
′, x
 �= x
′ ∈ H.3 This
will be enough to guarantee that the model M we produce from H will
have power continuum. The Y -symbols are indexed as {ys,i : s a nonempty
finite subset of 2�, i ∈ �} and should be interpreted as collectively being
‘material needed to close X into a model.’ For each nonempty finite subset
s of 2�, putXs := {x
 : 
 ∈ s} (or {x
,i , 
 ∈ s, i ∈ �} in the doubly-indexed
case); put Ys := {yt,i : t ⊆ s, i ∈ �}, and Zs := Xs ∪ Ys . Visibly, each Zs is
countable and Zt ⊆ Zs whenever t ⊆ s .
As examples, consider the modelsM{
},M{
′} andMs , where s = {
, 
′}.
Each of these is a countable, elementary substructure of M . Thus, in par-
ticular, for every constant symbol c ∈ L, there will be natural numbers i, j
such that the Z-instantiated formulas y
,i = c and y
′,j = c are both in H.
Consequently, y
,i = y
′,j will also be in H, so y
,i ∼ y
′,j . That is, these
two variable symbols are identified in bothM andM (s).
For s = {
, 
′}, the variables for M (s) are the union of the variables of
M (
),M (
′) and {ys,i} for i < �. The additional variables {ys,i} will close
3Or x
,0 �= x
′ ,0 ∈ H in the doubly indexed case.
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M (s) to be a model. For example, if we are constructing a group, then for
some i ∈ �,Hwould include theZ-instantiated formula x
+x
′ = y{
,
′},i .

§3. Desirable properties of models. As we are working in a countable
language, the existence of structures, or even models of a consistent first-
order theory, of size continuum is not surprising. Our aim is to identify other
desirable properties of models that do not so obviously have uncountable
models but that can be dovetailed with our construction of a witnessed
Henkin set. Here, we describe some such properties, and the next section
will outline sufficient conditions for a generating sequence and hence a
witnessed Henkin set to admit these properties.

3.1. Modeling T and omitting types. We list here the goals of certain
conditions on a construction that will guarantee it yields a model of a given
theory T that has the properties we are after. In Definition 5.3, we specify
how these goals are met in our situation.

Modeling T :AsL-sentences are themselvesL-formulas, if we require every
ϕ(z̄) ∈ H to be satisfiable in some model of T , then the Completeness
condition, each L-formula ϕ or its negation is inH, on a witnessed Henkin
set will ensure that the canonical modelM built from H is a model of T .

Omitting Δ: If we wantM to omit a single partial type Δ we need to require
that for any z̄ ∈ Zk , there is some � ∈ Δ with ¬ϕ(z̄) ∈ H. So, if H is going
to be produced in � steps, we need to ensure that every z̄ ∈ Zk is ‘handled’
along the way. Note that, in general, a condition such as ‘every ϕ ∈ H is
realized in some model that omits Δ’ might not be sufficient to guarantee
thatM omits Δ.

Omitting {Δm : m ∈ �}: Similarly, if we are given a countable set {Δm} of
partial types, in order to ensure thatM omits eachΔm, we need to ensure that
for each pair (z̄, m), there is a � ∈ Δm for which we enforce that ¬�(z̄) ∈ H.

3.2. Atomic models and complete formulas. For a complete theory T , an
L-formula ϕ(x) is complete with respect to T if:

• T |= ∃xϕ(x) and;
• for every L-formula �(x), ϕ decides �,
− either T |= ∀x(ϕ(x)→ �(x));
− or T |= ∀x(ϕ(x)→ ¬�(x)).

Equivalently, ϕ(x) is complete with respect to T if and only if there is a
unique complete type extending ϕ(x). A model M of T is atomic if, for
every n ≥ 1, every tuple ā ∈ Mn realizes a complete formula with respect
to T . Not every countable theory T admits an atomic model, but Vaught
proved that any two countable, atomic models are isomorphic. It is easy to
see that any elementary submodel of an atomic model is atomic, but the
upward Löwenheim-Skolem theorem can fail badly—Hjorth [9] proved that
for any α < �1, there are complete theories Tα that have atomic models
of size ℵα, but no larger. As it is consistent with ZFC for the continuum
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to be arbitrarily large in the ℵ-hierarchy, we know that we cannot hope to
construct an atomic model of size continuum for any of these theories Tα .
So wemust impose some additional hypotheses onT for it to have an atomic
model in the continuum.

3.3. L�1,�-sentences, omitting types, atomic models. We will see that in
many cases, the Henkin method will provide sufficient conditions for build-
ing amodel of size continuum that is atomic, or, in other cases, omits a given
countable family of types. This dual consequence stems from a fundamen-
tal link, discovered independently by Chang and Lopez-Escobar, between
sentences4 Φ of L�1,� and the omitting of types, which Shelah extended to
atomic models.

Given any sentence Φ′ of L�1,� there is a countable language L
′ ⊇ L,

a first-order L′-theory T , and a partial L′-type Δ(w) such that the
class of models of Φ′ is precisely the class of L-reducts of models of
T that omit Δ(w).

To see the idea suppose a subformula Φ(w) of the sentence Φ′ is a count-
able conjunction of formulas ϕi(w). Add a new predicate symbol RΦ(w).
Let T assert for each i , ∀w[RΦ(w) → ϕi(w)] and let Δ(w) be the type
{¬RΦ(w)} ∪ {ϕi(w) : i < �}. Now a modelM satisfies Φ(w)↔ RΦ(w) if
and only ifM omits Δ(w). Now hire a secretary who translates the inductive
structure of arbitrary sentence Φ′ into an iteration of extensions of this sort.
To make the connection with atomic models, we need some further
terminology.

Definition 3.1. An L�1,�-sentence Φ is complete if it has a model and if
it decides every L�1,�-sentence Ψ. An L-structure M is small if it realizes
only countably many distinct L∞,�-types over the empty set.

Recall that each countable model M (in a countable vocabulary) has
a Scott sentence, an L�1,�-sentence ΦM , whose only model is M . By the
Löwenheim-Skolem theoremΦM is complete. Examining the proof of Scott’s
theorem ([13]) one sees several equivalent statements (see e.g., Chapter 6 of
[2]): an L�1,�-sentence Φ is complete if and only if Φ is ℵ0-categorical if and
only if Φ is a Scott sentence of a countable L-structure. Similar arguments
show that an L-structure M is small if and only if it satisfies a complete
sentence Φ if and only if it has a countable L∞,�-elementary substructure if
and only if it has a countable L�1,�-elementary substructure.
Shelah [23] observed:

Remark 3.2. If Φ is a complete L�1,�-sentence, then there is a countable
language L′ ⊇ L and an L′-structure M ′ such that the class of models of
Φ is precisely the class of L-reducts of atomic models of T = Th(M ′).
Conversely, given any complete theory T in a countable language, there is a

4Recall that the logic Lκ,� allows conjunctions of length less than κ but only finite
quantifications; L∞,� = ∪κLκ,� .
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complete sentence Φ of L�1,� whose models are precisely the atomic models
of T .

Proof. LetM be any countable model of Φ. For each k ≥ 1, define an
equivalence relation ∼k onMk by ā ∼k b̄ if and only if they have the same
L∞,�-type over the empty set. For each k and ∼k-class E, add a new, k-ary
predicate symbol RkE to L

′ and letM ′ be the natural expansion ofM , i.e.,
M ′ |= RkE(ā) if and only if ā ∈ E. Let T = Th(M ′).
Conversely, given a complete, first-order theory T , for every n let Δn(x)
be the partial type asserting the negation of every complete formula with
respect to T . Let Φ be the L�1,�-sentence∧

T ∧
∧
n

∀x
(
¬
∧
Δn(x)

)
.

The models of Φ are precisely the atomic models of T . The completeness of
Φ follows from the uniqueness of countable, atomic models of T . �
Because of these observations, the entire subfield of ‘atomic model theory’
can be considered to be a study of the classes ofmodels of complete sentences
of L�1,�. Shelah exploited this identification by studying atomic models to
generalize Morley’s categoricity theorem to L�1,� in [27, 28].

3.4. Borel structures. Following [20], we say that a structureM is Borel if
there is a standard Borel space Z, a Borel subset D ⊆ Z, and a congruence
E ⊆ Z2 such that
1. E is a Borel subset of Z2;
2. The universe ofM is D/E; and
3. The pre-image of every subset ofMk defined by an atomic formula is
a Borel subset of Z.

If the congruence is the identity, we say thatM has an injective presentation.
In all of the cases that we consider, the set Z of variable symbols can be
presented as a standard Borel space. As we construct the witnessed Henkin
set H (which yields the entire elementary diagram of Z) in � steps, it will
follow automatically that the associatedmodelM is a Borel structure, where,
moreover D = Z. Typically, however, our methods do not give an injective
presentation of M . The one exception to this is in Section 6.1, where we
exploit strong hypotheses (trivial definable closure) about the theory that
yield an injective presentation. In that case, we additionally show that every
definable subset ofMk is a finite Boolean combination of open sets.

3.5. Asymptotic similarity. Throughout his career, Saharon Shelah
defined and reaped the benefits from a weakish notion of indiscernibility.
He used this notion in various contexts, including two cardinal transfer
theorems in [24, 25], obtaining perfect squares of colorings as in [29],
and constructing many models in small, superstable, non-ℵ0-stable theo-
ries. Until now, this notion was unnamed; we give it a belated baptism as
asymptotic similarity.
In order to describe this notion we fix some notation for dealing with
sequences from 2�.
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Definition 3.3. Fix an integer �.

• A k-tuple (
0, . . . , 
k−1) of distinct elements from 2� splits by � if the
restrictions {
i�� : i < k} to 2� are distinct.

• Two k-tuples (
0 . . . , 
k−1) and (
0, . . . , 
k−1) of distinct elements from
2� are similar (mod �) if (
0, . . . , 
k−1) splits by � and 
i�� = 
i�� for
each i < k.

Clearly, every k-tuple of distinct elements from 2� splits by some �, and
consequently splits by every � ′ ≥ �; and similarity (mod �) is an equivalence
relation on the set of k-tuples from 2� that split by �.

Definition 3.4. Fix an L-structure M . A subset of M , indexed by {a
 :

 ∈ 2�}, is asymptotically similar if, for every k-ary L-formula �, there is an
integer N� such that for every � ≥ N� ,

M |= �(a
0 , . . . , a
k−1 )↔ �(a
0 , . . . , a
k−1 )
whenever (
0, . . . , 
k−1) and (
0, . . . , 
k−1) are similar (mod �).

Remark 3.5. Although asymptotic similarity should be thought of as a
type of indiscernibility, the indiscernibility is only formula by formula. For
example, consider the structure M = (2�,Ua)a∈2<� , where each Ua is a
unary predicate interpreted as the cone above a, i.e., Ua(M ) = {
 ∈ 2� :
a�
}. Then, inM , the entire universe {
 : 
 ∈ 2�} is asymptotically similar,
despite the fact that no two elements have the same 1-type.
This notion of indiscernibles should not be confusedwith the ‘tree-indexed
indiscernibles’ (which are indiscernible for all formulas in the vocabulary)
in [15] which arise from nonsuperstable theories and Theorem 3.6 of [26].

§4. Partitions of Z via finite antichains. A cursory inspection shows that
the set 2� is involved in the indexing of elements from Z. We employ the
standard topology placed on the space 2� to describe families of partitions
of Z. As notation, for any a ∈ 2<�, let Ua = {
 ∈ 2� : a � 
} and
U = {Ua : a ∈ 2<�}. The standard topology on 2� is the topology formed
by positing that U is a base of open sets.
Throughout this paper, we will denote elements of 2<� by lower case
roman letters, a, b, c, . . . , and we reserve lower case Greek letters 
,
�, . . . for elements of 2�.

Note that if two elements a, b ∈ 2<� are incomparable, i.e., a �� b and
b �� a, then the sets Ua and Ub are disjoint. A finite, maximal antichain,
abbreviated fmac is a finite set A ⊆ 2<� in which any two elements are
incomparable, and every b ∈ 2<� is comparable to some a ∈ A. It is easily
seen that if A is an fmac, then the sets {Ua : a ∈ A} form a partition of 2� .
As notation, let 	A : 2� → A denote the projection map, i.e., 	A(
) is the
unique element ofA lying below 
. Curiously, the restriction thatA is finite is
crucial to obtain a partition of 2�. Indeed, ifA is any infinite antichain, then
as 2� is compact and each of the sets Ua are clopen, {Ua : a ∈ A} cannot
cover 2�. Paradigms of fmacs are the sets 2n, consisting of all sequences
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of length n, but many other fmacs exist. Our constructions could be done
using only the sets 2n but at the cost of suppressing intermediate steps which
are fmacs; it is more convenient to do various inductions in the general
setting.
We now introduce a second system of variables. Given any fmac A ⊆ 2<�,
let ZA be the following set of variable symbols that are disjoint from Z. The
indexing on ZA will parallel that for Z. In particular, ZA is partitioned into
XA ∪ YA, XA is either indexed as {xa : a ∈ A} or doubly indexed as {xa,i :
a ∈ A, i ∈ �}, and YA = {yt,i : t ⊆ A, i ∈ �}. For a subset s ⊆ A, the sets
Xs and Ys are defined analogously. Note that in the definition that follows,
we build in both the Satisfiability condition, and a ‘nondegeneracy’ condition
that will imply that the Henkin model we construct has size continuum.

Definition 4.1. Let A ⊆ 2<� be any fmac. Define an A-commitment to
be a ZA-instantiated formula

ϕ(x, ȳ), where x = 〈xa : a ∈ A〉 and ȳ ⊆ YA
that is satisfiable in some L-structure and with the additional property that
for distinct a, a′ ∈ A, ϕ � xa �= xa′ (or xa,0 �= xa′,0 when XA is doubly
indexed).

To understand the relevance of an A-commitment to a Henkin set H we
are constructing, we need the notion of a lifting h∗ : A→ 2� of the fmac A
to 2�, which is any (necessarily injective) mapping satisfying a � h∗(a) for
every a ∈ A. Note that any lifting h∗ naturally induces an injection, which
we also dub h∗,

h∗ : Fm(ZA)→ Fm(Z)
given by replacing each xa by xh∗(a) and replacing each ys,i by yh∗(s),i , where
h∗(s) = {h(a) : a ∈ s}.
Our intent is that if, at some stage of our construction ofH we include the
A-commitment ϕ, we commit ourselves to eventually making

{h∗(ϕ) : all liftings h∗ : A→ 2�}
a subset of H. More precisely, we define:
Notation 4.2. A commitment is a pair (A,ϕ), where A is an fmac and
ϕ is an A-commitment. Each construction will choose a particular set of
A-commitments ( for enough A) to determine the diagram of Z.

Given two fmacs A and B , we say that B covers A, written A ≤ B , if, for
every a ∈ A there is at least one b ∈ B such that a � b. For example, if
n ≤ m, then 2m is a cover of 2n.
If A ≤ B , then a lifting to B is a (necessarily injective) map h : A → B
satisfying a � h(a) for each a ∈ A. Note that if A ≤ B , then any lifting
h∗ : A→ 2� factors through B . That is, given any lifting h∗ : A→ 2�, define
hB : A→ B by hB(a) = 	B(h∗(a)) (where 	B is the natural projection from
2� onto B). Any such hB is a lifting to B , and there is a natural lifting
h′ : B → 2� satisfying h∗ = h′ ◦ hB .
With this in mind, we partially order the set of commitments by:
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(A,ϕ) ≤ (B,�) if and only if B covers A and5 � � h(ϕ) for every
lifting h : A→ B .

We say (B,�) extends (A,ϕ) when (A,ϕ) ≤ (B,�). Because of our com-
ments about compositions of liftings, it is evident that whenever (B,�)
extends (A,ϕ), what � commits us to about the H we will construct is con-
sistent with, and typically extends what ϕ commits us to about H. Thus, if
we have an �-sequence A = 〈(An, ϕn) : n ∈ �〉 of commitments such that
(An, ϕn) ≤ (An+1, ϕn+1) for each n, then let

DA := {Z-instantiated formulas �(z̄): for some n (equivalently, for
all sufficiently large n) there is some lifting h∗ : An → 2� such that
h∗(ϕn) � �(z̄)}.

Visibly, any such set DA is closed under logical consequence. It is natural
to ask for sufficient conditions for a sequence of commitments to determine
a witnessed Henkin set. More formally:

Definition 4.3. A generating sequence is a≤-increasing �-sequence A =
〈(An, ϕn) : n ∈ �〉 of commitments such that DA is a witnessed Henkin set.

By coupling the discussion in this section with Proposition 2.2, we see
that if A = 〈(An, ϕn) : n ∈ �〉 is a generating sequence, then DA uniquely
describes a modelM of size 2ℵ0 .

§5. Sufficient conditions for producing Henkin models of size continuum.
Wenowdescribe themachinery for constructing a generating sequence. Even
though our construction is in ZFC, cognoscenti will recognize the affinity
of our nomenclature with that of forcing. We begin by discussing properties
of partially ordered sets (P,≤) of commitments. Note that the ‘classical
Henkin constraints’, laid down in the definition of a witnessed Henkin set,
of Completeness and Henkin witnesses can be phrased in terms of showing
that certain subsets of P are dense and open6 in (P,≤). Additionally, the
Satisfiability condition is built into the definition of anA-commitment. The
additional density condition we need to allowus to simultaneously construct
the family {M (s) : s a nonempty finite subset of 2�} of countable models is
Splitting.

Definition 5.1. Given any fmac A and any a ∈ A, the splitting of A at
a is the fmac A∗a = A \ {a} ∪ {aˆ0, aˆ1}. Clearly, A∗a covers A, and there
are two liftings h0, h1 : A → A∗a , distinguished by hi (a) = aˆi for i = 0, 1.
Thus, by the definition of extension, if an A∗a -commitment ϕ∗ extends an
A-commitment ϕ then ϕ∗ � h0(ϕ) ∧ h1(ϕ) ∧ xaˆ0 �= xaˆ1.
5The � means that (∀z̄)[� → h(ϕ)], where z̄ lists the free variables of the formula, is a

theorem of the predicate calculus; it is to state this clearly that we work with variables rather
than constants.
6We use convention of Shelah and Cohen that ‘more information’ puts you ‘higher up’ in

(P,≤). Thus, X is dense in (P,≤) if for every q ∈ P, there is an x ∈ X with p ≤ x. X is open
if q ∈ X whenever q ≥ x for some x ∈ X .
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It is an easy exercise to verify that whenever an fmac B covers A, then
B can be obtained by a sequence of splittings at points. Indeed, the fmac
2n+1 can be obtained from 2n by a sequence of 2n splittings, one at each
a ∈ 2n. The following notation will be used to ensure that appropriate
Henkin witnesses are put into a Henkin set.

Definition 5.2. Given any fmacA and any finite tuple z̄ fromZA, let t(z̄)
denote the smallest subset of A for which z̄ ∈ Zt(z̄).

Unpacking the definitions, t(z̄) is the smallest subset of A that satisfies
(1) If xa ∈ z̄, then a ∈ t(z̄); and (2) if ys,i ∈ z̄, then s ⊆ t(z̄).

Definition 5.3. A set (P,≤) of commitments, ordered by extension, is
sufficiently dense if, for every fmac A and every A-commitment ϕ ∈ P we
have:

• Completeness: For every ZA-formula �, there is an A-commitment
ϕ∗ ∈ P extending ϕ that decides�. By ‘decides’, we mean either ϕ∗ � �
or ϕ∗ � ¬�;

• Henkin Witnesses: For every �(u,w) and every z̄ ∈ (ZA)lg(w), there is
anA-commitment ϕ∗ ∈ P extendingϕ such that eitherϕ∗ � ∀u¬�(u, z̄)
or ϕ∗ � �(z∗, z̄) for some z∗ ∈ Zt(z̄).

• Splitting: For every a ∈ A there is an A∗a -commitment ϕ∗ ∈ P
extending ϕ. [In particular, ϕ∗ � h0(ϕ) ∧ h1(ϕ) ∧ xaˆ0 �= xaˆ1.]

Before stating the main theorem, we specify in our context the properties
ensuring the goals laid out at the beginning of Section 3.1. They may or may
not hold of a particular (P,≤):
• Modeling T : Given a theory T , if a condition (A,ϕ) ∈ P, then ϕ is
satisfiable in some model of T .

• Omitting a type Δ(w): For every A-commitment ϕ ∈ P and every z̄
from ZA, there is a some � ∈ Δ and an A-commitment ϕ∗ extending ϕ
with ϕ∗ � ¬�(z̄).

• Atomic model: Given a complete theory T , whenever (A,ϕ) ∈ P, ϕ is
a complete formula (in its free variables) with respect to T .

Theorem 5.4. Let T be any theory in a countable language. If there is a
sufficiently dense, partially ordered set (P,≤) of commitments that are each
satisfied in a model of T , then there is a Borel modelM of T of size continuum
with an asymptotically similar subset {a
 : 
 ∈ 2�}. Moreover:
1. If {Δm : m ∈ �} is a countable set of partial types7 and if (P,≤) satisfies
Omitting Δm for eachm, then such anM can be chosen to omit each Δm;
and

2. If T is complete and if (P,≤) satisfies the Atomic model condition, then
such anM can be chosen to be an atomic model of T .

7So the Δm each exemplify a Δ(w) in Definition 5.3.
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Proof. Fix a distinguished set Z = X ∪ Y of variable symbols, for
definiteness,8 sayX = {x
,i : 
 ∈ 2�, i ∈ �} andY = {yt,i : t a finite subset
of 2� and i ∈ �}.
The following notation will be helpful. For a fixed � ∈ �, consider the
‘standard fmac’ 2� . In order to consider only finitely many Y -variables at
each stage, we distinguish a sufficiently large, finite subset of symbols in
Z(2� ).
Let

W� := {xa,i : a ∈ 2� , i < �} ∪ {yt,i : t ⊆ 2� , i < �}.
Note thatW� is a finite subset ofZ(2� ) and, whenever � ≤ m, h(W�) ⊆Wm
for every lifting h : 2� → 2m. We will construct a generating sequence
A = 〈(An, ϕn) : n ∈ �〉 from P in � steps. We will dovetail these extensions
to obtain the following goals:

(i) All but finitely many of the ‘standard fmacs’ 2� will appear as An’s in
our generating sequence;

(ii) To obtain asymptotic similarity, for every formula �(w) there is a
number N� such that for all � ≥ N� there is an n such that An = 2�
and, for every z̄ fromW� , ϕn decides �(z̄);

(iii) To show that each of the countable models M (s) 
 M , we require
that for every formula �(u,w) there is a number N� such that for all
� ≥ N� there is an n such that An = 2� and, for every z̄ from W� ,
either ϕn � ¬∃u�(u, z̄) or ϕn � �(yt(z̄),i∗ , z̄) for some i∗ ∈ � (recall
Definition 5.2);

(iv) Depending on whether we are verifying 1) or 2) there are two further
conditions.
(a) For each partial type Δm(w) we are asked to omit, there will be
some N (m) such that for every � ≥ N (m), there is an n such
that An = 2� and, for every z̄ fromW� (of length lg(w)) there is
� ∈ Δm such that ϕn � ¬�(z̄);

(b) Finally, if we are asked to produce an atomic model, we require
either that every element of P be a complete formula, or that for
all but finitely many �, there is an n such that An = 2� and, for
every z̄ fromW� , ϕn entails some complete formula 
(z̄).

How can we construct such a generating sequence? We systematically
extend an arbitrary fmac to anA of the form 2� that satisfies the appropriate
condition. Satisfying (i) is straightforward. Indeed, given any (A,ϕ) ∈ P,
choose any � such that 2� covers A. Then, as noted in the discussion above,
2� can be obtained fromA by a sequence of splittings at points. So, it follows
from a finite number of applications of Splitting that there is some sequence
〈(B0, ϕ0), . . . (Bn, ϕn)〉 from P with B0 = A, Bn = 2� , and (Bi+1, ϕi+1)
extends (Bi , ϕi) for each i < n.
To handle (ii) and (iii), fix an enumeration ofL-formulas {�i(w) : i < �}
and {�i(u,w) : i < �}. For (ii), observe that as each W� is finite, there
are only finitely many instantiations �i(z̄) with both i < � and z̄ fromW� .

8The a
 will be the interpretations of the x
,0 for 
 ∈ 2� .
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Thus, using the Completeness condition on (P,≤) finitely many times, given
any (An, ϕn) with An = 2� , there is an extension (2� , ϕn+1) ≥ (2� , ϕn) in
which ϕn+1 decides every �i(z̄) with i < � and z̄ fromW� .
Similar remarks concern clause (iii). Here, the formulas {�i(u, z̄) : i < �}
apply, where we use the Henkin witnesses condition finitely often. Continu-
ing, again becauseW� is finite, we can useOmitting Δm or Atomic to further
extend to some (2� , ϕj) ∈ P with j ≥ n that satisfy iv(a) or iv(b).
Now, once we have handled all of our requirements for the fmac 2� ,
note that 2�+1 covers 2� , so by finitely many applications of Splitting we
get an extension (An+1, ϕn+1) with An+1 = 2�+1, thus completing (i) for
the next step. We repeat the discussion above, but now with the larger
An+1 = B�+1 and a larger (finite) set of formulas�i (w) ∈W�+1 and �i(u,w),
for i < (� + 1).
Continuing this for� steps gives us a generating sequenceA = 〈(An, ϕn) :
n ∈ �〉 from P. As cofinally many of the An’s are 2� for increasing �’s,
it follows that DA describes a complete type in the variables Z. The non-
degeneracy condition in the definition of a commitment will imply that
{x
,0 : 
 ∈ 2�} are pairwise distinct. Also, by (ii), this set is easily seen to be
asymptotically similar.
In the construction above, for any witnessed existential formula, for all but
finitely many �, a witness was placed inZ(2� ). Thus, one can check that if s is
a finite subset of 2�, thenM (s) := {[z] : z ∈ Zs} is a countable model and
M (s) 
M . As well, Clause iv(a) will imply thatM (s) omits each Δm, and,
in the atomic case, iv(b) ensures thatM (s) is atomic. As noted in Section 2,
knowing that eachM (s) omits each Δm or is atomic is enough to conclude
thatM omits each Δm or is atomic.

§6. Applications I—When does an atomic model of size ℵ1 imply one of�1?
In this section, we use the generalized Henkin method to find a number of
sufficient conditions on T for which the existence of an atomic model of size
ℵ1 implies the existence of an atomic model of size�1. In the first subsection,
we show that if every set is definably closed, a very straightforward argument
leads from a countable9 model to one in the continuum. In particular, there
is no need for the Y -variables from our general formulation. In the second
and third subsections we formalize the conditions used in the first in terms of
combinatorial geometry and get a general result which specializes to the goal
that motivated this project: In pseudo-minimal theories [5], the existence of
an uncountable, atomic model implies one of size continuum. Then, in the
fourth subsection, wemove tomaterial that requires muchmore background
and show how the arguments of Hrushovski and Shelah in [11] can be
put into our framework. There, they prove that if a countable, superstable
theory T has an atomic model of size ℵ1, then it has an atomic model of
size �1.

9Using Theorem 6.11, it is easy to see any structure with trivial definable closure is L�1 ,�-
equivalent to an uncountable structure.
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6.1. Theories with trivial dcl. In a series of papers, e.g., [1], Ackerman,
Freer, and Patel found that classes of models of theories with trivial defin-
able closure have some very desirable properties. Here we note that such
theories behave exceptionally well with respect to the Henkin constructions
described in this paper. In particular, wewill see that theHenkin andSplitting
conditions will be easily satisfied in any model of such a theory.
We begin with a pair of classical definitions.

Definition 6.1. Given an L-structureM and subset A ⊆M , an element
b ∈ M is A-definable if there is a formula ϕ(x, ā) with ā from A for which
b is the only solution inM . The definable closure of A, dcl(A) is the set of
A-definable elements ofM .
Similarly, b ∈ M is A-algebraic if there is an integer k and a formula
ϕ(x, ā) such that M |= ϕ(b, ā) and M |= ∃=kxϕ(x, ā). The algebraic
closure of A, acl(A), is the set of A-algebraic elements ofM .

Clearly, A ⊆ dcl(A) ⊆ acl(A) for any subset A ⊆ M . We distinguish
structures for which both of these closures are trivial.

Definition 6.2. Fix a countable languageL. AnL-structureM has trivial
definable closure (is dcl-trivial) if dcl(A) = A for every subset A ⊆M .

Note that this is very different notion from the usual usage of a triv-
ial closure relation in combinatorial geometry. Note also that dcl-triviality
is distinct from atomicity. In particular, the theory of countably many
independent unary relations is dcl-trivial but has no atomic models.
It is clear that any dcl-trivial structure is infinite, and that dcl-triviality is a
property of the theory ofM , i.e., if N is elementarily equivalent toM , then
N is dcl-trivial if and only ifM is.
The key property of a dcl-trivial structure M is easy to see: if M |=

∃uϕ(u, c̄)∧u �∈ c̄, then ϕ(u, c̄) has infinitely many solutions inM . From the
key property it is easily seen that dcl-triviality ofM is equivalent to acl(A) =
A for every A ⊆M . In what follows, we will see that dcl-triviality has many
equivalent formulations. A roster of equivalents is given in Fact 7.13.
Constructing models of theories with trivial dcl is by far the most straight-
forward example of our technique, which justifies our considering it first.
The simplicity comes from the fact that we do not require any Y -variables!
But, we must doubly index the x’s as x
,i .

Definition 6.3. Let N be any L-structure. Suppose �(x, ȳ) is an
L-formula with lg(x) = k. For any b̄ from N , call the definable subset
�(Nk, b̄) of Nk nondegenerate if there exists some ā ∈ �(Nk, b̄) with
{a1, . . . , ak} pairwise distinct and disjoint from b̄.

Theorem 6.4. SupposeM is a dcl-trivial structure in a countable language
L. There is a model N elementarily equivalent to M of size continuum that
satisfies:
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1. The universe of N is indexed as 2� × �;
2. The universe ofN can be partitioned asN =

⋃
i∈� Ai , where, for each i ,

Ai = {a
,i : 
 ∈ 2�} is an asymptotically similar subset;10
3. With respect to the natural Polish topology11 on 2� × �, for every k,
every definable subset of Nk is a finite boolean combination of open sets
of (2� × �)k , with the product topology.

4. If we place the usual measure12 on 2� × �, then for every k, every
nondegenerate definable subset of Nk has positive measure (with respect
to the product measure on (2� × �)k .

5. If, in addition,M is atomic, then we can insist that N be atomic as well ;
6. More generally, if {Δm : m ∈ �} is a countable set of types omitted by
M , then we can insist that N omits each Δm as well.

Remark 6.5. In fact, in (3) we can say more – the bound on the size of
the boolean combination depends only on k, and not on either the language
L or the choice of L-structure. That is, there is a function k �→ n(k) with the
property that for every countable L and every dcl-trivial L-structureM , the
associatedN has the property that every definable subset ofNk is a boolean
combination of at most n(k) open subsets.

Proof of Theorem 6.4. Fix a dcl-trivialM . We take Z = X , where X is
doubly indexed as {x
,i : 
 ∈ 2�, i ∈ �}. To define our set of commitments,
first let D0 consist of all L-formulas ϕ(w) that imply wj �= wj′ for distinct
j �= j′ that are consistent with T = Th(M ). For each fmac A of 2<�,
let ZA = {xa,i : a ∈ A, i ∈ �}. Then, for each such A, let the set of
A-commitments PA consist of all ZA-instantiations of formulas ϕ(w) ∈ D0
by a tuple z̄ of distinct elements of ZA.
Let (P,≤) be the poset with universe P =

⋃
{PA : A an fmac of 2<�} and

where≤ is the extension relation fromSection 5. We show thatCompleteness,
Henkin witnesses, and Splitting conditions follow easily: Fix any fmacA and
anyA-commitment13 ϕ(x) ∈ PA. As ϕ(x) is consistent withTh(M ), choose
c̄ fromM such thatM |= ϕ(c̄).

Completeness:Given a �(z̄), where z̄ is a subsequence of x, we will show it
is decided. Let b̄ be the corresponding subsequence of c̄. Now, ifM |= �(b̄),
then put ϕ∗ := ϕ(x) ∧ �(z̄), and put ϕ∗ := ϕ(x) ∧ ¬�(z̄) otherwise. �

Henkin witnesses: We must satisfy the condition for an arbitrary �(w, z̄)
with z̄ a subsequence of x. Let t := t(z̄) be the set of a ∈ A such that for
some i , a variable xa,i appears in z̄. As above, let b̄ be the subsequence of c̄

10In fact, for every finite, strictly increasing sequence t = (i1, i2, . . . , ik) from �, the
sequences {ā
,t : 
 ∈ 2�} (where ā
,t = (a
,i1 , . . . , a
ik )) is an asymptotically similar set of
k-tuples.
11The basis consists of sets of the form Ua × {i} where Ua are as in Section 4.
12For any basic open Ua ⊆ 2� with |a| = n let �(Ua) = 1

2n and then extend to 2
� × � by

letting �(Ua × {i}) = 1
2n+i+1 . In fact, if we regard the base set as the locally compact group

given by pointwise addition on � copies of Z�2 , this is a Haar measure.
13We sometimes abuse notation by identifying PA with the formulas that occur as second

coordinates of the pairs.
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associated to z̄. There are three cases. First, ifM |= ¬∃w�(w, c̄), then, put
ϕ∗ := ϕ(xȳ) ∧ ¬∃w�(w, z̄). Then c̄ witnesses that ϕ∗ is an A-commitment
and it is evident that (A,ϕ∗) extends (A,ϕ).
Second, suppose M |= �(c, c̄) for some c ∈ c̄. Let z∗ be the (unique)
element of z̄ corresponding to c. Then ϕ∗ := ϕ(x) ∧ �(z∗z̄) is in PA and
extends ϕ(x).
Finally, suppose M |= ∃u�(u, c̄) ∧

∧
u �∈ c̄. Then, by the key property

of dcl-triviality, choose b∗ ∈ M \ c̄ such that M |= �(b∗, c̄). Choose any
a ∈ t(z̄) and j ∈ � such that xa,j �∈ x and put

ϕ(xa,jx) := ϕ(x) ∧ �(xa,j z̄) ∧
∧
xa,j �∈ x.

Then b∗c̄ witnesses that ϕ∗ ∈ PA, which visibly extends ϕ.

Splitting: Choose any a ∈ A. To handle this case, we start with a Claim,
whose proof is an easy induction on k; the key property yields the case
k = 1:

Claim.For every k ≥ 1, for everyϕ(x) ∈ D0, and for every partitioning of
x = ūv̄ with lg(ū) = k, then for every b̄ fromM such thatM |= ∃ūϕ(ū, b̄),
there is an infinite, pairwise disjoint set {c̄j : j ∈ �} ⊆ Mk of realizations
of ϕ(ū, b̄).
Given the Claim, partition the variables of ϕ(x) into two disjoint subse-
quences x = xax∗, where xa consists of all xa,i ∈ x, while x∗ consists of
all xa′,i ∈ x with a′ �= a. This partition induces a partition of our realizing
sequence c̄ into c̄a b̄, where c̄a corresponds to xa , while b̄ corresponds to x∗.
Put

ϕ∗(xaˆ0, xaˆ1, x∗) := ϕ(xaˆ0, x∗)∧ϕ(xaˆ1, x∗)∧ ‘xaˆ0, xaˆ1, x∗ are distinct’.
Then the Claim implies that (A∗a , ϕ∗) ∈ PA∗a , and is as required.
Now, with our density conditions satisfied, the existence of a model N
follows from Theorem 5.4. By our choice of D0, the congruence ∼ on
Z = X is trivial, which establishes Clause 1) and the partition of Clause 2).
The remaining Clauses are established by the properties guaranteed by
Theorem 5.4 and the footnotes.

6.2. Sufficient pregeometries. In this and the following subsection we
study the effect of having an atomic model that is equipped with a well
behaved closure relation. In this subsection we give a sufficient set of con-
ditions on a closure relation of an atomic model (M, cl) to allow for the
construction of an elementarily equivalent atomic model of size continuum.
As an application, in the next subsection we prove a new result: among
pseudo-minimal theories, the existence of an uncountable, atomic model
implies one of size continuum.
Although we have cast our results in terms of the existence of atomic
models, they translate to complete sentence of L�1,� as in Section 3.3
(equivalently for countable, first-order theories that omit a given type).

Definition 6.6. LetM be any L-structure. A formula-based closure rela-
tion on M is a function cl : P(M ) → P(M ) satisfying for all A,B ⊆ M ,
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A ⊆ cl(A); A ⊂ B implies cl(A) ⊆ cl(B); cl(cl(A)) = cl(A); and when-
ever a ∈ cl(B), then there is a finite tuple b̄ from B and a formula
ϕ(x, ȳ) ∈ tp(ab̄) such that a′ ∈ cl(b̄′) wheneverM |= ϕ(a′, b̄′).

Formula-based closure relations abound in model theory. Examples
include equality (M,=), where cl(A) = A for all A ⊆ M , definable closure
(M, dcl), and algebraic closure (M, acl). Additionally, in the next subsection
we introduce pseudo-algebraic closure (M, pcl), which is well behaved when-
everM is atomic. In order to apply our methods, we need our formula-based
closure relation to satisfy more properties.

Definition 6.7. Consider a formula-based closure relation (M, cl) on
an arbitrary infinite L-structure. We call (M, cl) sufficient if the following
additional conditions hold:

1. ‘Exchange:’ i.e., if a ∈ cl(Bc) \ cl(B), then c ∈ cl(Ba);
2. ‘Extendible:’14 There is a ∈M \ cl(∅); and
3. ‘Weak homogeneity:’ For all finite b̄ and L-formulas ϕ(w, b̄), if there
is a �∈ cl(b̄) with M |= ϕ(a, b̄), then for every finite E ⊆ M , there is
a′ �∈ cl(E) that also satisfiesM |= ϕ(a′, b̄).

A closure relation that satisfies Exchange is also known as a pregeometry
or a matroid. It is well known that pregeometries give rise to a well behaved
notion of dimension. In particular, for any set B , any two maximal indepen-
dent subsets of cl(B) have the same cardinality. One of many introductions
to the role of pregeometries in model theory is the first chapter of [2].

Remark 6.8. We say ā is independent over E if for every i < lg(ā),
ai �∈ cl(ā−{ai}∪E).A routine induction shows that the ‘Weakhomogeneity’
condition implies that for every n, every �(w, b̄), if there is an n-tuple ā
independent over b̄ with M |= �(ā, b̄), then for every finite E, there is ā′
independent over E with M |= �(ā′, b̄). Coupling this observation with
‘Extendibility’, we conclude thatM contains an infinite independent subset
I .Moreover, for anyL-formula ϕ(w, b̄), eitherϕ(M, b̄) ⊆ cl(b̄), or for every
finite set E, ϕ(M, b̄) contains an infinite, E-independent subset.

Examples of sufficient pregeometries are common. A structure (M,=)
has a sufficient pregeometry if and only ifM has trivial dcl. If T is strongly
minimal, weakly minimal, o-minimal, or has SU-rank 1, then (M, acl) is a
pregeometry for any model of T . Moreover, an easy compactness argument
shows that any (infinite) modelM of such a theory has a proper, elementary
extension N for which (N, acl) is sufficient. In the next subsection we prove
that whenever a pseudo-minimal theory has an uncountable atomic model,
then (M, pcl) is sufficient for every atomic model. For now, we content
ourselves with the following result.

Theorem 6.9. Suppose (M, cl) is a sufficient pregeometry. Then there is a
Borel model N ≡M of size continuum with a cl-independent, asymptotically
14If any of dcl, acl, or pcl are not extendible, the Scott sentence of M has exactly one

model.
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similar subset {a
 :
 ∈ 2�} fromN . Moreover, ifM is atomic (with respect to
Th(M )) then we may additionally choose N to be atomic. More generally, if
{Δm(wm) : m ∈ �} is a countable set of partial types, each of which is omitted
inM , then we may additionally require that N omits every Δm.
Proof. In this application, it is helpful to doubly index the X -variables.
That is, take as variables X = {x
,i : 
 ∈ 2�, i ∈ �}, as usual, Y =
{ys,i : s ⊆ 2� finite, i ∈ �} and Z = X ∪ Y . The double indexing of the
X -variables is needed since a typical model (e.g., some M
) may have an
infinite, independent subset.
As notation, for any fmacA, any nonempty subset t ⊆ A, and any x ∈ XA,
xt denotes the subsequence of x from Xt, i.e., an element xa,i ∈ x is an
element of xt if and only if a ∈ t. Similarly, for any ȳ ∈ YA, ȳt is the
subsequence of ȳ from Yt, i.e., for ys,i ∈ ȳ, ys,i ∈ ȳt if and only if s ⊆ t.
For any fmacA, let PA denote allZA-instantiated formulas ϕ(x, ȳ) where
x ∈ XA, ȳ ∈ YA and there are sequences c̄, b̄ fromM satisfying:
1. M |= ϕ(c̄, b̄);
2. c̄ is cl-independent; and
3. for each t ⊆ A, M |= ∀x∀ȳ(ϕ(x, ȳ) → ȳt ⊆ cl(xt)) (cf., ‘Formula-
basedness’).

As usual, let (P,≤) be the poset with universe
P = {(A,ϕ) : A is a fmac and ϕ ∈ PA}

and ≤ is the usual extension relation. We argue that (P,≤) satisfies
Completeness, Henkin witnesses, and Splitting.

Fix an fmac A and an A-commitment (A,ϕ(x, ȳ)) ∈ PA. Choose finite
tuples c̄, b̄ fromM witnessing that ϕ ∈ PA.

Completeness: Choose any �(z̄) with z̄ from ZA, which we may assume is
a subsequence of xȳ. Let d̄ be the corresponding subsequence of c̄b̄. There
are now two cases: IfM |= �(d̄ ), then put ϕ∗(xȳ) := ϕ(xȳ) ∧ �(z̄); and
put ϕ∗(xȳ) := ϕ(xȳ) ∧ ¬�(z̄) otherwise. In either case, the same pair āb̄
demonstrate that ϕ∗ ∈ PA.

Henkin witnesses: Choose �(w, z̄) with z̄ from ZA, which we may again
assume is a subsequence of xȳ. As above, let d̄ be the subsequence of
c̄b̄ corresponding to z̄, and in the notation of Definition 5.2 as amplified
just above, let t = t(z̄) ⊆ A. There are now three cases. First, if M |=
¬∃w�(w, d̄ ), then put ϕ∗(xȳ) := ϕ(xȳ) ∧ ¬∃w�(w, z̄).
Second, suppose there is h ∈ cl(c̄t) such thatM |= �(h, d̄ ). By ‘formula-
basedness’ choose a formula �(w, xt) ∈ tp(h, c̄t) such that any realization
of �(w, c̄t) inM implies w ∈ cl(c̄t). Choose i such that yt,i �∈ ȳ. Put

ϕ∗(x, ȳyt,i) := ϕ(x, ȳ) ∧ �(yt,i , z̄) ∧ �(yt,i , xt).
That ϕ∗ ∈ PA is witnessed by appending h to b̄t .
Third, suppose there is h ∈ M \ cl(c̄t) such that M |= �(h, d̄ ). Then,
clearly, {h} ∪ c̄t is independent. Choose any i ∈ � such that xt,i �∈ xt . Put

ϕ∗(xt,ix, ȳ) := ϕ(x, ȳ) ∧ �(xt,i , z̄).
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By Weak Homogeneity choose c∗ �∈ cl(c̄ b̄) with M |= �(c∗, d̄ ). As ϕ∗ is
witnessed by c∗āb̄, it follows that ϕ∗ ∈ PA and extends ϕ.

Splitting: Choose any a ∈ A and let A− = A \ {a}. Partition the variables
of z̄ = xȳ into four disjoint subsequences:
• xa is the subsequence of x consisting of all xa,i ∈ x;
• x0 is the subsequence of x consisting of all x ∈ XA− ;

• ȳa is the subsequence of ȳ consisting of all ys,i ∈ ȳ for which a ∈ s ; and
• ȳ0 is the subsequence of ȳ consisting of all z ∈ ZA− (i.e., whose
coordinates do not mention a).
As notation, let c̄a , c̄0, b̄a, b̄0 denote the subsequences of c̄b̄ correspond-
ing to xa, x0, ȳa , ȳ0, respectively. Put �(xa, x0, ȳ0) := ∃ȳaϕ. Then M |=
�(c̄a , b̄0, c̄0) as witnessed by b̄a . Furthermore, c̄a c̄0 form a partition of c̄
and hence are independent. Thus, by condition 3) b̄a b̄0 ⊆ cl(c̄a c̄0) and c̄a is
independent over cl(b̄0c̄0).
By Remark 6.8 choose c̄′a fromM realizing �(xa, b̄0c̄0) and independent
from all of c̄b̄. In particular, c̄′a is disjoint from c̄a . By choice of �, choose
b̄′a fromM such thatM |= ϕ(c̄′a, c̄0, b̄′a, b̄0). It follows that b̄′a ⊆ cl(c̄′a c̄0b̄0).
It is easily checked that these tuples witness: [h0(ϕ) ∧ h1(ϕ) ∧ xaˆ0 ∩ xaˆ1 =
∅] ∈ PA∗a .

6.3. Pseudominimal theories. In a series of papers, the authors and She-
lah have attempted to determine whether every ℵ1-categorical, complete
sentence Φ of L�1,� has a model of size continuum. By the reductions in
Section 3.3, this is equivalent to askingwhether a complete first-order theory
T that has a unique atomic model of size ℵ1 must also have an atomic model
of size continuum.
To analyze this problem, in [5], we introduced a new notion of closure,
which we dubbed pseudo-closure, shortening pseudo-algebraic closure, that
is appropriate for the study of atomic models of a first-order theory. We
proved that if pseudo-closure fails exchange in a strong way on the class of
atomic models of a theory T then T has 2ℵ1 atomic models of cardinality
ℵ1. We give a slightly simplified account of pseudo-minimality which is
adequate for the applications. Here we show that if T has an uncountable
atomic model that is pseudo-minimal, then there is an atomic model of T
in the continuum.

Definition 6.10. LetM be an atomic model and suppose a, b̄ are from
M . We say a is pseudo-algebraic over b̄ in M , written a ∈ pcl(b̄), if every
elementary substructure N 
M that contains b̄ also contains a.
We showed in [5] that pseudo-algebraicity in atomic models is formula-
based and a property of the theory as opposed to a particular model. That
is, if M and M ′ are elementarily equivalent atomic models, ā, b̄ and ā′, b̄′

are from M and M ′, respectively, whose pairs realize the same complete
formula, then ā ∈ pcl(b̄) in M if and only if ā′ ∈ pcl(b̄′) in M ′. Also,
Lemma 2.6 of [5] implies that if M is atomic, then (M, pcl) satisfies the
‘Weak homogeneity’ clause from Definition 6.7.
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Using this notion we can immediately add a clause to an old theorem of
Vaught.

Lemma 6.11. Let T be a complete theory in a countable language that has
an atomic model. The following notions are equivalent:

• T has an uncountable atomic model;
• the countable atomic model has a proper atomic extension;
• the countable atomic model is not minimal; and the new notion:
• pcl(∅) �=M for some/every atomic modelM .

Definition 6.12. Let M be an atomic model and suppose T satisfies
the conditions of Lemma 6.11. We say that T is pseudominimal if (M, pcl)
satisfies Exchange for some/every atomic modelM of T . That is, for every
finite set C fromM and elements a, b ∈M , if b ∈ pcl(Ca) but b �∈ pcl(C ),
then a ∈ pcl(Cb).

Thus, a complete theory T satisfying the hypotheses of Lemma 6.11
is pseudominimal if and only if (M, pcl) is a sufficient pregeometry for
some/every atomic modelM of T .
The following new Theorem is a culmination of our previous results. It
follows immediately from Lemma 6.11, the note above, and Theorem 6.9.

Theorem 6.13. If a countable first-order theory T has an atomic pseudo-
minimal model M of cardinality ℵ1 then there is an atomic pseudominimal
model N of T with cardinality 2ℵ0 .
Equivalently, if the models of a complete sentence Φ in L�1,� are
pseudominimal and Φ has an uncountable model, it has a model in the
continuum.

Whereas Theorem 6.13 is of general interest, we note a special case. It is an
easy exercise to prove that anyweaklyminimal theoryT with anuncountable
atomic model is pseudominimal. Thus, Theorem 6.13 gives a proof that such
a theory has an atomic model of size continuum (a second is Theorem 6.14).
As an example of pseudominimality, Zilber [2,32] introduced the abstract
notion of a quasiminimal (excellent) class and proved such classes are cate-
gorical in all uncountable powers. In general, these classes are axiomatized
in L�1,�(Q) ([14]) and the quasiminimal closure is distinct from our notion
of pcl. However, in some cases, most notably [6], the study of covers of cer-
tain algebraic groups e.g., [4, 6], the countability of the quasiminal closure
is expressible in L�1,� and then pcl = qcl.

6.4. Stable and superstable theories. Stable theories give rise to a well-
behaved notion of independence, namely nonforking. Using this tool in
conjunction with the methods of this paper, Hrushovski and Shelah [11]
obtain the following transfer theorem:

Theorem 6.14. SupposeN is an uncountable model of a superstable theory
T in a countable language. Then there is an atomic model M of T of size
continuum that has an asymptotically similar subset {a
 : 
 ∈ 2�}.
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We sketch their proof of Theorem 6.14 using the technology described
here. In fact, in [11] they prove more – If {Δm(wm) : m ∈ �} is any
countable set of partial types and there is an uncountable model N of a
countable, superstable theory T omitting each Δm, then there is a model
M of size continuum, again with an asymptotically similar subset, that also
omits each Δm. As well, using the same machinery they obtain the same
conclusion for a countable stable theory, at the cost of requiring the original
model N to have size ℵ�+1.
By employing the extensive calculus of nonforking, Shelah has gleaned
many structural consequences from his notion of a stable system of models.

Definition 6.15. Let I be any nonempty index set. A stable system of
countable models of T is a set {M (s) : s ∈ [I ]<�} of countable models of
T satisfying:

• If s ⊆ t, thenM (s) 
M (t);
• For all s, t ∈ [I ]<�, thenM (s) andM (t) are independent (i.e., do not
fork) overM (s ∩ t).

A primary tool for construction stable systems of models is domination.
That is, given a pair of models M 
 M ′ and a subset B ⊆ M ′, we say
B dominates M ′ over M if, for any set X (in some larger model), if X is
independent from B over M , then X is independent from M ′ overM . As
we are working over models in a stable theory, a sufficient condition for
domination is Lachlan’s notion [18] of locally atomic models, �-atomicity:

Definition 6.16. Given a set B , a complete type p ∈ Sn(B) is locally
(�-isolated) if, for every partitioned formula ϕ(x, ȳ), there is a formula
�(x) ∈ p such that �(x) � ϕ(x, b̄) for every ϕ(x, b̄) ∈ p. We call a model
M ′ �-atomic over B if, for every finite ā fromM ′, tp(ā/B) is �-isolated.

A fundamental fact is that for stable theories, ifM ⊆ B and ifM ′ is �-atomic
over B , thenM ′ is dominated by B overM .
Hrushovski and Shelah’s proof of Theorem 6.14 breaks into two pieces.
The first part, which uses somehighly technical stability-theoreticmachinery
(including the existence of definable groups in some instances) states that
one can find a ‘very rich’ stable system indexed by I = �1 of elementary
substructures of any uncountable model N of a superstable theory T .

Theorem 6.17. [11] LetN be an uncountable model of a countable, super-
stable theory T . There is a stable system {M (s) : s ∈ [�1]<�} of countable,
elementary substructures of N and an independent subset C = {ci : i ∈ �1}
overM (∅) of N that satisfy:
1. For each i ∈ �1, ci ∈M ({i}) andM ({i}) is �-atomic overMci ;
2. For each i ∈ �1 and �(x, b̄) ∈ tp(ci/M (∅)), there are infinitely many
j ∈ �1 such thatM ({j}) |= �(cj, b̄); and

3. For |s | ≥ 2,M (s) is �-atomic over
⋃
{M (t) : t � s}.

As this theorem is rather technical, we only sketch the argument here and
use some unexplained notation.

https://doi.org/10.1017/bsl.2018.2 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.2


HENKIN CONSTRUCTIONS OFMODELSWITH SIZE CONTINUUM 23

Proof sketch. Without loss, we may assume N has cardinality ℵ1. Fix an
enumeration 〈ai : i ∈ �1〉 of N . For each i ∈ �1, let Ai = {aj : j < i} and
let pi = tp(ai/Ai). As each pi is based on a finite set, for each limit ordinal
i there is some j < i such that pi is based on Aj . By Fodor’s Lemma, there
is some j∗ and a stationary subset S ⊆ �1 such that for each i ∈ S, i > j∗
and pi is based on Aj∗ . Fix such a j∗ and put B := Aj∗ . So B is countable,
and by reindexing S, we have an uncountable set C = {ci : i ∈ �1} that is
independent over B .
Next, choose a countable M 
 N such that B ⊆ M and M is an na-
substructure of N . Using superstability, by removing at most countably
many of the ci ’s we obtain that the remaining, uncountably many elements
are independent overM .
Now that we have chosen M and I , it remains to construct our stable
system 〈M (s) : s ∈ [�1]<�〉. But this follows immediately by successive
applications of the Corollary on page 302 of [11]. �
The second part of the proof of Theorem 6.14 can be proved using the
technology of this paper. For this half, only stability is needed.
Theorem 6.18. Suppose T is a countable, stable theory and {M (s) : s ∈
[�1]<�} is a stable system of countable elementary submodels of an atomic
model N satisfying Clauses (1)–(3) of Theorem 6.17. Then there is a Borel,
atomic model N1 of size continuum with an asymptotically similar subset
{a
 : 
 ∈ 2�}. More generally, if N omits a countable set {Δm : m ∈ �} of
types, then N1 can be chosen to omit each Δm.
Proof. For this application, we take our set Z of variable symbols to be
X ∪ Y , where X = {x
 : 
 ∈ 2�} and Y = {ys,i : s ∈ [2�]<�, i ∈ �}.
Choose any fmac A ⊆ 2<� with an enumeration 〈aj : j ∈ A〉. Suppose
that f : A → �1 is any injective mapping. Any such f describes a finite
tuple c̄f := 〈cf(j) : j ∈ A〉 from the distinguished independent set C =
{ci : i ∈ �1}. Also, f extends to a map f : P(A) → [�1]<ℵ0 by f(t) :=
{cf(j) : j ∈ t}.
With this notation, define the set PA of A-commitments to be the set of
instantiated ZA-formulas ϕ(x, z̄), where z̄ := 〈ȳs : s ⊆ A〉 and each tuple
ȳs is from {ys,i : i ∈ �}, for which there is some injective f : A → �1
and tuples 〈b̄s : s ⊆ A〉 from M (f(s)) so that N |= ϕ(c̄f , b̄s : s ⊆ A).
As usual, let (P,≤) be the partial order where P =

⋃
{PA : A an fmac}

and ≤ is defined as in Section 4. As the given model N and hence each of
the submodels M (s) omit each Δm, the Omitting Δm conditions are easily
verified. As well, the verifications of the density conditions Completeness
and Henkin witnesses are straightforward. For both, fix an fmac A and an
A-commitment ϕ(x, ȳ) ∈ PA. Choose an injective function f : A→ �1 and
tuples b̄s fromM (f(s)) such thatM (f(A)) |= ϕ(c̄f, b̄s : s ⊆ A).
Completeness: Choose any instantiated ZA-formula �(z̄) and partition its
variables as �(x, ȳs : s ⊆ A). By adding dummy variables to both ϕ and
�, we may assume they have the same instantiated variables. To decide how
to extend ϕ, we simply appeal to M (f(A)). On one hand, ifM (f(A)) |=
�(c̄f, b̄s : s ⊆ A), then put ϕ∗ := ϕ ∧ �; put ϕ∗ := ϕ ∧ ¬� otherwise.

https://doi.org/10.1017/bsl.2018.2 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.2


24 JOHN T. BALDWIN ANDMICHAEL C. LASKOWSKI

Henkinwitnesses:Choose any instantiatedZA-formula �(w, z̄) withw free.
In the notation of Definition 5.2, put t := t(z̄). Then the subsequence d̄ of
〈c̄f, b̄s : s ⊆ A〉 corresponding to z̄ is contained inM (f(t)). As above, there
are two cases. IfM (f(A)) |= ¬∃w�(w, d̄ ), then put ϕ∗ := ϕ ∧¬∃w�(w, z̄).
Otherwise, append a new element yt,j to ȳt , forming ȳ′t , and put ϕ

∗ :=
ϕ ∧ �(yt,j , z̄). AsM (f(t)) 
 M (f(A)), there is b∗ ∈ M (f(t)) witnessing
�(w, d̄ ). This extra element witnesses that ϕ∗ ∈ PA.

By contrast, the verification of Splitting is more involved, and requires
new ideas. As above, fix an enumerated fmac A = 〈ai : i < n〉 and an
injective f : A→ �1 that witnesses that ϕ(x, z̄) ∈ PA. Choose an arbitrary
a ∈ A, but to ease notation, suppose that a = a0 and choose ϕ(x, z̄) ∈ PA.
As notation, let A− = A\ {a0}, let A0 = A− ∪{aˆ0} and A1 = A− ∪{aˆ1}.
Thus, A∗a = A0 ∪ A1 and the liftings h0, h1 : A → A∗a map onto A0, A1,
respectively. Fix an enumeration 〈si : i < 2n〉 of P(A) that satisfies (I) i ≤ j
whenever si ⊆ sj and (II) the initial segment 〈si : i < 2n−1〉 enumerates
P(A−).
Our first move is to ‘improve’ our formula ϕ(x, z̄) ∈ PA. As notation,
for each i < 2n, let ϕi(x, ȳj : j < i) be the restriction of ϕ to the smaller
set of variables (we write ȳj in place of the more cumbersome ȳsj ). Call an
A-commitment ϕ self-sufficient if, for every 0 < i < 2n − 1,

ϕi(x, ȳj : j < i) � ∃ȳi ϕi+1(x, ȳj : j ≤ i).
The notion of a self-sufficient commitment is a variant on what Hrushovski
and Shelah call an ‘S-condition’ in [11]. There, with Proposition 2.3(a) they
prove:

Claim.For any fmacA, everyϕ ∈ PA, has a self-sufficientϕ∗ ∈ PA extending
ϕ. Moreover, if f : A → �1 witnesses that ϕ ∈ PA, then the same function
f witnesses that ϕ∗ ∈ PA.

Given the Claim, to verify Splitting we may assume that ϕ itself is self-
sufficient. Choose an injective function f : A → �1 and tuples b̄i from
M (f(si ) for each i < 2n such that N |= ϕ(c̄f, b̄i : i < 2n), where b̄i is short
for b̄si . Getting half of the witnessing set is routine, and just amounts to
adjusting the notation. Let f0 : A0 → �1 be defined as f0(aˆ0) = f(a)
and f0(a′) = f(a′) for all a′ ∈ A−. In particular, c̄f0 = c̄f so f0 witnesses
that h0(ϕ) is consistent. Write c̄f as c0ˆc̄∗. The second half will require us
to find an element c′ ∈ C \ c̄f so that tp(c′/M (∅)) is sufficiently close to
tp(c0/M (∅)) and then finding tuples 〈b̄′i : 2n−1 ≤ i < 2n〉 from the stable
system. First, note that c0 is independent from c̄∗ overM (∅). Coupled with
the fact that each b̄i is dominated by {cf(a) : a ∈ si} over M (∅), there is
a formula �(x) ∈ tp(c0/M (∅)) so that if c′ is any realization of � that is
independent from c̄∗ overM (∅), then

N |= ϕi(c′c̄∗, b̄j : j < i) for all i < 2n−1.
However, Clause (1) of our hypotheses on our stable system imply that
there is some c� ∈ C \ c̄f that satisfies these requirements. Now, define
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f1 : A1 → �1 by f1(aˆ1) = � and f1(a′) = f(a′) for all a′ ∈ A−. Then,
using the self-sufficiency ofϕ, one recursively finds tuples b̄′j fromM (f1(sj))
for each 2n−1 ≤ j < 2n such that

N |= ϕk(c� c̄∗, 〈b̄i : i < 2n−1〉, 〈b̄′j : 2n−1 ≤ j < k〉) for each 2n−1 ≤ k < 2n.

Combining these two halves yields that f∗ = f0 ∪ f1 witnesses that ϕ′ :=
h0(ϕ) ∧ h1(ϕ) ∧ xaˆ0 �= xaˆ1 is in PA∗a .
With the verification of Splitting in hand, Theorem 6.18 follows immedi-
ately by an application of Theorem 5.4. Theorem 6.14 follows from this by
quoting Theorem 6.17. �

Remark 6.19. This result does not immediately translate to the study
of complete sentences of L�1,� . While stability notions are defined in that
context [2], the superstability hypothesis on the ambient theory here is
vastly stronger than infinitary stability which concerns only the atomic
models.

§7. Applications II – Theories with Skolem functions. In this section we
give applications of the Henkin method outlined in the previous sections to
construct customized models of size continuum of theories that have Skolem
functions. We first indicate how the existence of Skolem functions allows for
a streamlining of our technique. Recall that if T is a complete theory that
has Skolem functions, then given any model M of T , the Skolem hull of
any subset C ⊆ M will be an elementary substructure N 
 M in which
each b ∈ N is the interpretation of 
(c1, . . . , ck) for some L-term 
 and
some sequence (c1, . . . , ck) of distinct elements of C . In particular, having
such tight control obviates the need for Y -variables! More precisely, extra
elements are needed to close X to a model, but the existence of Skolem
functions makes their interpretations unique, and thus redundant. Within
this section, we will take Z = X = {x
 : 
 ∈ 2�} as our set of variable
symbols and we will construct a complete type Γ(X ) that is consistent with
T . As noted above, since T admits Skolem functions, simply by taking the
definable closure of any realization of Γ inside any model, Γ(X ) uniquely
determines a model of T .
Thus, if T has definable Skolem functions, then the Henkin witnesses
condition becomes vacuous. As we are only concerned with X -variables,
the Completeness and Splitting are easier to verify. As usual, the Modeling
T clause is satisfied so long as every formula describing a commitment is
satisfied in a model of T . However, more care must be taken with Omitting
Δ. In particular, our construction has to ensure that no X -instantiated
L-term t(x
1 , . . . , x
n) (or m-tuple of terms if Δ is m-ary) realizes Δ. In
practice this will be easy to ensure, so long as the ‘witnessing models’ each
omit Δ.
It might seem that definable Skolem functions are in irreconcilable con-
flict with the existence of large atomic models. Indeed, if such a theory is
countable, it cannot have an uncountable atomic model. Despite that, we
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can use the technique here to construct atomic models of size continuum by
expanding the language as follows.

Definition 7.1. Let Φ be a sentence of L�1,� in the language L(Φ). A
representation ofΦ of an is a triple (L,T,Δ(w)) such that T is an elementary
first-order theory in a countable languageL ⊇ L(Φ), and themodels ofΦare
precisely the L(Φ)-reducts of models of T that omit the 1-type Δ. Abusing
notation somewhat, a Skolemized representation is a representation in which
T admits definable Skolem functions, admits elimination of quantifiers, and
has a pairing function.

Applying Remark 3.3, it straightforward to find a Skolemized represen-
tation (L′, T ′,Δ(w)) for an arbitrary complete L�1,�-sentence Φ: Choose a
countable languageL′ ⊇ L(Φ), a first-order L′-theory T ′, and a partial type
Δ(w) such that the models of Φ are precisely the L(Φ)-reducts of models of
T ′ that omit Δ(w). By expanding the language still further (but maintaining
countability) we may assume (L′, T ′,Δ(w)) is a Skolemized representation.
Then, if we construct a modelM ′ of T ′ of size continuum that omits both
Δ and each of the partial types Δn given in the proof of Remark 3.2, its
reductM to L(Φ) is a large atomic model of Φ.

7.1. Two-cardinal models. In a pair of papers, [24, 25], Shelah proves a
celebrated two-cardinal transfer theorem. The paper is noteworthy here, as
it is apparently the first place where he uses the concept of asymptotic simi-
larity. In this situation we are able to simplify the construction by assuming
the existence of Skolem functions as just discussed in the preamble to this
section.
Let T be a theory in a countable language L with a distinguished unary
predicate U . A model M of T is a (κ, �)-model if M has cardinality κ,
but |U (M )| = �. We are interested in constructing a (2ℵ0 ,ℵ0)-model of T .
Clearly, we will not be able to succeed for an arbitrary theory T , but we seek
a sufficient condition on T for a (2ℵ0 ,ℵ0)-model to exist.
Suppose that T is a countable theory with Skolem functions. Thus, as
suggested in the introduction to this section, take X = {x
 : 
 ∈ 2�} to be
our distinguished set of variables, and let Γ(X ) be the partial type in these
variables satisfying:

1. ¬U (x
) and x
 �= x
′ for distinct 
, 
′ ∈ 2�;
2. For each k, � ∈ �, for each k-ary L-term 
(w1, . . . , wk) and for all
pairs of �-similar k-tuples 
 = (
1, . . . , 
k) and 
′ = (
′1, . . . , 


′
k) we

have:

U (
(x
1 , . . . , x
k ))→
[

(x
1 , . . . , x
k ) = 
(x
′1 , . . . , x
′k )

]
.

The following Lemma is immediate.

Lemma 7.2 (Shelah, [24]). Suppose that T is a countable L-theory with
Skolem functions. If T ∪ Γ(X ) is consistent, then T has a (2ℵ0 ,ℵ0)-model.
Proof. Choose a modelM |= T with a subset {c
 : 
 ∈ 2�} satisfying
Γ(X ). It is easily checked that the Skolem hull of {c
 : 
 ∈ 2�} is a (2ℵ0 ,ℵ0)-
model of T . �
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But when is the type Γ(X ) consistent with T ? By compactness, it suffices
to show that every finite subset of Γ(X ) is consistent with T . That is, it
suffices to show that every partial type ΓT (XF ) is consistent with T , where
T is a finite set of L-terms (of various arities), F is a finite subset of 2� ,
and ΓT (XF ) is the finite subset of Γ(X ) that mention only terms 
 ∈ T and
variables {x
 : 
 ∈ F }.
For the remainder of this discussion, fix a finite set T of L-terms. Note
that for any finite set F ⊆ 2� , there is a k < � such that {
|k : 
 ∈ F } are
distinct elements of 2k . Choose any m ≥ k, and consider the standard fmac
2m ⊆ 2<�. Let ΓT (X2m) be the set of X2m -instantiated formulas formed by
replacing each variable symbol x
 ∈ XF by x
|m ∈ X(2m). As any finite tuple
c̄ from any modelM |= T (indeed, any L-structure) realizes ΓT (XF ) if and
only if it realizes ΓT (X2m), in order to show that T ∪ ΓT (X ) is consistent,
it suffices to prove that T ∪ ΓT (X2m) is consistent for each of the standard
fmacs 2m.
This overview of the proof was clear to Shelah at the time he wrote [24],
but it took him over a year to work out the combinatorics in [25] that
led to the proof of (ℵ�,ℵ0) → (2ℵ0 ,ℵ0). We can now view his arguments
as a slight variant on Splitting. Indeed, with our finite choice T of terms
remaining fixed, choose any fmac A (and an enumeration 〈ai : i < n〉
thereof). Suppose M |= T and c̄ = 〈ca : a ∈ A〉 ∈ Mn is a tuple from
M realizing ΓT (XA). Choose any a ∈ A (say a = aj). We want to find
an element c∗ ∈ M \ {ca : a ∈ A} so that the (n + 1)-tuple c̄ˆc∗ realizes
ΓT (XA∗a ). To obtain a sufficient condition for this, consider the equivalence
relation En on (M )n, the set of n-tuples of distinct elements fromM given
by En(c̄, d̄ ) if and only if:

For each 
(w) ∈ T and corresponding subsequences c̄′, d̄ ′ with
lg(w) = lg(c̄′) = lg(d̄ ′), either M |= ¬U (
(c̄′)) ∧ ¬U (
(d̄ ′)) or
M |= 
(c̄′) = 
(d̄ ′).

It is easily verified that if M is a (κ, �)-model, then En is an equivalence
relation on (M )n with at most � classes. In terms of the discussion above,
given c̄ ∈ (M )n, we are seeking c∗ such that En(c̄, c̄∗) holds, where c̄∗ is
formed by replacing ci by c∗ in c̄.
Finally, recall that every fmac A can be constructed from {〈〉} by a
sequence of (|A|−1) splittings. The following Proposition ismerely a restate-
ment of Theorem 5 of [25], noting that any equivalence relationEn on (M )n

with at most � classes can be identified with a function f : (M )n → �.
Proposition 7.3 (Shelah). Fix any m, let n = 2m − 1, and fix a sequence

〈A� : � ≤ n〉 of fmacs and a sequence 〈a� : � < n〉 such that A0 = {〈〉},
An = 2m, and each A�+1 = (A�)∗a� . IfM is a (�+n, �)-model of T , then there
is a tuple c̄ = 〈c0, · · · , cn〉 such that for every 0 < � ≤ n,M |= E�(c̄�� , c̄�∗� ),
where c̄�∗� is obtained by substituting cn for the element of c̄� coded by a� . In
particular, for each � ≤ n, c̄� realizes ΓT (XA� ).
Given this Proposition, the following Theorem of Shelah is immediate.
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Theorem 7.4 (Shelah, [25]). (ℵ�,ℵ0) → (2ℵ0 ,ℵ0). Indeed, if for every n,
a theory T admits a gap n-model, i.e., a ((�n)+n, �n)-model, then T admits a
(2ℵ0 ,ℵ0)-model.
Proof. First, we may assume T has Skolem functions. Next, by
Lemma 7.2 we need only show that T ∪ Γ(X ) is consistent. Fix any finite
set T of L-terms. By applying the Proposition for each m, we obtain the
consistency of T ∪ΓT (X2m) for each of the standard fmacs 2m, so we finish
by compactness. �
The proof of Theorem 7.4 is an early exemplar of the ‘method of identi-
ties’ which has had many applications to prove two cardinal theorems and
compactness theorem in logics with generalized quantifiers. See the account
in [30].

7.2. What is the Hanf number for an atomic model in the continuum? Clas-
sically, a ‘Hanf number’ for a class of structures is the least cardinal � such
that if the class of structures has one of size �, then it has arbitrarily large
structures. For example, Morley proved that if a sentence Φ of L�1,� has
a model of size ��1 , then Φ has arbitrarily large models. Here, we vary
the Hanf number question by asking for the smallest cardinal � for which
the existence of a model of Φ of size � implies the existence of a model
of size continuum. Since every model of a complete L�1,�-sentence Φ is
atomic (for a fixed expansion of the language of Φ) answering this question
for a complete sentence gives the Hanf number for atomic models in the
continuum.
Clearly, the value of � can vary, depending on the size of the continuum.
However, in [29], Shelah defines (Definition 7.6) a cardinal ��1 (ℵ0) that is
invariant under c.c.c. forcings (hence by adding enough Cohen reals, we
may assume that 2ℵ0 > ��1(ℵ0)) and proves that if a sentence Φ of L�1,� has
a model of size ��1(ℵ0), then it has a model of size 2ℵ0 .
He defines what we call (since it measures the ability to split in the sense
here) a splitting rank for finite subsets of L-structures M in a countable
language as follows:

Definition 7.5. For every nonempty, finite B = {b0, . . . , bn−1} ⊆M , we
define the splitting rank, sprk(B,M ), by induction on α via the following
clauses:

• sprk(B,M ) ≥ 0 if B ∩ aclM (∅) = ∅;
• For arbitrary α, sprk(B,M ) ≥ α + 1 if and only if, for every j < n
and quantifier-free15 L-formula ϕ(w0, . . . , wn−1), there is b∗j ∈ (M \B)
such that

M |= ϕ(b0, . . . , bj, . . . , bn−1)↔ ϕ(b0, . . . , b∗j , . . . , bn−1)

and sprk(Bb∗j ,M ) ≥ α; and

15The restriction to quantifier-free formulas is inessential in our applications here, but is
stated in this manner to match the usage in [29].
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• For α a nonzero limit, sprk(B,M ) ≥ α if and only if sprk(B,M ) ≥ �
for every � < α.

Then define sprk(M ) = sup{sprk(B,M ) + 1 : B a finite subset ofM} if
the supremum exists, or sprk(M ) =∞ otherwise.
As extreme examples, suppose B is a finite subset of M satisfying B ∩
acl(∅) = ∅, but some b ∈ B is algebraic over b̄ = B \ {b}. Then, if the
formula ϕ(u, b̄) witnesses the algebraicity, i.e.,M |= ϕ(b, b̄) ∧ ∃=kuϕ(u, b̄),
then as successive splittings of this B would require more and more distinct
witnesses, we conclude that sprk(B,M ) < k. On the other extreme, an easy
induction on α shows that sprk(B,M ) ≥ α for any finite subset B of any
asymptotically similar subset {a
 : 
 ∈ 2�} ⊆ M and any ordinal α. Thus,
sprk(M ) =∞ wheneverM contains an asymptotically similar subset.
Definition 7.6. ��1 (ℵ0) is the least cardinal � such that any structureM
of size � for any countable language necessarily has sprk(M ) ≥ �1.
In [29], Shelah proves that ℵ�1 ≤ ��1(ℵ0) ≤ ��1 and that this cardinal is
preserved under c.c.c. forcings. As the continuum can be made arbitrarily
large by adding enough Cohen reals (which is a c.c.c. forcing) it is consistent
that 2ℵ0 > ��1(ℵ0). Despite considerable work on the problem, the question
‘Does ZFC prove that ��1 (ℵ0) = ℵ�1?’

remains open. He also gives examples of sentences Φα of L�1,� for each
α < �1 such that each Φα has a modelM with sprk(M ) = α and nomodels
of larger splitting rank; thus, in general, ��1(ℵ0) ≥ ℵ�1 . The main theorem
of [29] is a pleasant application of the methods developed in the previous
sections:
Theorem 7.7 (Shelah, [29]). has a modelM of size at least ��1 (ℵ0), then
Φ has a Borel model of size continuum that contains an asymptotically similar
subset {c
 : 
 ∈ 2�}.
Proof. Let (L,T ′,Δ(w)) be a Skolemized representation of Φ. As T ′

has Skolem functions, take Z = X = {x
 : 
 ∈ 2�}. We will construct a
complete type Γ(Z) that is consistent with T ′ and such that, if N is any
model of T ′ and {c
 : 
 ∈ 2�} realizes Γ(Z) in N , then the Skolem hull of
{c
 : 
 ∈ 2�} will omit Δ(w).
To accomplish this, for each fmac A of 2<�, let PA denote all instantiated
formulas ϕ(x) = ϕ(xa : a ∈ A) that satisfy:
For every α < �1 there is some b̄α fromM ′ that realizes ϕ and such
that sprk(M ′, b̄α) ≥ α.

Take P =
⋃
{PA : A an fmac} and define≤ to be the usual extension relation

on commitments given in Section 4.
AsM ′ is a model of T ′, the structures we build will be models of T ′. Also,
as T ′ has Skolem functions, the Henkin witnesses conditions are trivial.
More interesting verifications are:

Completeness: Fix an fmac A and an A-commitment ϕ(xa : a ∈ A) ∈ PA,
and choose any instantiatedXA-formula�(xa : a ∈ A). Asϕ ∈ PA, for each
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α < �1, choose b̄α from M ′ realizing ϕ(x) with sprk(M ′, b̄α) ≥ α. There
are now two cases: First, if Y = {α < �1 : M ′ |= �(b̄α)} is uncountable,
then put ϕ∗(x) := ϕ ∧ �. By passing to this uncountable collection, it is
evident that ϕ∗ ∈ PA. On the other hand, if Y is countable, then as its
complement is uncountable, put ϕ∗(x) := ϕ ∧ ¬� and again, ϕ∗ ∈ PA and
extends ϕ.

The verification of Omitting Δ is similar.

Omitting Δ: Given an fmac A and ϕ ∈ PA, choose any XA-instantiated
L-term t(xa : a ∈ A). As above, for each α < �1 choose a realization b̄α
of ϕ in M ′ with sprk(M, b̄α) ≥ α. As M ′ omits Δ(w), for every α there
is �α(w) ∈ Δ such that M ′ |= ¬�α(t(b̄α)). As Δ is countable, choose a
single �∗ ∈ Δ such that {α < �1 : M ′ |= ¬�∗(t(b̄α))} is uncountable. Put
ϕ∗(x) := ϕ ∧ ¬�∗(t(x)), which clearly extends ϕ(x). By re-indexing, it is
evident that ϕ∗ ∈ PA.

The ‘shift’ that occurs in the verification of Splitting is reminiscent of the
proof of Morley’s Omitting Types theorem.

Splitting:Fix any fmacA, anyA-commitmentϕ(x), and choose any a ∈ A.
As inDefinition 5.1, letA∗a = A\{a}∪{aˆ0, aˆ1}, and putϕ∗ := ϕ(h0(x))∧
ϕ(h1(x)) ∧ x�ˆ0 �= x�ˆ1. It suffices to show that ϕ∗ ∈ PA∗a . To see this, for
each α < �1, choose b̄α such thatM ′ |= ϕ(b̄α) and sprk(M ′, b̄α) ≥ α + 1.
As T ′ admits elimination of quantifiers, it follows from the definition of
sprk that there is a 1-point extension b̄′α fromM

′ extending b̄α that realizes
ϕ∗ with sprk(M ′, b̄′α) ≥ α. Thus, ϕ∗ ∈ PA∗a .

Once all of these conditions are satisfied, it follows from Theorem 5.4
that there is a Borel model N∗ of size continuum that models T ′ and omits
Δ(w) with an asymptotically similar subset {c
 : 
 ∈ 2�}. As T ′ has Skolem
functions, the substructureN ′ 
 N∗ generated by {c
 : 
 ∈ 2�} alsomodels
T ′ and omits Δ(w). Thus, as explained in the introduction to Section 7 the
reduct N of N ′ to the original language L is a Borel model of Φ that has
both size continuum and an asymptotically similar subset. �
In [29], Shelah draws an immediate Corollary from Theorem 7.7. Given
what we have proved above, all that is required is to code the hypotheses into
a suitable structure of cardinality ��1(ℵ0).
Corollary 7.8 (Shelah). Let B ⊆ 2� × 2� be a Borel subset of the
product. If B contains a ��1(ℵ0)-square (i.e., a subset E ⊆ 2� of size ��1 (ℵ0)
such that E ×E ⊆ B) then there is a perfect subset E∗ of the continuum with
E∗ × E∗ ⊆ B .
Recall that classically, Morley’s Omitting Types theorem states that if
there is a model of power ��1 omitting a type, then there are Ehrenfeucht-
Mostowski models that also omit the type.However, by lookingmore closely
at the proof, the hypotheses can be weakened to: ‘For every α < �1, there
is a model Mα of power at least �α that omits the type.’ In a similar way,
we obtain the following strengthening of Theorem 7.7. Specifically, to prove
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Theorem 7.9, take, for each fmac A, PA to be the set of all formulas ϕ(xa :
a ∈ A) such that for each α < �1, there is �(α) ≥ α and b̄α from M�(α)
realizing ϕ.

Theorem 7.9. Suppose a sentence Φ of L�1,� has a Skolemized represen-
tation (L,T ′,Δ). If, for every α < �1 there is a model Mα of T ′ that omits
Δ(w) and has sprk(Mα) ≥ α, then there is a modelN of T of size continuum
that omits Δ(w) and has an asymptotically similar subset {c
 : 
 ∈ 2�}.
Theorem 7.9 entails the following amusing Corollary.

Corollary 7.10. Let Φ be any sentence of L�1,� with a Skolemized rep-
resentation (L,T ′,Δ). If there is a ZFC -proof of the existence of a model of
Φ of size continuum, then there is a Borel model of Φ with an asymptotically
similar subset {c
 : 
 ∈ 2�}.
Proof. It is easily seen by induction on α that for every α < �1 there is
an L�1,�-sentence Ψα in the languageL

′ such that anL′-structure N ′ |= Ψα
if and only if sprk(N ′) ≥ α.
To begin the proof of the Corollary, by forcing enough Cohen reals, work
in amodelV[G ] ofZFC inwhich 2ℵ0 > ��1(ℵ0).Asour forcing has the c.c.c.,
�V[G ]
1 = �1. Working in V[G ], choose a model N |= Φ of size continuum.
Let N ′ |= T ′ be an expansion of N to L′ that omits Δ.
As |N ′| ≥ ��1(ℵ0), N ′ |= Ψα for every α < �1. Thus, for each α, Φ ∧Ψα
is formally consistent. So, working in V, for each α < �1 an application of
Karp’s Completeness Theorem yields a (countable) model M ′

α |= Φ ∧Ψα .
Collectively, expansions of the models {M ′

α : α < �1} satisfy the hypotheses
of Theorem 7.9, so we finish. �

Remark 7.11. Both Theorem 7.7 and Corollary 7.10 have analogues for
atomic models. Indeed, given a countable, complete theory T , let T ′ be
a Skolemization of T and let {Δn} be the partial types given at the end of
Section 3.2. Let Φ be the sentence ofL�1,� given in Remark 3.2 (with respect
to T ′). Then, the L-reduct of any modelM ′ of Φ will be an atomic model of
T ; and conversely, every atomic modelM of T has an expansion to a model
M ′ of Φ. Thus, it follows from Theorem 7.7 that if a countable, complete,
first-order theory T has an atomic model of size ��1 (ℵ0), then T has a Borel
atomic model of size continuum. Similarly, the analogue of Corollary 7.10
is that if there is a ZFC proof of the existence of an atomic model of size
continuum for a countable, complete, first order T , then there is a Borel,
atomic model of T of size continuum with an asymptotically similar subset.

Remark 7.12. A glance at the definitions shows that having definable
Skolem functions is the antithesis of dcl-triviality (see Section 6.1). In fact,
the lack of nontrivial algebraic formulas directly implies that every finite
subset ofM has unbounded splitting rank, i.e., sprk(A,M ) = ∞ for every
finite subsetA ofM . In fact, this ‘arbitrary splitting; condition characterizes
trivial-dcl. In fact, we have two proofs that theories with trivial dcl have
atomic models in the continuum. The first (Section 6.1) took place in a
extension of the given vocabulary by predicates definable in L�1,� . But the
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result also follows from the methods of this section using the next easy Fact
together with the fact that splitting rank∞ gives a model in the continuum.
Fact 7.13. The following are equivalent for an L-structureM :

1. M has trivial dcl;
2. acl(A) = A for all subsets A ⊆M ;
3. For every finite subset A ⊆M , sprk(A,M ) ≥ 1;
4. For every finite subset A ⊆M , sprk(A,M ) =∞;
5. (M,=) is a sufficient pregeometry.
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