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Abstract

In this paper we give an interpretation, in terms of derived de Rham complexes, of
Scholze’s de Rham period sheaf and Tan and Tong’s crystalline period sheaf.
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1. Introduction

Fontaine’s mysterious period rings are essential in formulating various p-adic comparison state-
ments in p-adic Hodge theory. In the past decades there has been an effort to understand these
period rings via other constructions related to differentials.

For instance, Colmez realized that one can put a topology on Qp, related to Kähler differen-
tials of Zp/Zp, with respect to which the completion becomes the de Rham period ring B+

dR; see
[Fon94, Appendix] (which is polished and published in [Col12]).

Later on Beilinson [Bei12, § 1] gives another construction of B+
dR in terms of the derived de

Rham cohomology (introduced by Illusie in [Ill72, Chapter VIII]) of Qp/Qp. In our notation, he
shows that there is a filtered isomorphism

B+
dR
∼= d̂R

an

Qp/Qp
;

see Construction 4.3 for the meaning of the right-hand side and Example 4.6.1 In a similar vein,
Bhatt [Bha12b, Proposition 9.9] exhibits a filtered isomorphism, realizing the crystalline period
ring via the derived de Rham cohomology of Zp/Zp,

Acrys
∼= dRan

Zp/Zp
;

see Construction 3.1 and Example 3.5.

Received 24 August 2020, accepted in final form 29 April 2021, published online 6 October 2021.
2020 Mathematics Subject Classification 14F30, 14F40, 14G22, 14G45 (primary).
Keywords: period sheaf, derived de Rham cohomology, p-adic Hodge theory, crystalline cohomology.
1 For the relation between these two constructions, see [Bei12, Proposition 1.6].
© 2021 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica
under an exclusive licence.

https://doi.org/10.1112/S0010437X21007545 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
https://doi.org/10.1112/S0010437X21007545


H. Guo and S. Li

Fontaine’s period rings admit various generalizations in geometric situations; see, for instance,
[Fal89], [Bri08, §§ 5–6], [AI13, § 2], [Sch13, § 6] and [TT19, § 2]. From now on let us focus on
those introduced by Scholze. Recall that, in his proof of p-adic de Rham comparison for smooth
proper rigid spaces over p-adic fields, Scholze introduces period sheaves B+

dR and OB+
dR (see

[Sch13, Definitions 6.1 and 6.8] and [Sch16]) on the pro-étale site of a smooth rigid space. Here
by a p-adic field we mean a complete discrete-valued non-archimedean field extension of Qp with
perfect residue field, as in the setting of [Sch13, Definition 6.8]. However, the construction of
OB+

dR is somewhat complicated, and it takes one a fair amount of effort to understand OB+
dR.

From this understanding Scholze deduces a long exact sequence [Sch13, Corollary 6.13],

0→ B+
dR → OB+

dR
∇−→ OB+

dR ⊗OX
Ωan

X
∇−→ · · · ∇−→ OB+

dR ⊗OX
ΩdimX ,an

X → 0,

known as the p-adic analogue of the Poincaré sequence. Here ∇ is a connection which behaves
like the classical Gauss–Manin connection (satisfying a certain Griffiths transversality and so
on).

Following the theme, in this paper we explain how to understand Scholze’s de Rham period
sheaf OB+

dR in terms of suitable (analytic) derived de Rham sheaves.
Let k be a p-adic field. In this paper we introduce the (Hodge completed) analytic derived

de Rham sheaf d̂R
an

Xproét/X for the pro-étale site Xproét relative to the analytic site X. Similarly,

there is also a construction d̂R
an

Xproét/k for Xproét relative to k. Our main result is the following
theorem.

Theorem 1.1 (See Proposition 4.18 and Theorem 4.21 for the precise statement). Let X be a
smooth rigid space over k. We have natural filtered isomorphisms

B+
dR
∼= d̂R

an

Xproét/k and OB+
dR
∼= d̂R

an

Xproét/X .

Moreover, from this viewpoint, one naturally gets the p-adic Poincaré sequence mentioned
above. Indeed, in classical algebraic geometry, suppose X

f−→ Y
g−→ Z is a triangle of smooth

morphisms. Then one always has a sequence (see [KO68])

0→ Ω∗
X/Z → Ω∗

X/Y
∇−→ Ω∗

X/Y ⊗f−1OY
Ω1

Y/Z
∇−→ · · · ∇−→ Ω∗

X/Y ⊗f−1OY
Ω

dimY/Z

Y/Z → 0,

whose totalization,2 as well as the totalizations of the Hodge graded pieces (where Ωi
Y/Z is given

degree i), are all quasi-isomorphic to 0. In the framework of derived de Rham complexes, one
has an intuitive base change formula for a triple of rings A→ B → C,

dRC/A ⊗dRB/A
B ∼= dRC/B,

which leads to a generalization of the above sequence (see § 3.2). Applying this to the triangle
Xproét → X → k yields the following reinterpretation of the p-adic Poincaré sequence mentioned
above.
Theorem 1.2 (See Theorem 4.20 for the precise statement). Denote by ν : Xproét → X the
natural projection from the pro-étale site of X to the analytic site of X. The sequence

0 → d̂R
an

Xproét/k → d̂R
an

Xproét/X
∇−→ d̂R

an

Xproét/X ⊗ν−1OX
ν−1Ωan

X
∇−→ · · · ∇−→ d̂R

an

Xproét/X ⊗ν−1OX
ν−1ΩdimX ,an

X → 0

in D̂F(d̂R
an

Xproét/k) is strict exact, where we give ν−1Ωi,an
X degree i.

Hence from this point of view, the connection ∇ defined by Scholze is indeed an incarnation
of the Gauss–Manin connection.

2 This is only heuristic, as totalizations do not make sense at the level of derived categories. See §§ 2.2 and 3.2.
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The advantage of our perspective is that one can naturally generalize the above discussion
to singular rigid spaces. Due to some technical issues, so far we have only worked out the
case where the rigid space X is a local complete intersection over k (see Appendix A for a
brief discussion of local complete intersections in rigid geometry). In this singular case, one no
longer gets an ordinary sheaf but rather a sheaf in a derived∞-category satisfying hyperdescent.
In the local complete intersection case, the hypersheaf d̂R

an

Xproét/X is cohomologically bounded
below by − (embedded codimension of X). However, considering the zero-dimensional situation
in § 4.5, we find that actually this hypersheaf always lives in cohomological degree 0 in that
situation regardless of the input Artinian k-algebra. This leads to an interesting question that
needs further exploration.

Question 1.3 (Same as Question 4.25; cf. [Bha12a]). In what generality should we expect
d̂R

an

Xproét/X to live in cohomological degree 0? And when that happens, can we reinterpret the
underlying algebra via some construction similar to Scholze’s OB+

dR as in [Sch13, Sch16]?

Finally, we remark that we also have worked out a parallel story related to Tan and Tong’s
crystalline period sheaves [TT19, § 2]. We summarize the result in this direction as follows.

Theorem 1.4 (See Theorem 3.21 and Corollary 3.19 for the precise statements). Let k be an
absolutely unramified p-adic field, with ring of integers Ok, and let X be a smooth formal
scheme over Ok. Denote by w : Xproét →X the natural projection from the pro-étale site
of the rigid generic fiber X of X to the Zariski site of X . Then we have natural filtered
isomorphisms

Acrys
∼= dRan

Ô+
X/Ok

and OAcrys
∼= dRan

Ô+
X/OX

.

Moreover, the sequence

0 → dRan
Ô+

X/Ok
→ dRan

Ô+
X/OX

∇−→ dRan
Ô+

X/OX
⊗w−1OX

w−1Ω1,an
X

∇−→ · · · ∇−→ dRan
Ô+

X/OX
⊗w−1OX

w−1Ωd,an
X → 0

in D̂F(dRan
Ô+

X/Ok
) is strict exact, where d is the relative dimension of X /Ok and w−1Ωi,an

X is

given degree i.

We want to mention that in our situation, we mostly care about the analytic derived de
Rham complex for a map of adic spaces X → Y , where X is a perfectoid space and Y is a rigid
space (or their integral analogues). The analytic derived de Rham complex for a map of rigid
spaces has been studied independently in [Ant20] and a forthcoming paper [Guo20] by the first
named author.

Let us give a brief summary of the content of the following sections. In § 2 we explain the
notation and conventions used in this paper, and we give a brief discussion of relevant facts about
filtered derived∞-categories and sheaves in them. In §§ 3 and 4 we work out, in a parallel way, the
realizations of Scholze’s and Tan and Tong’s period sheaves. In both sections, we first introduce
the relevant algebraic construction, then discuss the Poincaré sequence, and finally globalize (or
sheafify) these constructions and show that they are (essentially) the same as the aforementioned
period sheaves. In Appendix A we introduce the notion of local complete intersections in rigid
geometry.
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2. Notation and conventions

2.1 Notation
We fix k to be a complete discrete-valued p-adic field with a perfect residue field, and let Ok be
its ring of integers. Denote by Spa(k) the adic spectrum Spa(k,Ok).

Anything bearing the superscript (−)an will mean a suitably p-completed version of the
classical object (−). The sense in which we are taking p-completion of these objects will be clear
from the context.

The tensor products ⊗ appearing in this paper, if not otherwise specified, always denote
derived tensor products. Similarly, completed tensor products always indicate derived completion
of the derived tensor product (with respect to suitable filtrations to be specified in each case).

2.2 Filtrations
Many objects we are dealing with in this paper are viewed as objects either in the filtered derived
∞-category DF(R) := Fun(Nop, D(R)) or in the full derived sub-∞-category D̂F(R) ⊂ DF(R)
consisting of objects that are derived complete with respect to the filtration, for some ring R
which should be clear from the context. For a brief introduction to these, we refer readers to
[BMS19, § 5.1].

We need a notion of step sequence functor, which is perhaps non-standard terminology. Given
an integer i ∈ N, we have a functor Gri : DF(R)→ D(R) sending a filtered object to its ith graded
piece. This functor has a right adjoint which we call the ith step sequence functor and denote by
sti : D(R)→ DF(R). Concretely, the value of sti(C) on j is given by

Cj =

{
C, 0 ≤ j ≤ i,

0, otherwise.

Let C be a stable ∞-category; for example, C could be D(R), DF(R) or D̂F(R) for a discrete
ring R. Consider a sequence of objects in C,

A0
d0−→ A1

d1−→ A2
d2−→ · · · ,

such that di+1 ◦ di = 0. If there exists an object L in the filtered ∞-category Fun(Nop, C),
satisfying the conditions

• L(0) = A0,
• L(i)/L(i + 1) ∼= Ai+1[−i],
• the natural map L(0)→ L(0)/L(1) is identified with d0,
• the natural connecting map of graded pieces L(i)/L(i + 1)→ L(i + 1)/L(i + 2)[1] is isomor-

phic to di+1[−i],

then we say the sequence is witnessed by the filtration L on A0. The notion is an ∞-analogue of
a complex in the chain complex category.

When C = DF(R), L can be regarded as an object G(•, •) ∈ Fun((N× N)op, D(R)), where we
conventionally denote the first coordinate by i, the second coordinate by j, and L(i) = G(i, 0).
In this setting, we say the filtration L(•) on A0 is strict exact if for any j ∈ N, the object G(0, j)
is complete with respect to the filtration G(i, j). Assume all of the Ai = G(i− 1, 0)/G(i, 0)[i− 1]
are cohomologically supported in degree 0 with filtrations (coming from the second coordinate)
given by actual R-submodules. Then the sequence of Ai above can be thought of as a sequence
of ordinary filtered R-modules, and our notion of strict exactness defined here agrees with the
classical notion of strict exactness of a sequence of filtered R-modules.
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2.3 Sheaves and hypersheaves
Here we give a quick review of sheaves valued in an ∞-category.

Let X be a site, and let C be a presentable∞-category. The ∞-category of presheaves in C ,
denoted by PSh(X, C ), is defined to be the ∞-category Fun(Xop, C ) of contravariant functors
from X to C . The ∞-category PSh(X, C ) admits a full sub-∞-category Sh(X, C ) of (infinity)
sheaves in C , consisting of functors F : Xop → C that send (finite) coproducts to products and
satisfy the descent along Čech nerves: for any covering U ′ → U in X, the natural morphism to
the limit below is required to be a weak equivalence

F(U) −→ lim
[n]∈Δop

F(U ′
n), (∗)

where U ′• → U is the Čech nerve associated with the covering U ′ → U . Here we note that this is
the ∞-categorical analogue of the classical sheaf condition in ordinary categories.

There is a stronger descent condition which requires (∗) above to hold with respect to all
hypercovers U ′• → U in the site X. Sheaves satisfying such stronger condition are called hyper-
sheaves. For example, given any bounded-below complex C of ordinary sheaves on a site X, the
assignment U �→ RΓ(U, C) gives rise to a hypersheaf. The collection of hypersheaves in C forms
a full sub-∞-category Shhyp(X, C ) inside Sh(X, C ).

Remark 2.1. Let C = D(R) be the derived ∞-category of R-modules. Then the ∞-category
Shhyp(X, C ) of hypersheaves over X is in fact equivalent to the derived ∞-category D(X, R) of
classical sheaves of R-modules over X, by [Lur18, Corollary 2.1.2.3]. Here the functor D(X, R)→
Shhyp(X, C ) associates a complex of ordinary sheaves C with the functor

U �→ RΓ(U, C), ∀ U ∈ X.

As an upshot, the underlying homotopy category of Shhyp(X, C ) is the classical derived category
of sheaves of R-modules over X. In particular, given a hypersheaf F of R-modules over X, we
can always represent it by an actual complex of sheaves of R-modules.

2.4 Unfolding a hypersheaf
There is a way to define a hypersheaf on a site X via unfolding from a basis; cf. [BMS19,
Proposition 4.31] and the discussion after it.

Let X be a site and let B be a basis of X, that is, B is a subcategory of X such that for each
object U in X, there exists an object U ′ in B covering U . So any hypercover of an object in X
can be refined to a hypercover with each term in B. Let C be a presentable ∞-category.

Let F ∈ Shhyp(B, C ) be a hypersheaf on B. We can then unfold the sheaf F into a hypersheaf
F ′ on X, such that its evaluation at any V ∈ X is given by

F ′(V ) = colim
U ′•→V

lim←−
[n]∈Δop

F(U ′
n),

where the colimit is indexed over all hypercovers U ′• → V with U ′
n ∈ B for all n. It can be shown

that one hypercover suffices to compute the value of F ′(V ) in the above formula: actually, for a
hypercover U ′• → V with each U ′

n in the basis B, we have a natural weak equivalence

lim
[n]∈Δop

F(U ′
n) −→ F ′(V ).

In particular, for any U ∈ B, the natural map F(U) −→ F ′(U) is a weak equivalence.
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The above construction is functorial with respect to F ∈ Shhyp(B, C ), and we get a natural
unfolding functor

Shhyp(B, C ) −→ Shhyp(X, C ),

which is in fact an equivalence, with the inverse given by the restriction functor Shhyp(X, C )→
Shhyp(B, C ).

3. Integral theory

3.1 Affine construction
In this subsection we define the analytic cotangent complex and the analytic derived de Rham
complex for a morphism of p-adic algebras. We refer readers to [Bha12b, §§ 2 and 3] for general
background on the derived de Rham complex in a p-adic situation.

Construction 3.1 (Integral constructions). Let A0 → B0 be a map of p-adically complete alge-
bras over Ok, and P be the standard polynomial resolution of B0 over A0.

We define the analytic cotangent complex of A0 → B0, denoted by Lan
B0/A0

, to be the derived
p-completion of the complex Ω1

P/A0
⊗P B0 of B0-modules.

Next we denote by (|Ω∗
P/A0
|, Fil∗) the direct sum totalization of the simplicial complex Ω∗

P/A0

together with its Hodge filtration, as an object in Fun(Nop, Ch(A0)). As the de Rham complex
of a simplicial ring admits a commutative differential graded algebra structure, we may regard
|Ω∗

P/A0
| with its Hodge filtration as an object in CAlg(Fun(Nop, Ch(A0))). Then the analytic

derived de Rham complex of B0/A0, denoted by dRan
B0/A0

in CAlg(DF(A0)), is defined as the
derived p-completion of the filtered E∞ algebra (|Ω∗

P/A0
|, Fil∗).

Remark 3.2. By construction, the graded pieces of the derived Hodge filtrations of dRan
B0/A0

are
given by

Gri(dRan
B0/A0

) ∼= (L ∧i LB0/A0
)an[−i],

where L∧i denotes the ith left derived wedge product; cf. [Bha12a, Construction 4.1].

Let us establish some properties of this construction before discussing an example.

Lemma 3.3. Let A→ B → C be a triple of rings. Then we have a commutative diagram of
filtered E∞ algebras

dRB/A

��

�� dRC/A

��

B �� dRC/B

where the left arrow is the projection to the zeroth graded piece of the derived Hodge filtration,
and the other three arrows come from the functoriality of the construction of derived de Rham
complex.

Proof. This follows from the left Kan extension of the case when B is a polynomial A-algebra
and C is a polynomial B-algebra. �

The following theorem is the key ingredient in understanding the analytic derived de Rham
complex in situations that are of interest to us.
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Theorem 3.4. Let A→ B → C be ring homomorphisms of p-completely flat Zp-algebras, such
that A/p→ B/p is relatively perfect (see [Bha12b, Definition 3.6]). Then we have the following
assertions.

(1) Lan
B/A = 0, and dRan

B/A = B.

(2) The natural map dRan
C/A → dRan

C/B is an isomorphism.
(3) We have a commutative diagram:

dRan
B/A

∼=
��

�� dRan
C/A

∼=
��

B �� dRan
C/B

(4) Assume, furthermore, that B → C is surjective with kernel I and B/p→ C/p is a local
complete intersection. Then the natural map B → dRan

C/B exhibits the latter as DB(I)an,
the p-adic completion of the PD envelope of B along I. Moreover, the p-adic completion of

the PD filtrations Filr = I [r],an is identified with the rth Hodge filtration.

Note that, by [Bha12b, Lemma 3.38], DB(I)an is a p-complete flat Zp-algebra. Hence I [r],an,
being submodules of a flat Zp-module, are also p-torsion-free for all r.

Proof. Statements (1) and (2) follow from the proof of [Bha12b, Corollary 3.8]: one immediately
reduces modulo p and appeals to the conjugate filtration. Statement (3) follows from Lemma 3.3
by taking the derived p-completion.

As for (4), we first apply [Bha12b, Proposition 3.25] and [Ber74, Théorème V.2.3.2] to see
that there is a natural filtered map C ompC/B : dRan

C/B → DB(I)an such that precomposing with
B → dRan

C/B gives the natural map B = Ban → DB(I)an. By [Bha12b, Theorem 3.27] we see
that C ompC/B is an isomorphism for the underlying algebra. To show that the same holds for
filtrations, it suffices to show that the induced map on graded pieces is an isomorphism as the
map is compatible with filtrations. To that end, by a standard spread-out technique, we may
reduce to the case where B is the p-adic completion of a finite type Zp algebra, in particular it
is Noetherian, in which case the identification of graded pieces via this natural map follows from
a result of Illusie [Ill72, Corollaire VIII.2.2.8]. �

We are now ready to consider some examples. An inspiring arithmetic example is worked out
by Bhatt.

Example 3.5 [Bha12b, Proposition 9.9]. There is a filtered isomorphism,

Acrys
∼= dRan

Zp/Zp
.

Let us work out a geometric example.

Example 3.6. Let n be a positive integer. Let

R = Zp〈T±1
1 , . . . , T±1

n 〉,
R∞ = Zp〈T±1/p∞

1 , . . . , T±1/p∞
n 〉 = R〈S1/p∞

1 , . . . , S1/p∞
n 〉/(Ti − Si; 1 ≤ i ≤ n).

Applying (the derived p-completion of) the fundamental triangle of cotangent complexes to

Zp → R→ R∞,

one obtains that Lan
R∞/R = R∞ · {dT1, . . . , dTn}[1].
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On the other hand, the fundamental triangle associated with

R→ R〈S1/p∞
1 , . . . , S1/p∞

n 〉 → R∞

gives us Lan
R∞/R = R∞ · {Ti − Si; 1 ≤ i ≤ n}[1].

The relation between these two presentations of Lan
R∞/R is that

Ti − Si = dTi

in H1(Lan
R∞/R), as (∂/∂Ti)(Ti − Si) = 1.3

Following the above notation, we describe dRan
R∞/R.

Example 3.7. Applying Theorem 3.4 to A = R, B = R〈S1/p∞
1 , . . . , S

1/p∞
n 〉 and I = (T1 −

S1, . . . , Tn − Sn), we see that dRan
R∞/R =

(
D

Zp〈T±1
1 ,...,T±1

n ,S
1/p∞
1 ,...,S

1/p∞
n 〉(I)

)an is the p-adic com-

pletion of the PD envelope of R〈S1/p∞
1 , . . . , S

1/p∞
n 〉 along I (notice that the PD envelope is

p-torsion-free, hence derived completion agrees with classical completion), and the Hodge fil-
trations are (p-adically) generated by divided powers of {Ti − Si}. Example 3.6 shows that the
image of (Ti − Si) in Gr1 = Lan

R∞/R[−1] = R∞ ⊗R Ω1,an
R/Zp

is identified with 1⊗ dTi. This precise
identification will be used later (see Example 4.7 and the proof of Theorem 4.21) when we com-
pare certain rational version of the analytic derived de Rham complex with Scholze’s period
sheaf OB+

dR.

3.2 Derived de Rham complex for a triple
Given a pair of smooth morphisms A→ B → C, there is a natural Gauss–Manin connection
dRC/B

∇−→ dRC/B ⊗B Ω1
B/A, such that dRC/A is naturally identified with the ‘totalization’ of the

following sequence:

dRC/B
∇−→ dRC/B ⊗B Ω1

B/A
∇−→ · · · ∇−→ dRC/B ⊗B Ω

dimB/A

B/A .

Katz and Oda [KO68] observed that this can be explained by a filtration on dRC/A. In this
subsection we shall show how to generalize this to the context of the derived de Rham complex
for a pair of arbitrary morphisms A→ B → C.

We first need to introduce a way to put filtration on a tensor product of filtered modules
over a filtered E∞-algebra. The following fact about Bar resolution is well known, and we thank
Bhargav Bhatt for teaching us in this generality.

Lemma 3.8. Let A be an ordinary ring, let R be an E∞-algebra over A, and let M and N be
two objects in D(R). Then the following augmented simplicial object in D(A) displays M ⊗R N
as the colimit of the simplicial objects in D(A):( · · · �������� M ⊗A R⊗A R⊗A N

������ M ⊗A R⊗A N ���� M ⊗A N
) −→M ⊗R N.

Here the arrows are given by ‘multiplying two factors together’.

Proof. Since the∞-category D(R) is generated by shifts of R [Lur17, 7.1.2.1], commuting tensor
with colimit, we may assume that both M and N are just R. In this case, the statement holds
for merely E1-algebras, as we have a null homotopy R⊗An → R⊗A(n+1) given by tensoring R⊗An

with the natural map A→ R. �

3 Here we follow the sign conventions in the Stacks Project; see [Sta20, Tag 07MC footnote 1]
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Construction 3.9. Let A be an ordinary ring, let R be a filtered E∞-algebra over A, and let M
and N be two filtered R-modules with filtrations compatible with that on R. Then we regard
M ⊗R N as an object in DF(A) via the Bar resolution in Lemma 3.8, with

Fili(M ⊗R N) := colimΔop
( · · · �������� Fili(M ⊗A R ⊗A R ⊗A N)

������ Fili(M ⊗A R ⊗A N) ���� Fili(M ⊗A N)
)
,

where the filtrations on M ⊗A R⊗A · · · ⊗A R⊗A N are given by the usual Day involution.

Lemma 3.10. Let A, R, M, N be as in Construction 3.9. Then we have

Gr∗(M ⊗R N) ∼= Gr∗(M)⊗Gr∗(R) Gr∗(N).

Proof. We have

Gr∗(M ⊗R N) ∼= colimΔop
( · · · �������� Gr∗(M ⊗A R ⊗A R ⊗A N)

������ Gr∗(M ⊗A R ⊗A N) ���� Gr∗(M ⊗A N)
)

∼= colimΔop
( · · · ������ Gr∗(M) ⊗A Gr∗(R) ⊗A Gr∗(N) ���� Gr∗(M) ⊗A Gr∗(N)

) ∼= Gr∗(M) ⊗Gr∗(R) Gr∗(N).

�
Proposition 3.11. Let A→ B → C be a triple of rings. Then the diagram of filtered E∞-
algebras in Lemma 3.3 induces a filtered isomorphism of filtered E∞-algebras over B:

dRC/A ⊗dRB/A
B ∼= dRC/B.

Here the left-hand side is equipped with the filtration in Construction 3.9 with the Hodge
filtrations on dRC/A and dRB/A, and Fili(B) = 0 for i ≥ 1. The right-hand side is equipped with
the Hodge filtration. Denote by Ω∗

B/A
:= ⊕isti(L ∧i LB/A)[−i] the graded algebra associated with

the Hodge filtration.

Proof. After cofibrant replacing B by a simplicial polynomial A-algebra and C by a simplicial
polynomial B-algebra, we reduce the statement to the case where B is a polynomial A-algebra
and C is a polynomial B-algebra. One verifies directly that in this case we have

dRC/A ⊗dRB/A
B ∼= dRC/B and Ω∗

C/A ⊗Ω∗
B/A

B ∼= Ω∗
C/B .

We conclude the proof by recalling that a filtered morphism with isomorphic underlying object is
a filtered isomorphism if and only if the induced morphisms of graded pieces are isomorphisms.

�
Construction 3.12. Let A→ B → C be a triple of rings. Then we put a filtration on
dRC/A given by L(i) = dRC/A ⊗dRB/A

FiliH(dRB/A), viewed as a commutative algebra object
in Fun(Nop, DF(A)) = Fun((N× N)op, D(A)), where the filtration on L(i) is as in Con-
struction 3.9 with each factor being equipped with its own Hodge filtrations. We have
L(0) ∼= dRC/A, and we call L(i) the ith Katz–Oda filtration on dRC/A and denote it by
FiliKO(dRC/A).

We caution readers that each FiliKO(dRC/A) is equipped with yet another filtration, which
we shall still call the Hodge filtration; the index is often denoted by j. The graded pieces of the
Katz–Oda filtration when both arrows in A→ B → C are smooth were studied by Katz and
Oda [KO68], although in a different language, hence the name.
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Lemma 3.13. Let A→ B → C be a triple of rings. Then the following statements hold.

(1) We have a filtered isomorphism

Gri
KO(dRC/A) ∼= dRC/B ⊗B sti((L ∧i LB/A)[−i]).

(2) Under the above filtered isomorphism, the Katz–Oda filtration on dRC/A witnesses the
following sequence:

dRC/A → dRC/B
∇−→ dRC/B ⊗B st1(LB/A) ∇−→ · · · .

Here ∇ denotes connecting homomorphisms, which is dRC/A-linear and satisfies
Newton–Leibniz rule.

(3) The induced Katz–Oda filtration on Grj
H(dRC/A) is complete. In fact FiliKO Grj

H(dRC/A) = 0
whenever i > j.

(4) If A→ B is smooth of equidimension d, then FiliKO FiljH(dRC/A) ∼= 0 for any i > d. In par-
ticular, combining with the previous point, we get that in this situation the Katz–Oda
filtration is strict exact in the sense of § 2.2.

Proof. For (1) we have

Gri
KO(dRC/A) ∼= dRC/A ⊗dRB/A

sti(L ∧i LB/A)[−i] ∼= (dRC/A ⊗dRB/A
B)⊗B sti(L ∧i LB/A)[−i],

and by Proposition 3.11 the right-hand side can be identified with dRC/B ⊗B sti(L ∧i LB/A)[−i].
For (2) we just need to show the properties of these ∇s. With any multiplicative filtration

on an E∞-algebra R, we get a natural filtered map Fili⊗R Filj → Fili+j(R) where the left-hand
side is equipped with the Day convolution filtration (over the underlying algebra R). Now we
look at the following commutative diagram:

(Gri⊗R Grj+1)⊕ (Gri+1⊗R Grj) ��

��

Fili+j / Fili+j+2(Fili⊗R Filj) ��

��

Gri⊗R Grj +1−−→

��

Gri+j+1 �� Fili+j / Fili+j+2(R) �� Gri+j +1−−→
to conclude that the connecting morphisms are R-linear and satisfy the Newton–Leibniz rule.
Since FiliKO is a multiplicative filtration on dRC/A, we get the desired properties of ∇.

Statement (3) follows from the distinguished triangle of cotangent complexes and their
exterior powers.

Statement (4) follows from the definition of the Katz–Oda filtration in Construction 3.12
and the fact that FiliH(dRB/A) = 0 whenever i > d. �

We do not need the following construction in this paper, but mention it for the sake of
completeness of our discussion.

Construction 3.14. We denote the graded algebra associated with the Hodge filtration on
the derived de Rham complex by LΩ∗

−/−.4 Let A→ B → C be a triple of rings. Note that
LΩ∗

C/A
∼= L ∧∗C (st1(LC/A))[−∗], and we have a functorial filtration LB/A ⊗B C → LC/A with quo-

tient LC/B. Hence there is a functorial multiplicative exhaustive increasing filtration on LΩ∗
C/A,

called the vertical filtration and denoted by Filvi , consisting of graded-LΩ∗
B/A-submodules with

graded pieces given by Grv
i = LΩ∗

B/A ⊗B sti(L ∧i LC/B)[−i].

4 We warn readers that this is not standard notation; elsewhere the symbol LΩ is often used to denote the derived
de Rham complex.
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Let us summarize the picture of (the graded pieces of) these filtrations in the following
diagram:

.

.

.
C st1(LC/B)[−1] st2(∧2

CLC/B)[−2] · · ·

.

.

.

B .
.
.

M0 ⊗B N0 M0 ⊗B N1 M0 ⊗B N2 · · ·

.

.

.

st1(LB/A)[−1] .
.
.

M1 ⊗B N0 M1 ⊗B N1 M1 ⊗B N2 · · ·

.

.

.

st2(∧2
BLB/A)[−2] .

.

.
M2 ⊗B N0 M2 ⊗B N1 M2 ⊗B N2 · · ·

.

.

.

.

.

.

.

.

.

.

.

.

In this diagram, Mi = sti(∧i
BLB/A)[−i], and Nj = stj(∧j

CLC/B)[−j], for i, j ∈ N. Let us explain
the diagram: it describes graded pieces of filtrations on dRC/A. Here the rows represent graded
pieces of the Katz–Oda filtration, and the dotted lines indicate the Hodge filtration (given by
things below the dotted line). Once we take graded pieces with respect to the Hodge filtration,
then the vertical filtration is literally induced by vertical columns, starting from left to right,
hence the name.

Specializing to the p-adic setting, we get the following lemma.

Lemma 3.15. Let A→ B → C be a triangle of p-complete flat Zp-algebras. Suppose B/p is
smooth over A/p of relative equidimension n. Then we have a p-adic Katz–Oda filtration on
dRC/A which is strict exact and witnesses the following sequence:

0→ dRan
C/A → dRan

C/B
∇−→ dRan

C/B ⊗B st1(Ω
1,an
B/A) ∇−→ · · · ∇−→ dRan

C/B ⊗B stn(Ωn,an
B/A)→ 0.

Recall that the superscript (−)an denotes the derived p-completion of the correspond-
ing objects. Note that since Ωi,an

B/A are all finite flat B-modules by assumption and dRan
C/B is

p-complete, the tensor products appearing above are already p-complete.
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Proof. Taking the derived p-completion of the Katz–Oda filtration on dRC/A, we get such a strict
exact filtration by Lemma 3.13. �

3.3 Integral de Rham sheaves
For the rest of this section we focus on the situation spelled out as follows. Let κ be a perfect
field in characteristic p > 0, and let k = W (κ)[1/p] be the absolutely unramified discrete-valued
p-adic field with the ring of integers Ok = W (κ). Fix a separated formally smooth p-adic formal
scheme X over Ok. Denote by X its generic fiber, viewed as an adic space over the Huber pair
(k,Ok).

In this situation, there is a natural map of ringed sites

w : (Xproét, Ô+
X) −→ (X ,OX )

which sends an open subset U ⊂X to the open subset U ∈ Xproét, where U is the generic fiber
of U . This allows us to define the inverse image w−1OX of the integral structure sheaf OX , as
a sheaf on the pro-étale site Xproét.

On the pro-étale site of X, we have a morphism of sheaves of p-complete Ok-algebras:

Ok −→ w−1OX −→ Ô+
X . ( )

We refer readers to [Sch13, §§ 3 and 4] for a detailed discussion around the pro-étale site of a rigid
space and structure sheaves on it. There is a subcategory Xω

proét/X ⊂ Xproét consisting of affinoid
perfectoid objects U = Spa(B, B+) ∈ Xproét whose image in X is contained in w−1(Spf(A0)), the
generic fiber of an affine open Spf(A0) ⊂X . The class of such objects forms a basis for the pro-
étale topology by (the proof of) [Sch13, Proposition 4.8]. We first study the behavior of the
derived de Rham complex for the triangle equation ( ) on Xω

proét/X .

Proposition 3.16. Let U = Spa(B, B+) ∈ Xproét be an object in Xω
proét/X , and choose

Spf(A0) ⊂X such that the image of U in X is contained in w−1(Spf(A0)). Then:

(1) the natural surjection θ : Ainf (B+) � B+ exhibits dRan
B+/Ok

= Acrys(B+), the p-completion

of the divided envelope of Ainf (B+) along ker(θ);
(2) the natural surjection w� ⊗ θ : A0⊗̂Ok

Ainf (B+) � B+ exhibits dRan
B+/A0

as the p-completion

of the divided envelope of A0⊗̂Ok
Ainf (B+) along ker(w� ⊗ θ);

(3) in both cases, the Hodge filtrations are identified as the p-completion of PD filtrations;
(4) the filtered algebra dRan

B+/A0
is independent of the choice of A0, and we denote it by dRan

B+/X .

Remark 3.17. In particular, (1) and (2) tells us that these derived de Rham complexes are
actually quasi-isomorphic to an honest algebra viewed as a complex supported on cohomological
degree 0; (4) tells us that sending U = Spa(B, B+) ∈ Xω

proét/X to dRan
B+/X gives a well-defined

presheaf on Xω
proét/X .

Proof of Proposition 3.16. Applying Theorem 3.4(4) to the triangles

Ok → Ainf (B+)→ B+ and A0 → A0⊗̂Ok
Ainf (B+)→ B+

proves (1) and (2) respectively and (3).5 As for (4), using the separatedness of X , we reduce
to the situation where the image of U in X is in a smaller open w−1(Spf(A1)) ⊂ w−1(Spf(A0)).
It suffices to show that the natural map dRan

B+/A0
→ dRan

B+/A1
is a filtered isomorphism, which

follows from Lemma 3.15 as A0/p→ A1/p is étale. �

5 Here we use the unramifiedness of Ok to verify the relative perfectness assumption in Theorem 3.4.
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Recall that the subcategory Xω
proét/X ⊂ Xproét gives a basis for the topology on Xproét. Hence

any presheaf on Xω
proét/X can be sheafified to a sheaf on Xproét.

We define the analytic de Rham sheaf for Ô+
X over Ok and w−1OX as follows.

Construction 3.18 (dRan
Ô+

X/Ok
and dRan

Ô+
X/OX

). The analytic de Rham sheaf of Ô+
X/Ok, denoted

by dRan
Ô+

X/Ok
, is the p-adic completion of the unfolding of the presheaf on Xω

proét/X which assigns

each U = Spa(B, B+) the algebra dRan
B+/Ok

. We equip it with the decreasing Hodge filtration
FilrH given by the image of p-completion of the unfolding of the presheaf assigning each U =
Spa(B, B+) the rth Hodge filtration in dRan

B+/Ok
.

The analytic de Rham sheaf of Ô+
X/OX , denoted by dRan

Ô+
X/OX

, is the p-adic completion

of the unfolding of the presheaf on Xω
proét/X which assigns each U = Spa(B, B+) the filtered

algebra dRan
B+/X . Similarly, we equip it with the decreasing Hodge filtration FilrH given by the

image of p-completion of the unfolding of the presheaf whose value on each U = Spa(B, B+) is
the rth Hodge filtration in dRan

B+/X .

The fact that these definitions/constructions make sense follows from Proposition 3.16 and
Remark 3.17.

One may also define the corresponding mod pn version of these sheaves. Since sheafifying
commutes with arbitrary colimit, the p-adic completion of the sheafification of a presheaf F is
the same as the inverse limit over n of the sheafification of presheaves F/pn. Therefore we have
that dRÔ+

X/Ok
/pn is the same as the sheafification of the presheaf dRB+/Ok

/pn. Its rth Hodge
filtration agrees with the sheafification of the presheaf FilrH(dRB+/Ok

/pn), as sheafifying is an
exact functor. Similar statements can be made for the mod pn version of dRan

Ô+
X/OX

and its
Hodge filtrations.

Now the strict exact Katz–Oda filtration obtained in the Lemma 3.15 gives us the following
corollary.

Corollary 3.19 (Crystalline Poincaré lemma). There is a functorial dRan
Ô+

X/Ok
-linear strict

exact sequence of filtered sheaves on Xproét,

0→ dRan
Ô+

X/Ok
→ dRan

Ô+
X/OX

∇−→ dRan
Ô+

X/OX
⊗w−1OX

st1(w−1Ω1,an
X ) ∇−→ · · ·

· · · ∇−→ dRan
Ô+

X/OX
⊗w−1OX

std(w−1Ωd,an
X )→ 0,

where d is the relative dimension of X /Ok.

Proof. Using the discussion before this corollary, we reduce to checking it at the level of
presheaves on Xω

proét/X . Since now everything in sight is supported cohomologically in degree
0 with filtrations given by submodules because of Proposition 3.16, the strict exact Katz–Oda
filtration in Lemma 3.15 implies what we want. �
Remark 3.20. We can drop the separatedness assumption on X as follows. Since any formal
scheme is covered by affine ones, and affine formal schemes are automatically separated, we may
define all these de Rham sheaves on each slice subcategory of the pro-étale site of the rigid
generic fiber of affine opens of X . Similar to the proof of Proposition 3.16(4), we can show that
these de Rham sheaves satisfy the base change formula with respect to maps of affine opens of
X (by appealing to Lemma 3.15 again), hence these sheaves on the slice subcategories glue to

2389

https://doi.org/10.1112/S0010437X21007545 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007545


H. Guo and S. Li

a global one. The crystalline Poincaré lemma obtained above holds verbatim as exactness of a
sequence of sheaves may be checked locally.

3.4 Comparing with Tan and Tong’s crystalline period sheaves
Finally, we shall identify the two de Rham sheaves defined above with two period sheaves that
show up in the work of Tan–Tong [TT19]. We refer readers to [TT19, Definitions 2.1. and 2.9]
for the meaning of the period sheaves Acrys and OAcrys and their PD filtrations.

We look at the triangle of sheaves of rings:

Ok → w−1(OX )⊗̂Ok
Ainf

w�⊗̂θ−−−→ Ô+
X .

Theorem 3.21. The triangle above induces a filtered isomorphism of sheaves: dRÔ+
X/Ok

∼= Acrys

and dRÔ+
X/OX

∼= OAcrys. Moreover, under this identification, the crystalline Poincaré sequence

in Corollary 3.19 agrees with the one obtained in [TT19, Corollary 2.17].

Proof. We check these isomorphisms modulo pn for any n. In both cases, the de Rham
sheaf and the crystalline period sheaf are both unfoldings of the same PD envelope presheaf
(with its PD filtrations) on Xω

proét/X : for the de Rham sheaves this statement follows from
Proposition 3.16 and the base change formula of the PD envelope (note that taking the PD
envelope is a left adjoint functor, hence commutes with the colimit; in particular, it com-
mutes with modulo pn for any n), and for the crystalline period sheaf it follows from the
definition (note that although the OAinf defined in Tan and Tong’s work uses an uncom-
pleted tensor of w−1(OX ) and Ainf instead of the completed tensors we use here, the difference
vanishes when we modulo any power of p and restrict to the basis of affinoid perfectoid
objects).

Therefore, in both cases, we have natural isomorphisms modulo pn for any n, and taking the
inverse limit gives the result we want as all sheaves are p-adic completions of their modulo pn

versions.
The claim about matching Poincaré sequences follows by unwinding definitions. Indeed, we

need to check that the maps ∇ defined in these two sequences agree, but since ∇ is linear
over dRÔ+

X/Ok

∼= Acrys, it suffices to check that the ∇ agree on ui which is the image of Ti − Si

(notation from [TT19] and Example 3.7, respectively) by functoriality of the Poincaré sequence.
One checks that in both cases their image under ∇ is 1⊗ dTi. �

4. Rational theory

For the rest of this paper, we shall study a rational version of the previously derived de Rham
complex. Let us spell out the setup by recalling the following notation: k is a p-adic field with
ring of integers denoted by Ok and X is a separated6 rigid space over k which we view as an
adic space over Spa(k,Ok).

4.1 Affinoid construction
In this subsection we recall the construction of the analytic cotangent complex and give the
construction of the analytic derived de Rham complex, for a map of Huber rings over a p-adic
field k. For a detailed discussion of the analytic cotangent complex (for topological finite type
algebras), we refer readers to [GR03, §§ 7.1–7.3].

6 Just as Remark 3.20 suggests, we can remove the separatedness assumption in the end.
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Let f : (A, A+)→ (B, B+) be a map of complete Huber rings over k. Denote by CB/A the
filtered category of pairs (A0, B0), where A0 and B0 are rings of definition of (A, A+) and (B, B+)
separately, such that f(A0) ⊂ B0.

Construction 4.1 (Analytic cotangent complex, affinoid). For each (A0, B0) ∈ CB/A, denote by
Lan

B0/A0
the integral analytic cotangent complex of A0 → B0 as in Construction 3.1. The analytic

cotangent complex of f : (A, A+)→ (B, B+), denoted by Lan
B/A, is defined as the filtered colimit

Lan
B/A := colim

(A0,B0)∈CB/A

Lan
B0/A0

[
1
p

]
.

For the convenience of readers, let us list a few properties of the analytic cotangent complex
for a morphism of rigid affinoid algebras obtained by Gabber and Romero.

Theorem 4.2. Let A→ B be a morphism of k-affinoid algebras. Then we have the following
assertions.

(1) Lan
B/A is in D≤0(B) and is pseudo-coherent over B; see [GR03, Theorem 7.1.33(i)].

(2) The zeroth cohomology of the analytic cotangent complex is given by the analytic relative
differential, H0(Lan

B/A) � Ωan
B/A; see [GR03, Lemma 7.1.27(iii) and Equation (7.2.36)];

(3) If A→ B is smooth, then Lan
B/A � Ωan

B/A[0]; see [GR03, Theorem 7.2.42(ii)].

(4) If A→ B is surjective, then the analytic cotangent complex agrees with the classical
cotangent complex, LB/A � Lan

B/A; see [GR03, Lemma 7.2.46(ii)].

Construction 4.3 (Analytic derived de Rham complex, affinoid). Let f : (A, A+)→ (B, B+) be
a map of complete Huber rings over k. For each (A0, B0) ∈ CB/A, by Construction 3.1 we could
define the integral analytic derived de Rham complex dRan

B0/A0
, as an object in CAlg(DF(A0)).

Then the analytic derived de Rham complex dRan
B/A of (B, B+) over (A, A+), as an object in

CAlg(DF(A)), is defined to be the filtered colimit

dRan
B/A := colim

(A0,B0)∈CB/A

dRan
B0/A0

[
1
p

]
.

Moreover, the (Hodge) completed analytic derived de Rham complex d̂R
an

B/A of (B, B+) over

(A, A+), as an object in CAlg(D̂F(A)), is defined as the derived filtered completion of dRan
B/A.

By the construction, the graded pieces of the filtered complete A-complex d̂R
an

B/A are given
by

Gri(d̂R
an

B/A) ∼= colim
(A0,B0)∈CB/A

Gri(G(A0, B0))

∼= colim
(A0,B0)∈CB/A

(
L ∧i Lan

B0/A0

[
1
p

])
[−i]

∼= (L ∧i Lan
B/A)[−i], ( )

due to the fact that the functor Gri preserves filtered colimits.

Remark 4.4 (Complexity of the construction). The two rational constructions above involve col-
imits among all rings of definitions and seem to be very complicated. A naive attempt would
be to take the usual cotangent/derived de Rham complex of A+ → B+, apply the derived
p-adic completion and invert p (and do the filtered completion, in the derived de Rham complex
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case) directly. This would not give us the expected answer in general, which is essentially due to
the possible existence of nilpotent elements in (A, A+) and (B, B+).

Take the map (k,Ok)→ (B, B+) for B = k〈ε〉/(ε2) as an example. Then a ring of definition
B0 of B could be Ok〈ε〉/(ε2), while there is only one open integral subring of B that contains
Ok, namely Ok ⊕ k · ε. In this case, it is easy to see that the derived p-completions of cotangent
complexes LB+/Ok

and LB0/Ok
are different, and remain so after inverting p.

Remark 4.5 (Simplified construction for uniform Huber pairs). Assume both of the Huber pairs
(A, A+)→ (B, B+) are uniform; that is, the subrings of power bounded elements A◦ and B◦

are bounded in A and B separately. Then both A+ and B+ are rings of definition of A and B
separately. In particular, Construction 4.1 and Construction 4.3 can be simplified as follows:

Lan
B/A = Lan

B+/A+

[
1
p

]
,

d̂R
an

B/A = filtered completion of
(

(derived p-completion of dRB+/A+)
[
1
p

])
,

where we recall that Lan
B+/A+ is the derived p-completion of the classical cotangent complex

LB+/A+ , and dRB+/A+ is the classical derived de Rham complex of B+/A+, as in [BMS19,
Examples 5.11–5.12].

Examples of uniform Huber pairs include reduced affinoid algebras over discrete-valued or
algebraically closed non-Archimedean fields [FvdP04, Theorem 3.5.6], and perfectoid affinoid
algebras [Sch12, Theorem 6.3].

An arithmetic example of the Hodge completed analytic derived de Rham complex has been
worked out by Beilinson.

Example 4.6 [Bei12, Proposition 1.5]. We have a filtered isomorphism

B+
dR
∼= d̂R

an

Qp/Qp
.

Next we work out a geometric example. Let us compute the Hodge completed ana-
lytic derived de Rham complex of a perfectoid torus over a rigid analytic torus. Following
the notation in Example 3.6, let R = Zp〈T±1

1 , . . . , T±1
n 〉 and R∞ = Zp〈T±1/p∞

1 , . . . , T
±1/p∞
n 〉 =

R〈S1/p∞
1 , . . . , S

1/p∞
n 〉/(Ti − Si; 1 ≤ i ≤ n).

Example 4.7. Continue with Example 3.7. After inverting p and completing along Hodge fil-
trations, we see that d̂R

an

R∞[1/p]/R[1/p] is given by the completion of Qp〈T±1
i , S

1/p∞
i 〉 along

{Ti − Si; 1 ≤ i ≤ n}. Here we use Remark 4.5 to relate d̂R
an

R∞/R and d̂R
an

R∞[1/p]/R[1/p]. A more
explicit presentation is

d̂R
an

R∞[1/p]/R[1/p] = Qp〈S±1/p∞
1 , . . . , S±1/p∞

n 〉[[X1, . . . , Xn]]

via the change of variables Ti = Xi + Si (hence T−1
i = S−1

i · (1 + S−1
i Xi)−1); cf. the notation

before [Sch13, Proposition 6.10].

We need to understand the output of these constructions for general perfectoid affinoid
algebras relative to affinoid algebras. The following tells us that in this situation, the Hodge
completed analytic derived de Rham complex can be computed with any ring of definition inside
the affinoid algebra.
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Lemma 4.8. Let (A, A+) be a topologically finite type complete Tate ring over (k,Ok), with
A0 ⊂ A+ being a ring of definition. Let (B, B+) be a perfectoid algebra over (A, A+). Then we
have the following assertions.

(1) The analytic cotangent complex Lan
B/A
∼= Lan

B+/A0
[1/p].

(2) The Hodge completed analytic derived de Rham complex d̂R
an

B/A
∼= ̂dRan

B+/A0
[1/p], where

the latter is the Hodge completion of dRan
B+/A0

[1/p].

In the proof below we will show a stronger statement: the transition morphisms of the colimit
process computing the left-hand side in Constructions 4.1 and 4.3 are all isomorphisms.

Proof. Let A′
0 ⊂ A+ be another ring of definition containing A0. It suffices to show that

Lan
B+/A0

[1/p] ∼= Lan
B+/A′

0
[1/p] and similarly for their Hodge completed analytic derived de Rham

complexes. Since the Hodge completed analytic derived de Rham complexes of both sides are
derived complete with respect to the Hodge filtration, whose graded pieces, by Equation ( ),
are derived wedge products of relevant analytic cotangent complexes, we see that the statement
about Hodge completed analytic derived de Rham complexes follows from the statement about
analytic cotangent complex.

To show Lan
B+/A0

[1/p] ∼= Lan
B+/A′

0
[1/p], we appeal to the fundamental triangle of (analytic)

cotangent complexes:

Lan
A′

0/A0
⊗A′

0
B+ −→ Lan

B+/A0
−→ Lan

B+/A′
0
.

Here the tensor product does not need an extra p-completion as LA′
0/A0

is pseudo-coherent; see
[GR03, Theorem 7.1.33]. By [GR03, Theorem 7.2.42], the p-complete cotangent complex Lan

A′
0/A0

satisfies

Lan
A′

0/A0

[
1
p

]
= Ω1,an

A′
0[1/p]/A0[1/p]

,

which vanishes as A′
0[1/p] and A0[1/p] are both equal to A. Therefore the natural map

Lan
B+/A0

[
1
p

]
−→ Lan

B+/A′
0

[
1
p

]
induced by A0 → A′

0 is a quasi-isomorphism. �
We can understand the associated graded algebra of analytic de Rham complexes of perfectoid

affinoid algebras over affinoid algebras via the following Theorem 4.9. Let K be a perfectoid field
extension of k that contains pn-roots of unity for all n ∈ N.

Theorem 4.9. Let (A, A+) be a topologically finite type complete Tate ring over (k,Ok).
Assume (B, B+) is a perfectoid algebra containing both (K,OK) and (A, A+). Then the graded

algebra Gr∗(d̂R
an

B/A) admits a natural graded quasi-isomorphism to the derived divided power

algebra LΓ∗
B(Gr1(d̂R

an

B/A)), where the first graded piece fits into a distinguished triangle:

B(1) −→ Gr1(d̂R
an

B/A) ∼= Lan
B/A[−1] −→ B ⊗A Lan

A/k,

which is functorial in (B, B+)/(A, A+). In particular, the graded pieces are B-pseudo-coherent.

Here B(1) denote ker(θ)/ ker(θ)2, where θ : Ainf (B+)[1/p] � B is Fontaine’s θ map. Our
assumption of (B, B+) containing (K,OK) ensures that this is (non-canonically) isomorphic to
B itself; see [Sch13, Lemma 6.3]. After sheafifying everything, it corresponds to a suitable Tate
twist of B.
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Proof. The identification Gr1(d̂R
an

B/A) ∼= Lan
B/A[−1] is already spelled out by ( ).

Let us fix a single choice of pair of rings of definition (A0, B
+) in CB/A. Here A0 is topologically

finitely presented over Ok, and B+ contains OK for K a perfectoid field containing all pnth roots
of unity.

Consider the triple Ok −→ A0 −→ B+, which induces the triangle

Lan
A0/Ok

⊗A0 B+ −→ Lan
B+/Ok

−→ Lan
B+/A0

.

Here again we have used the pseudo-coherence [GR03, Theorem 7.1.33] of Lan
A0/Ok

. We need to
show Lan

B+/Ok
[1/p] ∼= B(1)[1]. To that end, let W be the Witt ring of the residue field of Ok. By

looking at the triple W → Ok → B+, we get another sequence

Lan
B+/W

∼= B+(1)[1] −→ Lan
B+/Ok

−→ Lan
Ok/W ⊗Ok

B+[1],

where the first identification follows from Proposition 3.16, and the tensor product does not need
an extra completion again by coherence of Lan

Ok/W . Since k/W [1/p] is finite étale, we conclude
that Lan

Ok/W [1/p] = 0 by [GR03, Theorem 7.2.42]. This ends the proof of the structure of Lan
B/A.

Now we turn to the higher graded piece. The ith graded piece Gri(d̂R
an

B/A) is quasi-isomorphic
to (L ∧i Lan

B/A)[−i], which by rewriting in terms of the first graded piece is

(L ∧i (Gr1(d̂R
an

B/A)[1]))[−i].

So by the relation between the derived wedge product and the derived divided power functor
(with bounded above input; see [Ill71, V.4.3.5]), we get

Gri(d̂R
an

B/A) ∼= LΓi
B(Gr1(d̂RB/A)),

and we get the divided power algebra structure of the graded algebra Gr∗(d̂R
an

B/A). �
Consequently we get cohomological bounds for perfectoid affinoid algebras over various types

of affinoid algebras. The notion of local complete intersection and embedded codimension (in the
situation that we are working with) is discussed in Appendix A.

Corollary 4.10. Let (B, B+)/(A, A+) be as in the statement of Theorem 4.9. Then we have:

(1) d̂R
an

B/A ∈ D≤0(A);

(2) if A/k is smooth, then d̂R
an

B/A ∈ D [0,0](A);

(3) if A/k is local complete intersection with embedded codimension c, then d̂R
an

B/A ∈ D [−c,0](A).

Proof. Since the output of d̂R
an

is always derived complete with respect to its Hodge filtration,
it suffices to show these statements for the graded pieces of Hodge filtration.

For (1), this follows from the fact that Lan
B/A ∈ D≤0(B). Statement (2) follows from (3) as a

smooth affinoid algebra has embedded codimension 0.
As for (3), we check that the graded pieces of Hodge filtration in this case are in D [−c,0]. In

fact, we shall show that the graded pieces, as objects in D(B), have Tor amplitude [−c, 0]. Since
B contains Q, we have

Gri(d̂R
an

B/A) ∼= LΓi
B(Gr1(d̂R

an

B/A)) ∼= LSymi
B(Gr1(d̂R

an

B/A)).

Using the triangle in Theorem 4.9, it suffices to show that LSymj
B(B ⊗A Lan

A/k) have Tor

amplitude [−c, 0] for all j. Since LSymj
B(B ⊗A Lan

A/k)
∼= B ⊗A LSymj

A(Lan
A/k), we are done by

Proposition A.7. �
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4.2 Poincaré sequence
In this subsection we explain the Poincaré sequence for Hodge completed de Rham complexes.

Lemma 4.11. Let B → C be an A-algebra morphism. Then for every j ∈ N, the Katz–Oda

filtration on dRC/A induces a functorial strict exact filtration on dRC/A/ FiljH, witnessing the
following sequence:

dRC/A/ Filj → dRC/B/ Filj
∇−→ dRC/B/ Filj−1 ⊗Bst1(LB/A)

∇−→ · · · ∇−→ dRC/B/ Fil1 ⊗Bstj−1(L ∧j−1 LB/A).

Here dRC/A and dRC/B are equipped with Hodge filtrations.

Moreover, FiliKO(dRC/A/ FiljH) = 0 whenever i > j.

Proof. We consider the induced Katz–Oda filtration on dRC/A/ FiliH. Since we have modded out
Hodge filtration, Lemma 3.13(3) implies the desired vanishing of the FiliKO when i > j, and this
in turn implies the strict exactness of these filtrations. �

Specializing to the p-adic situation, we get the following lemma.

Lemma 4.12. Let (A, A+)→ (B, B+)→ (C, C+) be a triangle of complete Huber rings over k.
Then for each j ∈ N, we have a functorial strict exact filtration on dRan

C/A/ Filj , still denoted by

FiliKO, witnessing the following sequence:

dRan
C/A/ Filj → dRan

C/B/ Filj
∇−→ dRan

C/B/ Filj−1 ⊗̂Bst1(L
an
B/A)

∇−→ · · · ∇−→ dRan
C/B/ Fil1 ⊗̂Bstj−1(L ∧j−1 Lan

B/A).

Here dRan
C/A/ Filj and dRan

C/B/ Filj are equipped with Hodge filtrations.

Moreover, FiliKO(dRan
C/A/ Filj) = 0 whenever i > j.

Proof. For any triangle of rings of definition A0 → B0 → C0, we p-complete the filtration from
Lemma 4.11 and invert p, then we take the colimit over all triangles of such triples of rings of
definition to get the required filtration. Since all the operations involved are (derived) exact,
the resulting filtration still vanishes : FiliKO = 0 whenever i > j, and this again implies strict
exactness. �

In the setting of the above lemma, after taking the limit as j goes to∞, we get the following
corollary.

Corollary 4.13 (Poincaré lemma). Let (A, A+)→ (B, B+)→ (C, C+) be a triangle of com-

plete Huber rings over k. Then there is a functorial strict exact filtration on d̂R
an

C/A witnessing
the sequence

d̂R
an

C/A −→ d̂R
an

C/B
∇−→ d̂R

an

C/B⊗̂Bst1(Lan
B/A)→ · · · . ( )

The maps ∇ are d̂R
an

C/A-linear and satisfy the Newton–Leibniz rule.

Proof. Taking the limit in j of the Katz–Oda filtrations on dRan
C/A/ Filj in Lemma 4.12 gives the

desired filtration. Indeed, the inverse limit of complete filtrations is again complete. Moreover,
we have

Gri
KO(d̂R

an

C/A) ∼= lim
j

Gri
KO(dRan

C/A/ Filj) ∼= lim
j

(
dRan

C/B/ Filj−i ⊗̂Bsti(L ∧i Lan
B/A)[−i]

) ∼= d̂R
an

C/B⊗̂Bsti(L ∧i Lan
B/A)[−i],

so we get the statement about the sequence that this filtration witnesses.
Finally, the statement about∇ is the consequence of a general statement about multiplicative

filtrations on E∞-algebras; see the proof of Lemma 3.13(2). �
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Remark 4.14. In fact, the discussion of the Poincaré sequence above could be obtained via a
product formula,

d̂RC/A⊗̂d̂RB/A
B ∼= d̂RC/B ,

similar to the discussion in § 3.2. Here the formula can be obtained via a filtered completion, by
p-completing the formula in Proposition 3.11 and inverting p.

We mention that this formula could also be proved by applying the symmetric monoidal
functor Gr∗ and checking the graded pieces, where the claim is reduced to the distinguished
triangle of analytic cotangent complexes for a triple of Huber pairs.

4.3 Rational de Rham sheaves
In this subsection we apply the construction of the (Hodge completed) analytic derived de Rham
complexes to the triangle of sheaves of Huber rings (k,Ok)→ (ν−1OX , ν−1O+

X)→ (ÔX , Ô+
X) on

the pro-étale site, where ν : Xproét → X is the standard map of sites. The procedure is similar to
what we did in § 3.3, except now we allow X to be a locally complete intersection7 over k, and
we shall use the unfolding as discussed in § 2.4.

Let K be a perfectoid field extension of k that contains pn-roots of unity for all n ∈ N.
There is a subcategory Xω

proét ⊂ Xproét consisting of affinoid perfectoid objects U = Spa(B, B+) ∈
XK,proét whose image in X is contained in an affinoid open Spa(A, A+) ⊂ X. The class of such
objects form a basis for the pro-étale topology by (the proof of) [Sch13, Proposition 4.8].

Proposition 4.15. Let U = Spa(B, B+) ∈ Xω
proét, and choose Spa(A, A+) ⊂ X such that the

image of U in X is contained in Spa(A, A+). Then:

(1) the natural surjection θ : Ainf (B+)[1/p] � B exhibits d̂R
an

B/k = B+
dR(B), and the Hodge

filtrations are identified with the ker(θ)-adic filtrations;

(2) the presheaf defined by sending U to Gri(d̂R
an

B/k) is a hypersheaf;
(3) the assignment sending U to dRan

B/A/ Filn is independent of the choice of Spa(A, A+), hence

so is the assignment sending U to d̂R
an

B/A, which we denote by d̂R
an

B/X ;

(4) assuming X/k is a local complete intersection, the presheaf assigning U to Gri(d̂R
an

B/X) is
a hypersheaf.

Proof. Statements (1) and (3) follow from the same proof of Proposition 3.16(1) and (4),
respectively.

Now we prove (2). The ith graded piece of d̂R
an

B/k is isomorphic to B(i) by Theorem 4.9 (with
(A, A+) there being (k,Ok)). These are hypersheaves as they are supported in cohomological
degree 0 and satisfy higher acyclicity by [Sch13, Lemma 4.10].

Finally, we turn to (4). The graded pieces of d̂R
an

B/X , by (2), are the same as those of d̂R
an

B/A

for any choice of A. Notice that, by Theorem 4.9, the Gri(dRan
B/A) have a finite step filtration

with graded pieces given by (L ∧j Lan
A/k)⊗A B(i− j). Since the hypersheaf property satisfies the

two-out-of-three principle in a triangle, it suffices to show that the assignment sending

Spa(B, B+) = U �→ (
L ∧j Lan

A/k

)⊗A B(i− j)

is a hypersheaf. This follows from the fact that Lan
A/k is a perfect complex (as X is assumed to

be a local complete intersection over k) and, again, that sending U to B(m) is a hypersheaf for
any m ∈ Z. �

7 See Appendix A for the notion of local complete intersection that we are using here.
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In particular, Proposition 4.15 tells us that the presheaves given by

Spa(B, B+) = U ∈ Xω
proét �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d̂R
an

B/k/ Filn or

d̂R
an

B/k or

d̂R
an

B/X/ Filn or

d̂R
an

B/X

are all hypersheaves on Xω
proét (assuming X/k is a local complete intersection for the latter two),

using the fact that the hypersheaf property is preserved under taking limits, so we may unfold
them to get a hypersheaf on Xproét.

The authors believe that the conclusion of Proposition 4.15(4) (or a variant) should still hold
for general rigid spaces instead of only the local complete intersection ones. Hence we pose the
following question.

Question 4.16. Given any rigid space X/k, is it true that the presheaf assigning U to Gri(d̂R
an

B/X)
is always a hypersheaf?

The subtlety is that a pro-étale map of affinoid perfectoid algebras need not be flat.
We are now ready to define the hypersheaf version of the relative de Rham cohomology.

Definition 4.17. The Hodge completed analytic derived de Rham complex of Xproét over k,
denoted by d̂R

an

Xproét/k, is defined to be the unfolding of the hypersheaf on Xω
proét whose value at

U = Spa(B, B+) ∈ Xω
proét is d̂R

an

B/k.

Similarly, we define a filtration on d̂R
an

Xproét/k by unfolding the Hodge filtration on d̂R
an

B/k.

Since values of unfolding are computed by derived limits, we see immediately that d̂R
an

Xproét/k is
derived complete with respect to the filtration.

This construction is related to Scholze’s period sheaf B+
dR (see [Sch13, Definition 6.1(ii)]) by

the following proposition.

Proposition 4.18. On Xω
proét we have a filtered isomorphism d̂R

an

Xproét/k � B+
dR of hypersheaves.

Consequently, the zeroth cohomology sheaf of d̂R
an

Xproét/k is identified with the sheaf B+
dR as

filtered sheaves on Xproét.

Before the proof, we want to mention that under the equivalence D(X, k) ∼= Shhyp(X, k)
and its filtered version (cf. Remark 2.1), this proposition implies that the derived de Rham
complex d̂R

an

Xproét/k is represented by the ordinary sheaf B+
dR. Here the induced filtration on

H 0(d̂R
an

Xproét/k) is given by H 0(Fil∗ d̂R
an

Xproét/k).

Proof. The first sentence follows from Proposition 4.15(1).
Given a hypersheaf F supported in cohomological degree 0 on a basis of a site S, it also

defines an ordinary sheaf on S (by taking the zeroth cohomology). The unfolding of F is a
hypersheaf in D≥0, and its zeroth cohomological sheaf is the associated ordinary sheaf.

In our situation, we have the basis Xω
proét of the site Xproét, and Scholze’s B+

dR (and its filtra-
tions) are defined as the ordinary sheaf obtained from B+

dR(Ô+
X) (and its ker(θ)-adic filtrations).

Now the previous paragraph and the first statement give us the second statement. �
Definition 4.19. Let X be a local complete intersection rigid space over k. Then the Hodge
completed analytic derived de Rham complex of Xproét over X, denoted by d̂R

an

Xproét/X , is defined
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to be the unfolding of the hypersheaf on Xω
proét whose value at U = Spa(B, B+) ∈ Xω

proét is

d̂R
an

B/X .

Similarly, we define a filtration on d̂R
an

Xproét/X by unfolding the Hodge filtration on d̂R
an

B/X .

So d̂R
an

Xproét/X is also derived complete with respect to the filtration.

If X is a local complete intersection rigid space over k with embedded codimension c, then
by Corollary 4.10(3) we see that d̂R

an

Xproét/X lives in Shhyp(Xproét, D
≥−c(k)).

The Poincaré lemma obtained in the previous subsection now immediately yields the following
theorem.

Theorem 4.20. Let X be a local complete intersection rigid space over k. Then there is a
functorial strict exact filtration on d̂R

an

Xproét/k witnessing the following sequence:

d̂R
an

Xproét/k −→ d̂R
an

Xproét/X
∇−→ dRan

Xproét/X ⊗ν−1OX
st1(ν−1(Lan

X/k))
∇−→ · · · .

If X is further assumed to be smooth over k of equidimension d, then the d̂R
an

Xproét/k-linear
sequence

0→ d̂R
an

Xproét/k −→ d̂R
an

Xproét/X
∇−→ dRan

Xproét/X ⊗ν−1OX
st1(ν−1(Lan

X/k))
∇−→ · · ·

· · · ∇−→ d̂R
an

Xproét/X ⊗ν−1OX
std(ν−1(L ∧d Lan

X/k))→ 0

is strict exact.

Note that as X/k is assumed to be a local complete intersection, these wedge powers of the
analytic cotangent complex are (locally) perfect complexes, hence the completed tensor is the
same as just a tensor.

Proof. Since both unfolding and taking Gri commute with taking limits, the above follows from
unfolding Corollary 4.13, and the fact that the completed tensor in Corollary 4.13 is the same
as the tensor for local complete intersections X/k.

When X is smooth over k, everything in sight (on the basis of affinoid perfectoids in
Xω

proét) is supported cohomologically in degree 0 with filtrations given by submodules because
of Theorem 4.9, Corollary 4.10, and Proposition 4.15, and the strict exact Katz–Oda filtration
gives what we want. �

4.4 Comparison with Scholze’s de Rham period sheaf
In this subsection we show that when X is smooth, the de Rham sheaf d̂R

an

Xproét/X defined above
is related to Scholze’s de Rham period sheaf OB+

dR. We refer readers to [Sch16, part (3)] for
the its definition. Following the notation of [Sch16] , let Spa(Ri, R

+
i ) be an affinoid perfectoid in

Xproét with Spa(R0, R
+
) ) an affinoid open in X. Then for any i, we have maps

R+
i → dRan

R+/R+
i

and Ainf (R+) = dRan
R+/W (κ) → dRan

R+/R+
i
,

which is compatible with maps to R+; here κ denotes the residue field of k. The equality above
is deduced from Theorem 3.4(1). Therefore we get an induced map

R+
i ⊗̂W (κ)Ainf (R+)→ dRan

R+/R+
i
→ d̂R

an

R/Ri
.

Taking the composition map above, inverting p and completing along the kernel of the surjection
onto R (note that d̂R

an

R/Ri
lives in cohomological degree 0 by Corollary 4.10(2) and is already
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complete with respect to this filtration), we get a natural arrow(
(R+

i ⊗̂W (κ)Ainf (R+))[1/p]
)∧ −→ d̂R

an

R/Ri
∼= d̂R

an

R/R0
;

here we apply Corollary 4.13 to (R0, R
+
0 )→ (Ri, R

+
i )→ (R, R+) to see the filtered isomorphism

above. This arrow is compatible with index i, hence after taking the colimit, we get the following
map of sheaves on Xω

proét (see the discussion before Proposition 4.15 for the meaning of Xω
proét):

f : OB+
dR |Xω

proét
−→ d̂R

an

Xproét/X ,

which is compatible with maps to ÔXproét
and maps from d̂R

an

Xproét/k � B+
dR.

Theorem 4.21. The map f above induces a filtered isomorphism of sheaves on Xω
proét. Hence

we get that OB+
dR is the zeroth cohomology sheaf of the hypersheaf d̂R

an

Xproét/X on Xproét.

Similar to Proposition 4.18, under the equivalence D(X, k) ∼= Shhyp(X, k) and its filtered
version (cf. Remark 2.1), this theorem implies that the derived de Rham complex d̂R

an

Xproét/X is
represented by the ordinary sheaf OB+

dR.

Proof. The second sentence follows from the first sentence, due to the same argument in the
proof of the second statement of Proposition 4.18. So it suffices to show the first sentence.

On both sheaves there are natural filtrations: on OB+
dR we have the ker(θ)-adic filtration

where θ : OB+
dR → ÔXproét

, and on d̂R
an

Xproét/X we have the Hodge filtration with the first Hodge

filtration being the kernel of d̂R
an

Xproét/X � ÔXproét
. Since f is compatible with maps to ÔXproét

and the Hodge filtration is multiplicative, it suffices to show that f induces an isomorphism on
their graded pieces. Now locally on Xω

proét, we have that Gr∗(OB+
dR) ∼= Sym∗

ÔXproét

(Gr1OB+
dR)

by [Sch13, Proposition 6.10], and similarly Gr∗(d̂R
an

Xproét/X) ∼= Sym∗
ÔXproét

(Gr1 d̂R
an

Xproét/X) by

Theorem 4.9 (note that in characteristic 0 divided powers are the same as symmetric pow-
ers). Therefore we are reduced to showing that f induces an isomorphism on the first graded
pieces. Their first graded pieces admit a common submodule given by the first graded pieces of
d̂R

an

Xproét/k � B+
dR, which are ÔXproét

(1).
Now we get the diagram

ÔXproét
(1)

∼=
��

�� Gr1OB+
dR

Gr1 f
��

�� ÔXproét
⊗OX

Ωan
X

g

��

ÔXproét
(1) �� Gr1 d̂R

an

Xproét/X
�� ÔXproét

⊗OX
Ωan

X

with both rows being short exact (by [Sch13, Corollary 6.14] and Theorem 4.9, respec-
tively) and the left vertical arrow being an isomorphism as f is compatible with the maps
from d̂R

an

Xproét/k � B+
dR, which is why we get the induced arrow g. Moreover, f is linear over

d̂R
an

Xproét/k � B+
dR, which implies that g is linear over ÔXproét

. Therefore it suffices to show that
g induces an isomorphism.

As the statement is étale local, we may assume that X = Tn = Spa(k〈T±1
1 , . . . , T±1

n 〉,Ok〈T±1
1 ,

. . . , T±1
n 〉). Denote by Tn∞ the pro-finite-étale tower above Tn given by adjoining p-power roots
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of the coordinates Ti. We have the following diagram:

Zp〈T±1
i , S

1/p∞
i 〉 = Zp〈T±1

i 〉⊗̂ZpZp〈S1/p∞
i 〉 α ��

β

��

OB+
dR |Tn∞

f

��

Qp〈S±1/p∞
i 〉[[Xi]]

γ
�� d̂R

an

Xproét/X |Tn∞

Here the arrow β is given by sending Ti to Xi + Si, and Si is sent to 1⊗ [T 

i ] under α. The element

α(Ti − Si) is ui ∈ Fil1OB+
dR whose image in ÔXproét

⊗OX
Ωan

X is 1⊗ dTi; see the discussion before
[Sch13, Proposition 6.10]. On the other hand, the element β(Ti − Si) is Xi, and the image of
γ(Xi) in ÔXproét

⊗OX
Ωan

X is also 1⊗ dTi by Examples 4.7, 3.6 and 3.7. Therefore we get that
g(1⊗ dTi) = 1⊗ dTi, since g is linear over ÔXproét

and Ωan
X is generated by the dTi, we see that

g is an isomorphism, and the proof is complete. �
Remark 4.22. In the process of the proof above, we also see that under the identification in Propo-
sition 4.18 and Theorem 4.21, the Poincaré sequence obtained in Theorem 4.20 matches the one
in Scholze’s paper [Sch13, Corollary 6.13]; cf. proof of the second statement of Theorem 3.21.

Also the Faltings extension (see [Sch13, Corollary 6.14] and Theorem 4.9), being the first
graded pieces of OB+

dR
∼= H 0(d̂R

an

Xproét/X), is matched. In some sense, our proof above reduces to
identifying the Faltings extension, and this is a well-known fact to experts. In fact, this project
was initiated after Bhargav Bhatt explained to us how to get the Faltings extension from the
analytic cotangent complex Lan

Xproét/X .

4.5 An example
In this complementary subsection, we would like to compute the Hodge completed analytic
derived de Rham complex of a perfectoid algebra over a zero-dimensional k-affinoid algebra. Sur-
prisingly, the underlying algebra (forgetting its filtration) one gets always lives in cohomological
degree 0, which leads us to Question 4.25 below.

Without loss of generality, let (K, K+) be a perfectoid field over k, containing all p-power
roots of unity, and let A be an Artinian local finite k-algebra with residue field being k as
well. Let (B, B+) be a perfectoid affinoid algebra containing (K, K+) and let A→ B be a
morphism of k-algebras. Since perfectoid affinoid algebras are reduced, we get a sequence of
maps k → A→ k → B.

By the above sequence, we get natural filtered k-linear maps

d̂R
an

B/k −→ d̂R
an

B/A −→ d̂R
an

B/k and d̂R
an

k/A −→ d̂R
an

B/A.

This induces a filtered map,
d̂R

an

B/k ⊗k d̂R
an

k/A −→ d̂R
an

B/A,

where the filtration on the source comes from the symmetric monoidal structure on DF(k). Since
this map is compatible with the filtration and the target is complete with respect to its filtration,
we get an induced map

d̂R
an

B/k⊗̂kd̂R
an

k/A −→ d̂R
an

B/A.

Proposition 4.23. The map d̂R
an

B/k⊗̂kd̂R
an

k/A −→ d̂R
an

B/A above is a filtered isomorphism.

Proof. Since both are complete with respect to their filtrations, it suffices to show that the
map induces an isomorphism on the graded pieces. The graded algebras of both sides are
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the symmetric algebras (over B) on their first graded pieces, hence it suffices to check that
Gr1(d̂R

an

B/k⊗̂kd̂R
an

k/A) −→ Gr1(d̂R
an

B/A) is an isomorphism. This follows from the decomposition
of analytic cotangent complexes

Lan
B/A
∼= Lan

B/k ⊕ (Lan
A/k ⊗A B),

which is deduced from contemplating the sequence k → A→ k → B. �
We know that d̂R

an

B/k
∼= B+

dR(B), and a result of Bhatt tells us the underlying algebra of

d̂R
an

k/A
∼= A, explained in below. Since A→ k is a surjection, the analytic cotangent complex

agrees with the classical cotangent complex, hence we have a filtered isomorphism

d̂R
an

k/A −→ d̂Rk/A.

Now [Bha12a, Theorem 4.10] implies that the underlying algebra d̂Rk/A is isomorphic to the
completion of A along the surjection A→ k. Since A is an Artinian local ring, this completion
is simply A itself. Therefore we get a map of the underlying algebras:

B+
dR(B)⊗k A −→ d̂R

an

B/k⊗̂kd̂R
an

k/A.

Proposition 4.24. The map B+
dR(B)⊗k A −→ d̂R

an

B/k⊗̂kd̂R
an

k/A above is an isomorphism. Con-
sequently we have an isomorphism

B+
dR(B)⊗k A ∼= d̂R

an

B/A.

Proof. By definition, we have

d̂R
an

B/k⊗̂kd̂R
an

k/A
∼= lim

n
lim
m

B+
dR(B)/(ξ)n ⊗k dRk/A/ Film,

where we have used the (filtered) identification d̂R
an

k/A
∼= d̂Rk/A spelled out before this

proposition.
We claim that for any given n, we have an isomorphism

B+
dR(B)/(ξ)n ⊗k A ∼= lim

m
B+

dR(B)/(ξ)n ⊗k dRk/A/ Film .

Indeed for each i ∈ Z, we have the following short exact sequence:

0 �� R1 limm
(
B+

dR(B)/(ξ)n ⊗k Hi−1(dRk/A/ Film)
)

�������������������������

Hi(limm
(
B+

dR(B)/(ξ)n ⊗k dRk/A/ Film
)
) �� limm

(
B+

dR(B)/(ξ)n ⊗k Hi(dRk/A/ Film)
) �� 0.

Since for each m and i, the vector space Hi−1(dRk/A/ Film) is finite-dimensional over k, we see
that the inverse system B+

dR(B)/(ξ)n ⊗k Hi−1(dRk/A/ Film) satisfies the Mittag-Leffler condition,
hence the R1 lim term vanishes. By [Bha12a, Theorem 4.10], we have that the inverse system
{Hi(dRk/A/ Film)}m is pro-isomorphic to 0 if i �= 0 and is pro-isomorphic to A (since A is finite-
dimensional over k) if i = 0, therefore the above short exact sequence becomes

Hi
(
lim
m

(
B+

dR(B)/(ξ)n ⊗k dRk/A/ Film
)) ∼= {

0, i �= 0,

B+
dR(B)/(ξ)n ⊗k A, i = 0.

This gives us the claim above.
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Now we have

d̂R
an

B/k⊗̂kd̂R
an

k/A
∼= lim

n
(lim

m
B+

dR(B)/(ξ)n ⊗k dRk/A/Film) ∼= lim
n

(B+
dR(B)/(ξ)n ⊗k A) ∼= B+

dR(B)⊗k A

as desired, where the last identification follows from the fact that A is finite over k. �
If one contemplates the example A = k[ε]/(ε2), one sees that dRan

B/A/ Fili does not live in
cohomological degree 0 alone for any i ≥ 2.

As a consequence of the above proposition, for the X = Spa(A) we have an equality of
presheaves on Xω

proét,

d̂R
an

Xproét/X
∼= B+

dR ⊗k ν−1OX ;

in particular, the underlying algebra of d̂R
an

Xproét/X pro-étale locally lives in cohomological
degree 0. Motivated by this computation and results in [Bha12a], we end this paper by posing
the following question.

Question 4.25. In what generality should we expect d̂R
an

Xproét/X |Xω
proét

to live in cohomologi-
cal degree 0? And when that happens, can we reinterpret the underlying algebra via some
construction similar to Scholze’s OB+

dR as in [Sch13, Sch16]?
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Appendix A. Local complete intersections in rigid geometry

In this appendix we discuss the notion of local complete intersection morphisms in rigid geometry.
We remark that the results recorded here hold verbatim with k being a general complete non-
Archimedean field.

In order to talk about local complete intersections, we need to understand how being of finite
Tor dimension8 behaves under base change in rigid geometry.

Lemma A.1. Let A and B be two affinoid k-algebras, and A→ B a morphism of Tor dimension
m. Let P := A〈T1, . . . , Tn〉� B be a surjection. Then we have

Tor dimP (B) ≤ m + n.

The following proof was suggested to us by Johan de Jong.

Proof. Choose a resolution of B by finite free P -modules

· · · di−→Mi
di−1−−−→Mi−1 · · · d0−→M0 � B.

Since P is flat over A, we see that M := Coker(dm) is flat over A as A→ B is assumed to
be of Tor dimension m [Sta20, Tag 0653]. Moreover, M is finitely generated over P since P

8 In classical literature such as [Avr99] this corresponds to the notion of having finite flat dimension.
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is Noetherian. Now we use [Li20, Lemma 6.3] to see that M admits a projective resolution over
P of length n. Therefore we get that B has a projective resolution over P of length m + n. �
Lemma A.2. Let A and B be two affinoid k-algebras, and A→ B a morphism of finite Tor
dimension. Let C be any affinoid A-algebra. Then the base change (in the realm of rigid geometry)
C → B⊗̂AC is also of finite Tor dimension.

Proof. Choose a surjection A〈T1, . . . , Tn〉� B, which again is of finite Tor dimension by
Lemma A.1. Then we have a factorization

C → C〈T1, . . . , Tn〉 → B ⊗A〈T1,...,Tn〉 C〈T1, . . . , Tn〉 ∼= B⊗̂AC.

Since the first arrow is flat and the second arrow, being the base change of an arrow of finite Tor
dimension, is of finite Tor dimension, we conclude that the composition is of finite Tor dimension
[Sta20, Tag 066J]. �
Proposition A.3. Let A→ B a morphism of k-affinoid algebras. Then the following statements
are equivalent.

(1) Any surjection A〈T1, . . . , Tn〉� B is a local complete intersection.
(2) There exists a surjection A〈T1, . . . , Tn〉� B which is a local complete intersection.
(3) A→ B is of finite Tor dimension and the analytic cotangent complex Lan

B/A is a perfect
B-complex.

Moreover, any of these three equivalent conditions implies that Lan
B/A is a perfect complex with

Tor amplitude in [−1, 0].

Proof. It is easy to see that (1) implies (2).
To see that (2) implies (3), first of all A〈T1, . . . , Tn〉� B being a local complete intersec-

tion implies that it is of finite Tor dimension. Since A→ A〈T1, . . . , Tn〉 is flat, we see that
A→ B is also of finite Tor dimension by [Sta20, Tag 0653]. Next we look at the triangle
A→ A〈T1, . . . , Tn〉 → B, which gives rise to a triangle of analytic cotangent complexes:

Lan
A〈T1,...,Tn〉/A ⊗A B → Lan

B/A → Lan
B/A〈T1,...,Tn〉.

Now Theorem 4.2(3) gives that the first term is a perfect complex with Tor amplitude in [0, 0],
while condition (2) and Theorem 4.2(4) imply that the third term is a perfect complex with Tor
amplitude in [−1,−1], hence we see that (2) implies (3) and gives the last sentence as well.

Finally, we need to show that (3) implies (1). To that end we apply Avramov’s solution of
Quillen’s conjecture [Avr99]. As A→ B is of finite Tor dimension, we see that any surjection
A〈T1, . . . , Tn〉� B has finite Tor dimension by Lemma A.1. The previous paragraph shows that
Lan

B/A being a perfect complex is equivalent to the classical cotangent complex LB/A〈T1,...,Tn〉
being a perfect complex. Now we use Avramov’s result [Avr99, Theorem 1.4] to conclude that
A〈T1, . . . , Tn〉� B is a local complete intersection. �
Definition A.4. Let A→ B be a morphism of k-affinoid algebras. The morphism A→ B of
k-affinoid algebras is called a local complete intersection if one of the three equivalent conditions
in Proposition A.3 is satisfied.

Let Y → X be a morphism of rigid spaces over k. Then this morphism is called a local
complete intersection if for any pair of affinoid domains U and V in X and Y , such that the image
of V is contained in U , the induced map of k-affinoid algebras is a local complete intersection.

We leave it as an exercise (using Theorem 4.2) that a morphism being a local complete
intersection may be checked locally on the source and target. We caution readers that there is
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a notion of local complete intersection morphism between Noetherian rings, while the notion
we define here should (clearly) only be considered in the situation of rigid geometry. These two
notions agree when the morphism considered is a surjection. We hope this slight abuse of this
notion will not cause any confusion. But as a sanity check, let us show here that this notion
matches the corresponding notion in classical algebraic geometry under rigid analytification.
The following proposition was suggested to us by David Hansen.

Proposition A.5. Let f : X → Y be a morphism of schemes locally of finite type over a
k-affinoid algebra A with rigid analytification fan : Xan → Y an. Then f is a local complete inter-
section (in the classical sense) if and only if fan is a local complete intersection (in the sense of
Definition A.4).

Proof. We first reduce to the case where both of X and Y are affine. Then we may check this
after taking the fiber product Y with an affine space so that f is a closed embedding. In this
situation, we have an identification of ringed sites Xan ∼= X ×Y Y an and an identification of
cotangent complexes:

ι∗LX/Y � Lan
Xan/Y an ,

where ι : Xan → X is the natural map of ringed sites.
Now we use the fact that classical Tate points on Xan are in bijection with closed points

on X, and for any such point x, the map ι� : OX,x → OXan,x of local rings is faithfully flat.
Therefore we can check LX/Y is perfect by pulling back along ι, hence LX/Y is perfect if and
only if Lan

Xan/Y an is perfect, and this finishes the proof. �
Next we address the localization of analytic cotangent complexes for a local complete

intersection morphism.
Let us introduce some notions.

Definition A.6. Let A→ B be a morphism of k-affinoid algebras. Let m ⊂ B be a maximal
ideal. The embedded dimension of B/A at m is defined to be

dimB/A,m := dimκ(m)(Ω
an
B/A ⊗B B/m).

Let n be the preimage of m in A (which is also a maximal ideal). We define the embedded
codimension of B/A at m to be

dimB/A,m + dim(An)− dim(Bm).

The embedded codimension of B/A is the supremum of that at all maximal ideals m ⊂ B.

Proposition A.7. Let A→ B be a local complete intersection morphism of k-affinoid algebras.
Then at any maximal ideal m ⊂ B, there is a presentation of the analytic cotangent complex

Lan
B/A ⊗B Bm �

[
B

⊕c(m)
m → B

⊕d(m)
m

]
,

where c(m) is the embedded codimension of B/A at m and d(m) is the embedded dimension of

B/A at m. Here B
⊕d(m)
m is put in degree 0.

In particular, the Tor amplitude of LSymiLan
B/A is always in [−min{c, i}, 0] where c is the

embedded codimension of B/A.

Proof. We may always replace B by a rational domain containing the point m (viewed as a
classical Tate point on the associated adic space), so we can assume there are power bounded
elements f1, . . . , fd(m) whose differentials generate the stalk of Ωan

B/A at m. Thus we have a map
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A′ := A〈T1, . . . , Td(m)〉 → B which is unramified at m; see [Hub96, § 1.6]. By [Hub96, Proposition

1.6.8] we can factorize the map A′ → B as A′ h−→ C
g−→ B where h is étale and g is surjective.

One checks that the étaleness of h guarantees that the surjection C
g−→ B has finite Tor

dimension. Moreover, Theorem 4.2 implies that LB/C is a perfect complex because of the triangle

Lan
C/A ⊗C B → Lan

B/A → LB/C .

Hence C → B is a surjective local complete intersection. Hence the kernel of C → B around
m is generated by a regular sequence of length c(m). This in turn implies that LB/C ⊗B Bm �
B

⊕c(m)
m [1], which together with the triangle above gives the local presentation we want in the

statement.
The statement concerning Tor amplitude can be checked at every maximal ideal which, by

our presentation, follows from the formula LSymi(C[1]) � L ∧i (C)[i]; see [Ill71, V.4.3.4]. �
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