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We study the Cauchy problem for the degenerate and uniformly parabolic equations
with gradient term. The local existence, global existence and non-existence of
solutions are obtained. In the case of global solvability, we get the exact estimates of a
solution. In particular, we obtain the global existence of solutions in the limiting case.

1. Introduction and statement of the main results
We will consider the non-negative solutions of the following Cauchy problem:
uy — div(|DulP~?Du) = |Du?° in Sy = RN x (0,7), (1.1)
u(z,0) = ug(z) on RY, (1.2)

where p>2,¢>0,0<o <p, T >0, N >1andug € L _(RY) is non-negative.

Concerning the case p = 2, the equation is typified as a viscous Hamilton—Jacobi
equation. It has been proposed as an appropriate model for surface growth by
ballistic deposition, and specifically for vapour deposition and the sputter deposition
of thin films of aluminium and rare earth metals (see [24-27,31]). The problem (1.1),
(1.2) has attracted much interest (see [1-4,6-8,10-16,21,23]) in recent years. In
the earliest of these papers [6], the existence and uniqueness of a classical solution
was proven under the assumption that ¢ = 1, 0 = 1 and uy € C3(RY). In [4],
the existence of a suitably defined weak solution, when wug is a Radon measure,
was investigated. In [2], the existence of a unique classical solution was proven
under the hypothesis that ¢ = 1, ¢ > 1 and ug € C?(RY) N W2%>(RY). More
recently, attention has focused on the questions of existence and uniqueness of
suitably defined weak solutions when ¢ = 1, ¢ > 0 and uy € LP(RY), for some
1 <p<ooorug € C(RY)NL®RYN) or for when g is a bounded measure
(see [1,9-12,21,22]).

For the case p > 2, with ¢ = 1 and 1 < ¢ < p — 1, the Cauchy problem (1.1),
(1.2) has a local solution (see [28]) and the condition on initial data is that

sup / ul da < oo,
z€RN JB,(x)
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where h > 1 and p is any fixed positive number. We remark that this optimal
condition was first used in [5]. For go > p — 1, the local existence of solutions was
studied in [17,30] with measures as initial data.

Here, for all ¢ > 0 and 0 < ¢ < p, we study the local existence, global exis-
tence and non-existence for the equation (1.1), with initial data in a suitable space
Ll (RN)(h > 1), motivated by the ideas in [4,5]. The results contained in this paper
have the following new features. Firstly, we give the local existence of solutions.

(i) For p = 2, Andreucci [4] obtained the local existence of solutions of problem
(1.1), (1.2) under optimal assumptions on the initial data for go > 1; here we
generalize this result to the case 0 < qo < 1.

(ii) For p > 2, we generalize the local existence results in [28] to (1.1), (1.2).

Secondly, our interest is focused on the global existence and non-existence of solu-
tions. Andreucci and Di Benedetto, in a fruitful paper [5], considered the Cauchy
problem for the porous medium equation with strongly nonlinear source u; —Au™ =
u?, where a Fujita-type result was obtained and the critical exponent was o. =
m+2/N. Later, Zhao [32] (see also [28]) generalized the results in [5] to the evolu-
tion p-Laplacian equation u; — div(|Du|[P~2Du) = u?, where the critical exponent
was 0. = p— 1 4+ p/N. Here, in the spirit of [5], we also obtain a Fujita-type result
for (1.1), (1.2) and the critical exponent is

(N+1)p—N
Oc="—
gN +1

ie.
Nfoa—pr+1) |\ _,
K p—o ’

where the definition of x is as below. Moreover, the existence of local and global
solutions in the limiting case

N (opa—p+1) |\ _,
Kp p—0

is also considered. The method here can be used to study the limiting cases o =
m+2h/N [5] and ¢ = p — 1 + ph/N [32]. As far as we know, the results given in
the present paper are new.

DEFINITION 1.1. A non-negative measurable function u(z,t) defined in St is called
a weak solution of (1.1), (1.2) if, for every bounded open set {2, with smooth bound-
ary 0{2,

u € Cioc(0,T; LY (2)) N LY

loc

0, TsWHP(2)) N Lige(Sr),  [Duf|” € Lige(St)

loc

and
t
/u(m)@(ﬂc,t) dx+/ /[—ucp7+|Du|p_2DuD<p] dzdr
2 s (%}

t
:/u(x,s)gp(x,s)dx—i—/ / |Du?|”pdedr (1.3)
9] s J2
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forall 0 < s <t < T and all p € I/Vlt’COO(O,T;LOO(Q)) nLY (0,T, W&’p(ﬁ)). More-
over,

lim/ |u(x,t) — up(z)|dz =0 VK cc RV, (1.4)
50 Jic

Weak subsolutions (respectively supersolutions) are defined in the same way
except that the ‘=" in (1.4) is replaced by ‘<’ (respectively ‘>’) and ¢ is taken
to be non-negative.

We make use of the norms in [5] and set

ILfllls = suap [[flls,5,(),
zERN

v sup [|flls,Bae) < Mlls < sup (11,510
z€RN zERN

where s > 1, f € L;, (RY), p > 0 and v = (N, s,p). We also define ks =

loc
Np—-2)+ps,k=61=N(p—2)+p.
We use y(ay,as,...,a,) to denote positive constants depending only on specified
quantities ay,as, ..., an.
First we state our main existence results as follows.

THEOREM 1.2. Let |||ugl|lx be finite, 0 < gqo <p—1 and g > (p—1)/p. Then, there
exists a solution to (1.1), (1.2) defined in RN x (0,Ty,), where Ty = To(N,p, q,0),
such that for all 0 < t < Ty we have that

)l < y(llluollly + 1), (1.5)
s )lloo ey < vt~/ ([l + 1), (L6)
where v =v(N,p,q,0), Kk = N(p—2) + p.
THEOREM 1.3. Let qo > p—1 and let ||uol||n < oo with h > 1 satisfying
N (C’(pq_m - 1) <1, (1.7)
Kh p—o

where kp, = N(p — 2) 4+ ph. Then, there exists a constant v = v(N,p,q,0,h) and a
positive time Tj) = T{(N, p, q, 0, h) such that problem (1.1), (1.2) has a non-negative
weak solution u in the strip St;, satisfying

G )l < Allluolln, (1.8)
ey )lloo v < 725 o 17 (1.9)
for all 0 <t < T.

REMARK 1.4. The proofs in §§2 and 3 show that theorems 1.2 and 1.3 hold in the
following two cases.

(1) up can be of variable sign.

(2) If h =1 is admissible in (1.7), ug can be replaced by a o-finite Borel measure
pin RY | satisfying

lilll = sup p(Bi(z)) < cc.
zERN
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REMARK 1.5. In [28], Lian et al. only considered the case of p > 2,1 <o <p—1,

and proved local existence of solutions with initial data in some L (RY) (h > 1).

Here, we extend their results to the case of ¢ > 0 and 0 < o < p.
In the limiting case, we have the following local existence result.

THEOREM 1.6. Let

N —p+1 N —p+1
<J(pqp+)—1>—1, ("(MW—Q > 1 (1.10)
Kh p—o K p—o0
and let
[[uollLr @~y < 70, (1.11)

where vo = vo(N,p, q,0,h) is sufficiently small. Then, there exists a positive time
Ty such that the Cauchy problem (1.1), (1.2) has a solution w in Sy and u satis-
fies (1.8), (1.9) for all 0 < t < T{'.

REMARK 1.7. The dependence of Ty, T} and T on the quantities specified in the
statement of theorems 1.2, 1.3 and 1.6 can be made explicit. We refer to the proofs
of lemmata 2.3, 3.3 and theorem 1.6.

Lastly, we state the global existence and non-existence results.

THEOREM 1.8. Let

N — 1
(U@QPH _ 1) o1 (1.12)
K p—o
and let
l[wollnry + [Juolliry <0, (1.13)

where h > 1 satisfies (1.7) and vo = vo(N, p, q, 0, h) is sufficiently small. Then, the
Cauchy problem (1.1), (1.2) has a solution in Se = RN x (0,00), and

p/K
(-5 )] oo N <7t_N/”( sup / u(:v,7)dx> , (1.14)
o<r<t JRN
sup / u(x,T)dxg'y/ up dz (1.15)
o<r<t JRN RN

for all t € (0,00).

THEOREM 1.9. Let

N —p41 N —p+1
<U(pqp+)—1>=L (a(pqw—1> >1 (1.16)
Kh p—o K p—o
and let
l[uollnry + lluolliry <0, (1.17)

where vo = Yo(N,p, q,0,h) is sufficiently small. Then, the Cauchy problem (1.1),
(1.2) has a solution in S, = RY x (0, 00).
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Then there cannot exist a global non-trivial non-negative solution to the Cauchy
problem (1.1), (1.2).

THEOREM 1.10. Let

This paper is structured as follows. In § 2, we give the proof of theorem 1.2. In
§ 3, we finish the proof of theorem 1.3. In §4, we prove theorem 1.6. In §5, we give
the proofs of theorems 1.8 and 1.9 and in §6, we give the proof of theorem 1.10.

2. A priort estimates and proof of theorem 1.2

In this section, we let 0 < go <p—1and ¢ >p—1/p.
Set
T* = min{T, 1}.

First, we give the L™ estimate.

LEMMA 2.1. Let u be a non-negative continuous weak subsolution of (1.1) in Sts.
Assume that there exists a time 0 < T’ < T* such that

t)|u(-, )HOORN <1 Yo<t<T. (2.1)
Then we have that
(-, B)lloomr <4t Nl )Y+t VO<t<T, (2.2)

where v = v(N,p,q,0), k= N(p—2) +p.

Proof. Let € € (0, 7) and 2o € RN be fixed. For n =0,1,2,..., set
1 € k
Bn:Bpn('TO)’ Pn = + 27L+17 kn:kiﬁv

T2
t e YV ,

Qu=Bux(tn,t), ta=5—(gmy )t 0<ta<t<T,

where k > t is to be chosen. Let (,(x,7) be a smooth cut-off function in @,, with

0 < Gu(z,7) < 1, such that

8< 2(n+2)p on+1
87: < Ly |DGal <

=1 inQpy1, 0<

Taking ¢ = (u — kp11)+CE as a test function in (1.3), we get that

t/
3 [ bt @)@ [ [ D@ kel doar
B, tn B,
—l—p/ / — kpi1)+ Y DuP~ DuDC, da dr
/ / — k1) 3CE” 1Cmda:dr+/ / |Du?|” (u — kpy1)+CE dedr,

(2.3)
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where t,, < t' < t. By Young’s inequality, we obtain

t/
’p/ / (4 — kny1)+ P DulP~ DuD¢, do dr
tn JBp

t/
<3 [ 1Dkl dsar
4 tn B,
t/
o [ ] k6P as ar
tn B,
t/
[ 1Dt k)iGiasdr
tn, J Bp
1 [
<[ [ 1D ke dsar
t’”. n

t/
n 7/ / uo @)/ (=) (4 _ 1) dadr
tn JBn

If u > 2k, then
(u— kn)i > %u(u = k1) +-
If kpq1 < uw < 2k, then we have that

(u— kn)i > (u—kn)t(knt1 —kn) > 2—n—3u(u — knt1)+-

Hence,

t/
/ / ua(pq*p+1)/(17*0’)(u —kpy1)s dedr
tn J Bp

t/
< 2%/ / o Pa=p+D)/0=0) =10y _ V2 dgdr.
tn n

Since go < p—1 and g > (p — 1)/p, we have that

olpg—p+1)

<p-—1
p—0
If X
Oga(pq—pvL ) l<p-2.
p—0

by virtue of (2.1), we get that

e a—pt) (=) =11y (1
.

1

.

4
< <¥7
sinceO<T<1andT>tn>it.
If .
o(pg —p+ )_1<07
p—o
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then we have that

ua(pq—p-s-l)/(p—a)—l(mﬂ-) <

S

1 1—o(pg—p+1)/(p—0)
kn+1>

<2 (2.8)

N /N

since g > (p—1)/pand k > ¢
Combining (2.4)—(2.8) with (2.3), we obtain

sup /B (u — k)2 G2, 7) da + // ID((t — k) 4 Co) P dardr

<7<t
22n
// 2 dzdr. (2.9)
ept

Here we also use (2.1). Then, by the recursive inequality (2.9), following the iterative
process in [30, lemma (2.2)], we can obtain

t p/K
w(,)oo.m,,, <At~ NFP)/E uwdrdr +t. 2.10
s B1y2
0 JB,

The above inequality implies (2.2). O
Now we give the estimate of gradient term |Du?|”.

LEMMA 2.2. Let u be a non-negative continuous weak subsolution of (1.1) in Sp=.
If p > 2, we have that

t
/ / |DulP~! dz dr
0 JBj3(wo)

K 2)/k — 1
<Al O E - O 4 @=D2) Loytful- O (2.11)
If p =2, we have that

t
/ / |Du|dz dr
0 JB,/2(x0)

<AV Dy + /22l )| h°/2+t|||u<-,t>|||§1hf)/2>’>
2.12

where v = v(N,p,q,0) and hg > 0 is a constant such that the exponents in (2.12)
are positive.
Moreover, for all p > 2, the following two statements hold.

(1) Let o(pg—p+1)/(p—0) <1 and let (2.1) hold, then we have that

t
/ / |Du?|? dzdr
0 JBj3(w0)

<A PN a7 4 ) (flul )l + 1), (2:13)
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where 0 < t < T (T' is as in lemma 2.1), v = v(N,p,q,0) and 19 =
ro(N,p,q,0) such that the exponents in (2.13) are positive.

(2) Let o(pg—p+1)/(p—0) > 1, assume that a time 0 < T" < T* is given such
that

tul, )P 2 + Hu( ) JEPT P < o <t < T (214)

Then, we have that

t
/ / |Du?|? dz dT
0 J By 2(z0)

g7\|\u(~,t)\H1{tl_"/p‘(N/“)(("(Pq‘p“)_”+”)/p)\Hu( )m(a(m p+l)—pto)/r
+ ¢l=o/ptor/p—=(N/k)((o(pg—p+1)—pt+o—or1)/p)
o — 1)— o—ori)/k
X [l Dy
Jrta(querl)/pf(arl/p)(N/nJrl)|||u( )|||<77“1/” tcf(pq*zﬂrl)/p}7
(2.15)

where 0 < t < T", v = v(N,p,q,0) and r1 = r1(N,p,q,0) such that the
exponents in (2.15) are positive.

Proof. Here, we only prove (2.11)—(2.13). The proof of (2.15) is similar to (2.13)
and we omit the details.
Firstly, we prove (2.11). Set By = Bj(zg). Take

o = P8/ (=) 11/ (=) ¢, Np-2) <B< 1,
p

KD

as a test function in (1.3), where ¢ is a piecewise smooth cut-off function in By,
such that

0<(¢<1 inBi, (=1 inByp,  |[D{<ny

Thus, we obtain

<1_>/ / 708/ 5=1) =1/ =1 Dy PP A dr
B,
<7/ / 298/ (=1)=1,2-1/(0=1) 4z dr
0 JB;

t
+p// 728/ (=1 ¢p=1y,1=1/(=1)| Dy P~} | D¢| d dr
0 B,

t
+/ / Tpﬁ/(pfl)ulfl/(pfl)|Duq|”Cp dz dr. (2.16)
By
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Young’s inequality implies that

t
p’// P8/ (p=1) (p=1y1=1/(p=1)| Dy P~ D¢ | dax A
0 JB;

1 1 ’
< 4(1 _p—l)/o /B PP/ (=1, =1/ (P=1)| Dy |P¢P da dr
1

t
Jr,y// 728/ (p=1)p=1/(0=1) 4z dr, (2.17)
0 JB,

t
// 28/ (0=1) 1=1/ (=) D] ¢P dp dr
0 JB;

1 1 ¢
< i (1 - 1) / / PP/ (=1, =1/ (P=1)| Dy |P¢P da dr
- 0 /B

t
oy / / 08/ (p=1) p/ (0—0) (g0 -0+ 1)~1/(0-1) 4 I
0 B

(2.18)
Since qo < p — 1 and
plgg—o+1) 1 >0,
p—o0 p—1
then we have that
uP/(P=0))(go—o+1)=1/(p—1) <y p=1/(p=1) | 1 (2.19)

Combining (2.17)—(2.19) with (2.16), together with (2.1), (2.2), we get that
¢
/ / Tpﬁ/(p—l)gpu—l/(lﬁ—l)|Du|P dz dr
0 JB
¢
< 7/ / B/ =D~ 21/ (0=1) 4y dr 4 P8/ P=D)+1
0 JB

t
—1)— 1-1/(p—1 _
<Al )l / 0D (1) | 2T dr B

<Al Dl (2 TN ERIE D Y
+ tPB/ (=1 +(p=2)/(p=1)) 4 P8/ (P=1)+1,
(2.20)

Next, we estimate, by the Holder inequality, that

t
// |DulP~1¢P~t dadr
0 JB;
t (p—1)/p t 1/p
<<// TPWP%1/<P1)Du|PgdedT> (// TpﬁudxdT) :
0 Bl 0 Bl

Combining this inequality with (2.20), we obtain (2.11).
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Secondly, we prove (2.12) and (2.13). Take ¢ = tPu"(? as a test function in (1.3),
where ( is as above and 3 > 0, r > 0 are to be chosen. Thus, we obtain

¢
7"// Pu" Y Du|P¢P da dr
0 /B

t
<2 / / P TP da dr
1+T 0 B

t
+p// 724" P DulPt D¢ da dr
0 JB;

t
+// " ¢P| Dud|® dz dr. (2.21)
0 JB;

Young’s inequality implies that
¢
p// PP DulP~Y | D¢| da dr
0 /B,
¢ ¢
< r AU DulP¢P da dr + Py~ Az dr, (2.22)
4 v
0 Bl 0 Bl
¢
/ / Pu"CP|Dud|” dx dr
0o /B
¢ ¢
SZ// Tﬁurfl\Du|pdexdT+7// Ay Pa=p+ D/ (=)t qg 47
4 0 Bl 0 Bl
¢ ¢
SZ// Tﬁurfl\Du|pdexdT+7// Byt dedr
4 Jo Ja, 0 /By

t
—|—fy// 79 dz dr, (2.23)
0 JB

since o(pg—p+1)/(p—0) < 1.
Substituting (2.22) and (2.23) into (2.21), recalling (2.1), (2.2), we obtain

t
// AU DulP¢P da dr
0 JB

t t
S'y/ / Tﬁflulﬂdxdr—&—v/ / P dxdr
0 JB; 0 JB;

t t
<Al &)l / Pl e, d7 4y / /B 9, 7L, da dr
0 1

0

<AVl I+ ) (- )l + 1), (2.24)
provided that
N
8- TT > 0. (2.25)
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Now, we prove (2.12). For 0 < § < 1, we choose 0 < r < min{1,28/N}. By (2.24)
and (2.2), we obtain

t
// Py DulP¢? dz dr
0 JB;

t
<'y(// Tﬁ_lurﬂdxdT—&—tBH)
0o JB,

t t
<v|u<~7t>||l( [zl + [ oo dT) N

0 0
= Al Ol N2l )7+ ) + 7 (2.26)

Next, by the Holder inequality,

t
// |Du|¢ dx dr
0 JB
¢ 1/2 t 1/2
g(// TﬁuT1|Du|2C2dxd7’) (// Tﬁulrdxd7'> . (2.27)
0 Bl 0 Bl

Also, estimate the last integral by the Holder inequality,

t t 1—r
/ / 7P T Az dr < / 7_6(/ u(z,7) dl‘) dr <yt lul, Ol
0 JB; 0 B

(2.28)
Then, collecting (2.26)—(2.28), we prove (2.12).
We now prove (2.13). By the Holder inequality, we have that

t
// |Duf|?¢° dedr
0 JB;
t o/p
< (// Tﬁuf'—1|Du|PgdedT>
0 JB;

t (p—o)/p
y < / / =B/ (r=0), o (pa—p+1-1)/(p—0) dxd7> - (2.29)
0 B

Assume that
pg—p+1—7r>0, (2.30)

since

olpg—p+1—r) - olpg—p+1)
p—o p—o

<1

then Young’s inequality implies that

t t
/ / 780/ (p=0) o (pa—p+1=1)/(1=0) 4 47 < / / 779/ P=9) (4 4 1) dz dr
0 B 0 By

<O (|flu- )]+ 1), (2.31)
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provided that

Bo
p—o
Substituting (2.24) and (2.31) into (2.29), we obtain (2.13). It is left to prove that
0 and r can be chosen such that (2.25), (2.30) and (2.32) hold. We first fix 8 such

that (2.32) holds. Then we can fix r = rg such that 0 < rg < min{pg—p+1, fk/N}.
The proof is complete. O

1— > 0. (2.32)

Finally, we give an a priori bound of solutions to (1.1) in terms of the initial
data.

LEMMA 2.3. Let u > 0 be a bounded and uniformly continuous solution to (1.1),
(1.2) in St«. Then the following statements hold.

(1) Ifo(pg—p+1)/(p—0) <1, then there exists Ty = To(N,p,q,0) < T* such
that
lul Ol < v(llluoll +1) VO <t < Ty (2.33)

and (2.1), (2.2) hold for all 0 < t < Ty, where v = ~v(N,p,q,0).

(2) Ifo(pgq—p+1)/(p—0o) > 1, then there exists Toy < T such that (2.33), (2.14)
and (2.2) hold for all 0 < t < Tp;.

Proof. Here, we only prove the case o(pg—p+1)/(p—0) < 1 and p > 2; the proof
of other cases are similar. Define

to = sup{0 < T" < T* | (2.1) holds}.

Choose 0 < t < tg and let By = By (o). Take ¢ as a test function in (1.3), where ¢
is as in lemma 2.2. Direct calculation shows that

/ u(z,t) dx
Bi/2
t ¢
g/ uod:c+'y// \Du|p*1dxd7+// |Du?| dz dr
B4 0 B4 B:

K 2)/k 1
g/B wo dz + y|u(- Ol (5 12 4+ 1 P=D2) -, )17
1
(et N/ |y ()17 4 470) (-, 1)1+ 1) (2.34)

for all 0 < t < to; here we use (2.11) and (2.13). Since zg € R¥ is arbitrarily chosen,
we have that

1
Ol < Mol +yMa @l )l +ylluC, )17 + 7M2(t)(|||U(wt)|||1(+ 1)’)
2.35
where the meanings of M (t) and M(t) are obvious. Set

ty = sup{0 < t < T* | */*[Ju(, )77~ + My (t) + Ma(t) + t[u(-, )][}/? < 8},

(2.36)
where § > 0 (small) is to be chosen. Note that ¢; is well defined because the stipu-
lated assumptions ensure that |||u(-,)|||1 is continuous in [0, 7%], and the exponents
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of ¢ in (2.36) are positive. By lemma 2.1 and (2.36), it is easily seen that t; < to,
by a suitable choice of 4. Then, if we choose 6 < 1/4v, we obtain

luC; Dl <A(lluollly +1) VO <t <ty (2.37)

Therefore, all the claims hold. The number ¢; is still only qualitatively known. A
quantitative lower bound Ty can be found by substituting (2.37) into the defini-
tion, (2.36), of t;. O

Proof of theorem 1.2. Consider the approximating problems
Upt — div(|Duy, [P72Du,,) = min{|Dul|?,n} in B, x (0, 00),
tn(2,t) =0 in B, x (0,0), (2.38)
Un (x,0) = upp () on B,,
where B, = {z € RY | |z| < n} and ug, € C§°(RY) is non-negative and has

compact support in By, which satisfies

lim/|uonfuo|da::0 VK cc RN
K

n—oo

and

lluonllly < ~lllwolls-

The existence and Holder continuity of solution w,, for (2.38) follow from [19,27,29].
Then, theorem 1.2 can be proved by lemmata 2.1-2.3, following the methods in [4,5]
(see also [30]). O

3. Proof of theorem 1.3

In this section, we let go > p — 1. This implies that o(pg —p+1)/(p — o) > 1. To
prove theorem 1.3, we firstly prove several lemmata.

The following supremum estimate will play an important role in proving the
existence result.

LEMMA 3.1. Let u be a non-negative continuous weak subsolution of (1.1) in St.
Also, assume that a time 0 < T" < T is given, such that

tp P lluC 1 5, oy + Il IS pa-pt /(=o)L <1 wo<t<T". (3.1

o0 ng ’E())

There exists a constant v = y(N,p, q, 0, h) such that, for every ball By,(zo),

t p/kn
(- 8)lloo, B, (50) < vt~ N FPI 50 (/ / u dx d7> VO<t<T', (3.2)
Ba,(z0

where Kk, = N(p — 2) + ph, h > 1 and zo € RY is fized.
Proof. Let p >0, € € (0, 7) and k > 0 is to be chosen. For n =0,1,2,..., set

€ k
B”:Bpn(xo)a Pn:p+ﬁp, kn:k_ﬁ’

t e Y
_ % _
Qn =By X (tn,t), 0<t, <t<T", tn——<2n+1)t.
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Let ¢, (z,7) be a smooth cut-off function in @,, with 0 < (,(x,7) < 1, such that

aCn 2(n+2)p 2n+2

—2= K D < .
or S DGl ’yep

Cn =1 in Qn+17 0 <

Take ¢ = (u — kn11)"(? as a test function in (1.3). We get that

1
m[g (u — k1) (2, )2 da

n [ t [ =)D = R PR o
tn n
t/
+p/t /B Cﬁ_l(u—kn+1)’}r|Du|”_2DuDg‘ndxdT
b v h+1 p—1
:h-l—l/tn /Bn(u—knJrl)Jr P (prdadr

t/
s [ Dl ki 33)
tn J Bp

where t,, <t < t. By Young’s inequality, we obtain

t/
p‘/ / PN u — kg | DulP "2 DuD¢, dz dr
tn BTL

ho[t ~
<3 ] @)D b Pz dsds
tn J Bp
t/
+ / / (u — kny1)7 "TDE, P da dr, (3.4)
tn J Bn
t/
/t /B |Du?|? (u — kpy1) CE dudr
< t (U — k)" D(u — kpgr) 4 [PCP dzdr
X 4 \ 5 n+1)4+ n+1)+ n

t/
+ ,y/ / wpo a0/ =) (y — kn+1)i+‘7/(p_a) dezdr. (3.5)
tn By,

If u > 2k, then
(u— k)i > Lu(u — kp)l

If kg1 < u < 2k, then

(u - kn)}-ﬁ_l P (’LL - kn)i(kn-&-l - kn) Z 27”73’&(’& - kn+1)}_;'_.
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Hence,

t/
/ / WPaD /=) (4 _ Y0 gy

/ / opa=pt1)/ (=) =1y — ) da dr.

Substituting (3.4)—(3.6) into (3.3), we obtain
sup / (u— kny1) T CE (2, 7) do

tp<T<t
// (0= i) TGP dadr

where

_ o +1 o)—1
M= swp (rp~P|ul T N2y + Tl )| D =)0y,

By an iteration process similar to [30, lemma (2.1)], we obtain

1 M (N+p)/kn p/Kn
N = I T
0

This implies (3.2), since (3.1) holds.

We also need the estimates of |Du?|?, which are as follows.

657

(3.8)

LEMMA 3.2. Let the assumptions of lemma 2.1 and (1.7) hold. Then, for every
Bay(rg) CRYN, 0 <t <T". Ifp>2,0>1o0rp=2,0>1, then the following

statements hold.

(i) If h=1, then

¢
// |Duf| dx dr
0o /B,

L At P=o)/P=N(o(pa=p+l)=pt+a))/pr Gl+(o(pa—pt)—pta)/r (1)

where

G(t) = sup / ww,r)de, v =(N,p.q.0).
o<r<tJ B

2p(zq)

(ii) If h > 1, then

¢
// |Duf| dx dr
0o /B,

(3.9)

L AtV /p=N(e(pa=—pt1)=pto)/prn [ N(h=1)/h y1/h+(o(pa=p+1)=pta)/mn (1)
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where

¢(t) = sup / ul(z,7)dz, ¥ =y(N,p,q,0,h).
BZP(IU)

o<r<t

If p=2, 0 =1, we have that
t
/ / |Du| dz dr < A#/27Nm/2 pNh 261 (3.11)
p/2%0

where v = v(N,p,q,0) and hy > 0 is a constant such that the exponents in (3.11)
are positive.

Proof. Set By, = Ba,(x0). We only prove (3.9) and (3.10); (3.11) can be proved
similarly to (2.12) and we omit the details. Take ¢ = t%u"(? as a test function
n (1.3), where ¢ is a piecewise smooth cut-off function in Bs,, such that

0<¢<1 inB,, (=1 inB, [D{<2

and ﬁ > 0, r > 0 are to be chosen. As in the proof of (2.24), together with (3.1)
and (3.2), we obtain

// 704" DulP¢P dw dr
Bs,

/ / ,3 1 1+r Tup 2_|_7.u o(pq—p+1)/(p—0o)— 1)d1‘d7'
Bs,

’y// AL Az dr
B
// U, 7T 5, A d

< ,YG( tﬂ NT/“1L¢PT/“’1( ) (312)
where

¢(t) = sup / ul(x, 1) dz,
Bz (o)

o<r<t

provided that

N
g——L>o. (3.13)
Kh,

By the Holder inequality, we have that

t
// |Du?17¢? dedr
0 J B3,
¢ /P
< (// Tﬁur—1|Du|P§pdxdT)
B
(p—o)/p
(// +—B0/(r—0) (pqp+1r)/(p0)dzd7—> .
Bs

(3.14)
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Then, by Young’s inequality and (3.2), we have that
t
/ / 780/ (p=0) o (Pa—p+1-1)/(0=0) 4 A1
Ba,

/ / 7,80/(1)70)””( )Ha(pq p+1=r)/(p=a)=1 3. 4+
Ba,

< AG(t) tl BU/(p o)—(N/kp)(o(pg—p+1-1)/(p—0)— 1)¢(p/m;L)(0(pq p+1-r)/(p—0)— 1)()

(3.15)
provided that
_ 1
olpa—p+l=r (3.16)
p—0
N Cp+1-
P —(a(pq Pt T)—1)>0. (3.17)
p—0O Kp p—0O

Substituting (3.12) and (3.15) into (3.14), we obtain

¢
// |Du?|® dz dr
o /B,

< Gt P=)/P=N(o(pa—pt)=p+a)/prn (o (pa—p+1)=pFao)/kn () (3.18)
Hence, if h = 1, (3.18) implies (3.9). If h > 1, applying the Holder inequality

n (3.18), we obtain (3.10). It is left to prove that § and r can be chosen such
that (3.13), (3.16) and (3.17) hold. Fix

0<f< p?%. (3.19)

Then, by (1.7), we easily find r such that (3.13), (3.16) and (3.17) hold. O

LEMMA 3.3. Let u > 0 be a bounded and uniformly continuous solution to (1.1),
(1.2) in St and let (1.7) hold, then there exists T) = T}(N,p,q,0) < T such that

NuC,O)llln < lluolln YO <t < Tg (3.20)
and (3.1), (3.2) hold for all 0 < t < T}, where v =~(N,p,q,0).
Proof. Let p > 1 be fixed and let ty be the largest time satisfying
_ 1) o)—1
a3, o+ DT @ < (3)

for all 0 < t < tg. By lemma 3.1, we have that

w(x,t) < At~ N/ g(t)P/En, (3.22)
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Let ¢ > 0 be a piecewise smooth cut-off function in By, (z¢), with ¢ =1 on B,(x)
and |D¢| < v/p. We take u"~1(P as a test function. If h > 1, we obtain

t
/ ul(y,t)¢P dy + h(h — 1) / / u" 2| Du|P¢P dy dr
B, (zo)(x) 0 JBs3,(x0)

t
</ ug (y)¢P dy +ph/ / w7 DulP~¢PTH D¢ dy dr
Ba,(x0) 0 JBa,(xo)
t
+h/ / | Dud|7u"=1¢P dy dr. (3.23)
ng ibo)

Applying Young’s inequality in (3.23), and using (3.22), we have that

/ u"(y,t)dy
Bp(wo)
¢
</ ug(y)dy—i-v// uP~ P Ay dr
B2y (o) 0 JBz,(wo)

t
+7/ / wl (Pa—p+1)/(p—o)=1+h dydr
0 B2y (20)

< uoll?:
t
+7¢(t)( / TN W= R gp@=2) (1) dr
0
t
+/ T_N(U(pq_p+1)/(p_a)_1)/'%¢p(U(Pq—P+1)/(p—U)—1)/mh(7_) dT>
0

<Mlluollly +vMi()6(t), (3.24)

where

My (t) = tPh/5n gP(P=2)/5n ()
+ ¢1=N(e(pa—p+1)/(p=0)=1)/kn qsp(U(pQ*erl)/(pfo')—])/Nh ().

If h =1, by lemma 3.2 and (3.22), we get that

/ u(y,t)dy < / y)dy + — / / |Dul|P~ dy dr
By (xo) Bap EO) Bay(zo)
/ / |Du?|” dy dr
BQP I()

<[y atieGy e
Bz (o)
(p—0)/p—N(o(pg—p+1)—p+o)/pr 1+(o(pg—p+1)—p+o)/r
+~t G (t)

< luollly +~Ma(t)(2), (3.25)
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where
My (t) = tl/ﬁqb(p—?)/ﬁ(t)
+ t(pfa)/p*N(a(querl)*p+a)/zm¢(0(qup+1)*p+a)/'~”~(t).
Set
t1 = sup{t > 0| My(t) + Ma(t) < 4}, (3.26)
where § > 0 is to be chosen. Note that for 0 < t < t1, by (3.22), we have that

1 o)—1
0175, oy + UG TS D =)=
< 7(tph/mzwp(p 2)//%( t)
4 tt=N(o(pa—p+1)/(p=0)=1)/Kn ¢p(U(qup+1)/(p*0’)*1)/nh ()
0

b

VANR/AN
o= 2

where ¢ is chosen sufficiently small. By the definition of ¢g and ¢1, noting that p > 1,
the above inequality implies that ¢; < ty. Also, possibly by choosing é even smaller,
noting that zo € RY is arbitrarily chosen, by (3.24) and (3.25), we have that

llullli < Allluollli; W0 <t <. (3.27)

A quantitative lower bound T} of t; can be found by substituting (3.27) into the
definition of ¢; in (3.26). Therefore, all the claims made in the lemma will follow,
using the supremum estimate (3.27). O

Now, we use lemmata 3.1-3.3 to prove theorem 1.3.

Proof of theorem 1.3. Considering the same approximating problems (2.38), the
only difference is the approximation process to the initial data. Here ug,, € C§°(RY)
is non-negative and has compact support in B,,, which satisfies

lim/|u0n—u0|hdw:O VK cc RN

n—oo

and

lwonllln < yllluolll-

The existence and Holder continuity of solution w,, for (2.38) follow from [18,19,
27,29]. Then, by lemmata 3.1-3.3 we can prove theorem 1.3, following the methods
in [4,5] (see also [30]). O

4. Proof of theorem 1.6

We again consider the approximating problems in the proof of theorem 1.3. In fact,
if we can only prove the uniform estimates of (1.8), (1.9) to u,, then theorem 1.6
can be proved in a similar way to the proof of theorem 1.3. Let p > 1 be fixed and
let to be as in (3.21). Note that (1.10) implies A > 1. Then by lemma 3.1 we also
have (3.22).
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Let u, be the solution of the approximating problem in the proof of theorem 1.3.
Take u~! as a test function. Then by direct calculations we get that

1/ hy 1) d Jrhl( P )P/t/ | Du+h=2/p|P 4y d
s Unp\Y, Y U yar
h B, (o) 2 \p+h-2) Js /By

1 t
< f/ U (y: 5) dy+71/ / up PP/ =)= 4y dr,
h J B, (x0) s JBo(x0)
(4.1)
where 0 < s <t < T, v =7 (N,p,q,0,h). By (1.10), we get that
— 1
o(pg—p+1) o1,
p—o
By the Gagliardo—Nirenberg inequality in [27], we have that
/ uz(pq—p-«—l)/(zn—ﬂ)—Hh dy
B, (o)
o —p+1 —0)— 1 —
< pallun | S TN T  DyptheR e (4.2)

where 5 = 72(N, p, ¢, 0, h). Hence, (4.1) and (4.2) imply that

1
- / ul(y,t)dy
Bn(l’o)

+ H[hot P p_ [lw (T)Hff(quml)/(pfa)fml
sl 2 \p+rh—2 VU T Lr (B, (0))
_ 1
X [ DuFth D)L, oy dT < & /B ( )u’;(y,s)dy, (4.3)
n{Z0

where 3 = 7172. Choose 7 in (1.11) sufficiently small, such that
h
Hu0n||Lh'(Bn($0))
<ol zn (s, w0y
<7

h—1 h/(o(pg—p+1)/(p—o)—p+1) » ph/(o(pg—p+1)/(p—0c)—p+1)
< O m—— .
(%) (73

(4.4)

Since Hun(t)th(B"(wo)) is continuous in [0,7], (4.3) and (4.4) thus imply that
Hun(t)th(B (1)) 18 mon-increasing in 0 <t < T, i.e.

un (O (8, (o)) < NuonllTn s, o)) < VwollTn@n) (4.5)

for all 0 < ¢ < T'. Since, for any p > 1, there exists a natural number ng, such that,
for all n > ng, we have Ba,(z9) C Bp(x0), (4.5) implies that

”un(t)H}LL/h(sz(zg)) < '7||u0||2h(RN) (4.6)
for all 0 < t < T. Hence (4.6) and (3.22) imply (1.8) and (1.9).
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Therefore, we are left with the task of estimating below tg > T{/. This can be
accomplished at once by substituting (4.6) and (3.22) into (3.21), the definition
of to.

5. Proof of theorems 1.8 and 1.9

Proof of theorem 1.8. In what follows we drop the index n, denoting u,,, ug, as u,
ug, respectively. If we prove a priori L°°-estimates for all ¢ > 0, the existence of
global solutions will follow at once by reasoning as in § 3. Set

G(t) = sup /]RN u(z, ) dx,

o<r<t

G(O)z/ ug d,
RN

T = sup{t: tlu(-,)||70 7m0 <1y

oo,RN
T = sup{G(t) < 2G(0)}.

Let p = oo in lemma 3.1. Then, for all s > 1, we obtain

[u(, ) [lsomny <4tV sup |lu(-,7)|Pds YO <t<T, (5.1)
o<r<t ’

where 5 = 7(N, p, 4, 5).
Thus, to obtain the uniform L°°-estimates for all ¢ > 0, it will suffice to show
that T¢ > T and T = co. We divide the proof into three steps.

STEP 1. We claim that min{7¢g, T} > 1.
We prove this assertion by contradiction. We set

Ty = sup{t: ¢(t) < 2¢(0)},
where

o) = s [ dwrde o0)= [ e

o<r<t

and divide the proof into three subcases.
Firstly, in (i) and (ii), we prove that min{7T, Ty} > 1.

(i) Case Ty < T. Take u~1(P as a test function, where ¢ is as in the proof of
lemma 3.2. Then, we get that

1 t
f/ ul(x,t)¢P dx + (h — 1)/ / u"2|Du|P¢? dx dr
h B3, 0 JBs,

1 t
< f/ ul(x)¢P dx +p/ / uh = DulP~1¢P D) da dr
h Ba, 0 J B,

¢
+// w1 Du?° ¢ da dr (5.2)
0 /B,
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for all 0 < ¢t < T. Applying Young’s inequality in (5.2), together with (5.1),
we have that

sup / ul(z,t) dz
0<t<Ty JB,

Ty
< / ub(z)de +yp~P / / P2t Az dr
Bs, 0 Bap

T,
by / ’ / oy (Pa—P+1) /(=) =1+ {1 g
0 JB,

Ty
©O)+70(T) [ (Pl + Ll ar
(0) +vo(Ts)
Ty
x/ (p P~ NE=2)/kn (7 )P(P=2)/n
0
+4 7~ N(e(pa—p+1)/(p—0)=1)/rn ¢(T)P(U(pq7p+1)/(p*0)*1)/Kh) dr

_ K 9 /k
< ¢(0) +7¢(T¢)(p qu[;/ h,yg(p Y/kn
1—N(o(pq—p+1)/(p—0)—1)/kn
+ T¢

<o
<o

o —p+1 —0)—1)/kn
,yg( (pg—p+1)/(p—0)—1)/ ;)’

since (1.13) holds. Letting p — oo in the above inequality, we have that

—N(o(pg— —0)— o(pq— —0)— 3
O(T,) <¢(O)+7¢(T¢)T; (o(pg—p+1)/(p—0) 1)/%%:!)?( (pg—p+1)/(p=0)=1)/kn_
(5.3)
Let Ty < 1 and choose 7 sufficiently small that

77(z;(a(anqu1)/(17*0)*1)/i~”~h <1

'

Hence,

1-N(o —p+1 —o0)—1)/k o —p+1 —o)—1)/k
7T¢ (o(pg—p+1)/(p—0)—1)/ h,yg( (pq—p+1)/(p—0)—1)/kn <!

N

holds by virtue of (1.7). Then, (5.3) implies ¢(T}) < 3, in contradiction with
the definition of Tj.

(i) Case Ty > T.
Let us suppose T < co. Hence, by the definition of T', we get that

1= sup {T||u(-,r)||§o(f’§;”“)/(”“’)‘l}
0<r<T

< ,yTl—N(J(Pq—P-l-l)/(p—a)—1)//%,yg(U(PQ*P+1)/(P*U)*1)/Wh ) (54)

If T < 1, then, choosing ~y sufficiently small, such that

o(pg—p+1 —o)—1)/kn
’Y’Yg( (pa—p+1)/(p—0)—1)/ki < %7

we get a contradiction. Thus, from (i) and (ii) we obtain min{T, Ty} > 1.

https://doi.org/10.1017/5030821051100103X Published online by Cambridge University Press


https://doi.org/10.1017/S030821051100103X

Degenerate and uniformly parabolic equations 665

(iii) If Te > min{T, Ty}, then the claim is obvious. Assume T < min{T, Ty} and
take u/(u + €)¢? (e > 0) as a test function. Then we have that

/sz /U(t) /TG/B 2\Du|PCPd:pdT
</ ) / / /B Pt tingarar
/ /B (5.5)

for all 0 <t < Tg. Let € — 0 in (5.5), together with (3.18). Then we have
sup / u(z,t) dz
0<t<Tc JB,

</ up dx
B

2p

1 Kh — K
#AG(Te) (T8 ™02/ (Tg)

L TN PN et )=p+0) 1 (o (pa—p 1) =p+a) /51 (TG))

<G(0 )+’7G(TG)<p h/ﬁh,yép72)/’ih,

)

+ Tép—a)/P—N(G(Pq—p-i-l)—p-i-a)/zmh ,Y(()U(pq—p-l-l)—p-i-a)/ﬂh)

since (1.13) holds. Let p — oo in the above inequality. Then we obtain
G(Ts) < G(0) +vG(Te) T 7P=o)/p=N(a (Pfl—P+1)—P+U)/Imh,YSU(PQ—P-FU—P-FU)/ML.

(5.6)
If T < 1, then, choosing ~y sufficiently small such that

,y,y(U(PQ*ZH’l)*IH’U)/Kh < i’

it follows from (5.6) that G(T) < 2G(0), in contradiction with the definition
of T;. Hence the claim holds.

STEP 2. We claim that T > T.
Assume that T < T and the claim is obvious otherwise. Take u/(u + €)C? as a
test function again and, using a similar proof as in (iii), we have that

G(Ta) < G(0) + ’}/G(Tg)(fy(()o(pq_p+l)_P+‘7)/ﬁh
+ Tép_a)/p_N(“(pq_P"‘1)—P+U)/P'€,Y((JU(pq—p+1)—p+a)/n)
< G(0) + ’YG(TG)(75‘7(1"1_1’“)_”‘7)/“ I ,‘Y(U(pq p+1)— p+g)/ﬁ) (5.7)

where we use (3.18), (1.7) and (1.12). Hence, if g is chosen small enough, such that

o — 1)— o)/k o — 1)— o)/k
7(7(() (pg—p+1)—p+ )/h_i_,yé (pg—p+1)—p+ )/)g%7

then (5.7) implies a contradiction with the definition of 7. Thus the claim holds.
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STEP 3. We claim that T = oo.
Assuming, on the contrary, that T' < oo, then we have that

o 1 o)—1
L= sup {rfu(, m)| 50T

o<r<T

+1) o)—1 +1 o)—1
< sup {rlu(, )| ZEPTV O 4 sup {rfu(, 7)|| 2B T
o<r<1 1<r<T

< ,Y(Wg(ﬂ(pq—p-%l)/@—a)—1)/f~ch + ,yg(a(pq—p+1)/(p—0)—1)/ﬁ), (5.8)

since (5.1), (1.7) and (1.12), (1.13) hold. If we choose 7y sufficiently small, then (5.8)
implies a contradiction with the definition of T'. The proof of theorem 1.8 is com-
plete. O

Proof of theorem 1.9. Theorem 1.9 can be proved similarly to the proof of theo-
rem 1.8 and we omit the details. O

6. Proof of theorem 1.10

We proceed by contradiction and consider a solution u # 0 in RY x (0,00). Then,
by [20, theorem 3.1] (see also [30]), we get that

u(a,t) =yt N Jaf <ot >, (6.1)

where v9 = 70(V, p,u). Using a similar proof to that of [17, theorem 1.2], which
was strictly based on [3, lemma 4.1], we can obtain

/B u(z,t)de <7 max{pw/(qaleNfE/(qof1)’pfe(pfcf)/(qoprrl)JrN}, (6.2)

P

where 0 < € < 1, p = y,t'/*. Then (6.1), (6.2) imply that
,y(e)the/npN <M max{pea/ qo— 1)+Nt e/(qo— 1) 75(p o)/(go—p+1) +N} (63)
ie.
7o < 7 max{t— (1= N/x(o (o =p 1)/ (p=)=1))/s(ao 1)

= (1=N/x(olao—p+1)/(=0)=1)/wlao=1)} (6 4)

Due to (1.18), this clearly leads to an inconsistency as ¢t — oo, and theorem 1.10 is
proved.
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