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Multi-layer hydraulic exchange flows
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Flows between ocean basins are often controlled by narrow channels and shallow sills.
A multi-layer hydraulic control theory is developed for exchange flow through such
constrictions. The theory is based on the inviscid shallow-water equations and extends
the functional approach introduced by Gill (1977) and developed by Dalziel (1991).
The flows considered are those in rectangular–cross-section channels connecting two
large reservoirs, with a single constriction (sill and/or narrows). The exchange flow
depends on the stratification in the two reservoirs, represented as a finite number of
immiscible layers of (different) uniform density. For most cases the flow is ‘controlled’
at the constriction and often at other points along the channel (virtual controls)
too. As with one- and two-layer hydraulics, controls are locations at which the flow
passes from one solution branch to another, and at which (at least) one internal
wave mode is stationary. The theory is applied to three-layer flows, which have two
internal wave modes, predicting interface heights and layer fluxes from the given
reservoir conditions. The theoretical results for three-layer flows are compared to a
comprehensive set of laboratory experiments and found to give good agreement. The
laboratory experiments also show other features of the flow, such as the formation of
waves on the interfaces. The implications of the results for oceanographic flows and
ocean modelling are discussed.

1. Introduction
The large-scale thermohaline ocean circulation, especially the flow of dense deep

waters, is often restricted by topography with flow limited to gaps where straits and
sills may induce hydraulic control. The exchanges between semi-enclosed marginal
seas and the global ocean are also determined by flows through straits as well as
the processes occurring within the enclosed basins. Motivated by these geophysical
flows a number of authors have used hydraulic models, which are based on the
shallow water equations, to study the idealized problem of the exchange between
two reservoirs of a two-layer stratified fluid. Initial studies examined steady inviscid
flows through channels with rectangular cross-section, see for example Wood (1970),
Armi (1986), Armi & Farmer (1986), Farmer & Armi (1986) and Dalziel (1991).
Subsequently these models have been extended to include other effects, such as non-
rectangular cross-section (e.g. Bormans & Garrett 1989; Dalziel 1992a), rotation (e.g.
Dalziel 1990; Pratt & Lundberg 1991), dissipation (e.g. Bormans & Garrett 1989) and
time-dependent forcing (e.g. Helfrich 1995).

† Present address: Department of Civil and Structural Engineering, UMIST, PO Box 88,
Manchester, M60 1QD, UK.
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Figure 1. Schematic showing the flow through Bab al Mandab at the mouth of the Red Sea during
(a) the winter monsoon, (b) the summer monsoon. Note the change in the thickness of the surface
water (SW) in the Gulf of Aden, the change in direction of flow of this water and the arresting of
the inflow of Gulf of Aden Intermediate Water (GAIW) during the winter. The flow of Red Sea
Overflow Water (RSOW) is greatest during the winter.

Two-layer models have given much insight to oceanic flows, such as that through
the Strait of Gibraltar (Farmer & Armi 1988; Bryden & Kinder 1991; Bryden et al.
1994). However, to obtain a complete understanding of these flows it is necessary to
consider more general stratification. Furthermore, there are some flows which cannot
be represented by two-layer exchange. For example, the flow through Bab al Mandab,
which connects the Red Sea to the Gulf of Aden, has three distinct water masses
(Smeed 1997; Murray & Johns 1997; Pratt et al. 1999). During the summer monsoon
water flows out of the Red Sea both at the surface and at depth, with an inflow of
intermediate water between the outflowing layers. During the winter monsoon surface
water flows into the Red Sea (figure 1), while dense Red Sea Overflow Water (RSOW)
continues to flow out. Thus we need a three-layer hydraulic theory to describe the
flow at the mouth of the Red Sea.

There has been relatively little work on hydraulic control with more complicated
stratification. Killworth (1992) examined the conditions for hydraulic control in a
continuously stratified fluid. A number of authors have considered related flows,
including stratified flow over an obstacle (Baines 1987, 1988, 1995; Denton 1990),
or withdrawal of fluid from a stratified reservoir by a localized sink (e.g. Benjamin
1981; Imberger & Patterson 1989; Armi & Williams 1993). These problems are also
examined in the book by Baines (1995). In all of these cases the flow is forced,
uni-directional flow. Here we consider the flow that is driven by stratification in
essentially static reservoirs at each end of a connecting channel.

Recently Smeed (2000) has outlined a three-layer hydraulic theory, and used it
to explain the observations of flow in the Bab al Mandab. The work is developed
further in this paper in which a wider class of three-layer exchange flows is considered
and the results are compared with a series of laboratory experiments. The theory is
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Figure 2. Multi-layer flow along a channel, showing the notation used in the multi-layer model.

also extended to consider an arbitrary number of layers and the implications for
continuously stratified flows are discussed.

The development of the hydraulic theory is given in § 2, and follows the functional
approach introduced by Gill (1977) and developed by Dalziel (1991). Some results of
the theory for a three-layer flow with a contraction† are given in § 3. The laboratory
experiments are described in § 4 with the results given in § 5. The theoretical and
laboratory results are discussed and compared in § 6 and the work is summarized and
some conclusions drawn in § 7.

2. Multi-layer hydraulic control theory
2.1. Flow configuration and equations for multi-layer flow

The problem considered is one in which two large reservoirs are connected by a
channel of rectangular cross-section. The width and depth of the channel vary on
scales long compared to the channel length so that the fluid velocity has a significant
component in the along-channel, x-direction, only. The fluid consists of a number
(n) of immiscible layers of (different) uniform density, ρi, i = 1, . . . , n. We assume that
the flow is Boussinesq, hydrostatic and inviscid. The layer thicknesses are denoted
by hi and velocities in each layer by ui. The ui may be positive or negative, with
the direction of flow in each layer depending on external conditions. The flow and
parameters are illustrated in figure 2.

There is a rigid lid and the total depth of the channel is H(x) = h1 + h2 + · · ·+ hn,

† We use the term ‘constriction’ to refer to a general minimum in the cross-sectional size of the
channel, while a ‘contraction’ refers to a minimum in the width of a channel of constant depth.
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while the width is denoted by B(x). Continuity gives

∂ai

∂t
+

∂

∂x
(uiai) = 0, i = 1, . . . , n, (1)

where ai = Bhi is the cross-sectional area of each layer.
The reduced gravity across each interface is denoted by g′i = g(ρi+1 − ρi)/ρ̄,

i = 1, . . . , (n − 1) and ρ̄ is the mean density. The momentum equations for each
layer are

∂u1

∂t
+

∂

∂x

(
1
2
u2

1 +
p0

ρ̄

)
= 0, (2.1)

∂u2

∂t
+

∂

∂x

(
1
2
u2

2 +
p0

ρ̄
− g′1h1

)
= 0, (2.2)

∂u3

∂t
+

∂

∂x

(
1
2
u2

3 +
p0

ρ̄
− g′1h1 − g′2(h1 + h2)

)
= 0, (2.3)

...

∂un

∂t
+

∂

∂x

(
1
2
u2
n +

p0

ρ̄
− g′1h1 − g′2(h1 + h2)− · · · − g′n−1(h1 + h2 + · · ·+ hn−1)

)
= 0,

(2.n)

where p0 is the pressure at z = 0.
For steady flow, the continuity equations (1) imply that the flux in each layer is

constant,

uiai = Qi, i = 1, . . . , n, (3)

Bernoulli equations are obtained by integrating the difference between equations (2.1)
and (2.2), between (2.2) and (2.3),. . ., (2.n–1) and (2.n) to give (n− 1) equations,

1
2
u2

1 − 1
2
u2

2 + g′1h1 = H ′1, (4.1)

1
2
u2

2 − 1
2
u2

3 + g′2(h1 + h2) = H ′2, (4.2)

...

1
2
u2
n−1 − 1

2
u2
n + g′n−1(h1 + h2 + · · ·+ hn−1) = H ′n−1, (4.n–1)

where H ′1 . . . H ′n−1 are constants.
The equations are non-dimensionalized using the minimum values of the channel

depth and width, H0 and B0, and the total reduced gravity, g′ = g′1 + g′2 + · · ·+ g′n−1,
as follows:

B = B0b, H = H0h, g′i = rig
′, i = 1, . . . , (n− 1),

hi = H0hyi, i = 1 . . . n,

H ′i = g′H0Hi, i = 1, . . . , (n− 1), Qi = B0H0(g
′H0)

1/2qi, i = 1, . . . , n.

 (5)

Thus h(x) and b(x) are the non-dimensional depth and width of the channel (with
h(x) > 1, b(x) > 1). The non-dimensional depths of the layers are yi(x), with y1 +
· · ·+ yn = 1. The parameters ri = (ρi+1 − ρi)/(ρn − ρ1) represent the relative strengths
of the stratification across the interfaces and can vary between zero and one (note
that r1 + r2 + · · ·+ rn−1 = 1).
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The Bernoulli equations (4) in non-dimensional form become

J1 ≡ 1

2h2b2

(
q2

1

y2
1

− q2
2

y2
2

)
+ r1hy1 −H1 = 0, (6.1)

J2 ≡ 1

2h2b2

(
q2

2

y2
2

− q2
3

y2
3

)
+ r2h(y1 + y2)−H2 = 0, (6.2)

...

Jn−1 ≡ 1

2h2b2

(
q2
n−1

y2
n−1

− q2
n

y2
n

)
+ rn−1h(y1 + y2 + · · ·+ yn−1)−Hn−1 = 0. (6.n–1)

Note that yn = 1− (y1 + y2 + · · ·+ yn−1), so we have a system of (n− 1) equations
in (n − 1) variables. In the limit of n → ∞ it can be shown that the system of
equations (6) is equivalent to the equations for continuously stratified fluid presented
by Benjamin (1981) (equations (4.3) and (4.4) in that paper), except that the upper
boundary condition used by Benjamin was a free surface. Note that for given values
of the qi and Hi, the solution for y is dependent only upon the geometric parameters
b and h. However, there may be more than one solution for a given set of parameters.
To solve the problem we must determine the values of the fluxes qi, and the Bernoulli
constants Hi, such that a solution for y exists along the channel and can be matched
to the reservoir conditions.

In the reservoirs where the flow is stagnant the Bernoulli constants Hi are a simple
function of the stratification, Hi = hri(y1 + y2 + · · · + yi). In general, however, the
stratification is not the same in the two reservoirs and the values of the Hi cannot be
the same throughout the channel. The locations at which equations (2) break down
and the values of one or more of the Hi change are referred to as hydraulic jumps
(Baines 1995).

2.2. Hydraulic functionals and hydraulic control

Following the approach of Gill (1977) and Dalziel (1991), we regard the Ji (i =
1, . . . , n− 1) as functionals that can be described by

J (b, h, q1, . . . , qn, H1, . . . , Hn−1; y1, . . . , yn−1) ≡


J1

J2

...
Jn−1

 =


0
0
...
0

 ≡ 0. (7)

Solutions to (7) can be traced along the channel by solving

dJ

dx
≡


dJ1/dx
dJ2/dx

...
dJn−1/dx

 = 0, (8)

which can be written as

dJ

dx
=

(
∂J

∂x

)
h,b

+

(
∂J

dx

)
y

=
∂J

∂y

dy

dx
+
∂J

∂b

db

dx
= 0, (9)

or

hM
dy

dx
+ N

db

dx
= 0,
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where we define M and N as

M ≡ 1

h

∂J

∂y
≡ 1

h



∂J1

∂y1

∂J1

∂y2

· · · ∂J1

∂yn−1

∂J2

∂y1

∂J2

∂y2

· · · ∂J2

∂yn−1

...
...

. . .
...

∂Jn−1

∂y1

∂Jn−1

∂y2

· · · ∂Jn−1

∂yn−1


and

N ≡ ∂J

∂b
≡



∂J1

∂b

∂J1

∂h

∂J2

∂b

∂J2

∂h

...
...

∂Jn−1

∂b

∂Jn−1

∂h


, (10)

and†

dy

dx
≡


dy1

dx
...

dyn−1

dx

 and
db

dx
≡


db

dx
dh

dx

 , with y ≡
 y1

...
yn−1



and b ≡
(
b
h

)
. (11)

The functions J (·; y) map the (n − 1)-dimensional y-space onto the (n − 1)-
dimensional J -space. As is necessary for hydraulic-type problems, there are multiple
solutions (in y-space) to J = 0 (equation (7)) at a given point along the channel.
If the solution remains on the same solution branch as we move along the channel,
then a symmetric channel will yield symmetric solutions for the interface heights. To
satisfy asymmetric reservoir conditions the solution must pass from one branch to
another. For this to happen there must be positions along the channel where there
are coincident solutions, and thus where the determinant of the Jacobian is zero, i.e.

det (M) = 0. (12)

Below we show that at least one internal wave mode is stationary there and the flow
is said to be ‘controlled’.

Where the flow is controlled, the components of equation (9) are not independent.
Thus there is a non-zero vector λ = (λ1, . . . , λn−1) which satisfies

λ1

∂J1

∂yi
+ λ2

∂J2

∂yi
+ · · ·+ λn−1

∂Jn−1

∂yi
= 0, i = 1, . . . , n− 1, (13)

† For cross-sections more complex than the rectangular shape used here, the vector b may be of
larger dimension, depending on the number of parameters required to describe the geometry.
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and so for a solution to exist at this point,

λ1

∂J1

∂x
+ λ2

∂J2

∂x
+ · · ·+ λn−1

∂Jn−1

∂x
= 0. (14)

Following the nomenclature used for two-layer flows we refer to equation (14) as the
regularity condition.

If there is a constriction in the sense that

db

dx
= 0, (15)

then the second term in equation (9) is zero and so either the flow is controlled there
or all the interfaces are horizontal (dy/dx = 0) and the flow is symmetric about the
constriction (see Baines 1988). We shall refer to a control at which (15) is satisfied
as a geometric control, while all other controls are referred to as virtual controls. In
what follows, we shall assume that (15) is satisfied at x = 0 and nowhere else.

Note that when (15) is satisfied, (14) is also satisfied. Thus at a geometric control
the flow must satisfy (12), but at a virtual control both (12) and (14) must be satisfied.
However, although there is an additional equation for a virtual control, there is also
an additional unknown: xv , the location of the control.

2.3. Froude numbers, wave speeds and information propagation

Froude numbers for each layer can be defined as

F2
i =

u2
i

g′hi
, i = 1, . . . , n, (16a)

and in terms of the non-dimensional fluxes and depths these become

F2
i =

q2
i

b2h3y3
i

, i = 1, . . . , n, (16b)

The derivatives in the matrix M can be expressed in terms of these Froude numbers:

1

h

∂Ji

∂yj
=


ri, j < i

ri − F2
i , j = i

F2
i+1, j = i+ 1

0, j > i+ 1

for i = 1, . . . , n− 2, (17a)

while the final row in the matrix is given by

1

h

∂Jn−1

∂yj
=

{
rn−1 − F2

n , j < n− 1,

rn−1 − F2
n − F2

n−1, j = n− 1.
(17b)

Conversely, the Froude numbers can be written in terms of the derivatives in various
forms, for example

F2
i = ri − 1

h

∂Ji

∂yi
, i < n− 2,

F2
n−1 =

1

h

∂Jn−1

∂yj
− 1

h

∂Jn−1

∂yn−1

for any j < n− 1,

F2
n = rn−1 − 1

h

∂Jn−1

∂yj
for any j < n− 1.


(18)
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We now look for unsteady small perturbations to the steady solutions by assuming
that the layer velocities and depths are given by

ui = ûi + u′i and hi = ĥi + h′i, i = 1, . . . , n, (19)

where ûi, ĥi (i = 1, . . . , n) represent the steady solution and the perturbations are
of the form u′i = u′i(x − ct) and h′i = h′i(x − ct), where c is the phase speed of the
perturbation. Below we show that there are multiple solutions for c, corresponding to
different wave modes. Integrating the linearized versions of equations (2), and taking
the differences of pairs of equations gives

(û1 − c)u′1 − (û2 − c)u′2 + g′1h
′
1 = 0, (20.1)

(û2 − c)u′2 − (û3 − c)u′3 + g′2(h
′
1 + h′2) = 0, (20.2)

...

(ûn−1 − c)u′n−1 − (ûn − c)u′n + g′n−1(h
′
1 + h′2 + · · ·+ h′n−1) = 0, (20.n–1)

while continuity gives

(ûi − c)h′i + ĥiu
′
i = 0, i = 1, . . . , n. (21)

We also have h′1 + h′2 + · · · + h′n = 0. Eliminating the velocity perturbations, we are
left with a set of equations for the layer depth perturbations:

− (û1 − c)2

ĥ1

h′1 +
(û2 − c)2

ĥ2

h′2 + g′1h′1 = 0,

...

− (ûn−1 − c)2

ĥn−1

h′n−1 +
(ûn − c)2

ĥn
h′n + g′n−1(h

′
1 + · · ·+ h′n−1) = 0,


(22)

which can be written together (using −h′n = h′1 + h′2 + · · ·+ h′n−1) as

Mch
′ = 0, (23)

where

h′ =

 h′1
...

h′n−1

 ,

and Mc is the same matrix as M , but with the Fi replaced by fi, where

f2
i =

(ûi − c)2

g′ĥi
. (24)

Note that when c = 0, fi = Fi and Mc = M .
From equation (23), the wave speed, c, must satisfy,

det (Mc) = 0. (25)

This is a 2(n − 1)-polynomial equation for c. At a control, c = 0 is clearly one of
the solutions of equation (25), since det (M) = 0 there, and thus (at least) one of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

89
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000008958


Multi-layer hydraulic exchange flows 277

modes is stationary at the control. Equations similar to (23) and (25) were derived by
Baines (1988) in the context of multi-layer flow over topography.

3. Solutions for three-layer flow
3.1. Three-layer theory (n = 3)

For three layers we have r1+r2 = 1. The functionals J1 and J2 are as given in equations
(6.1) and (6.2). We can recover the functional used for two-layer flow (Dalziel 1991)
by summing these to give

J1+2 ≡ 1

2h2b2

(
q2

1

y2
1

− q2
3

y2
3

)
+ hy1 + r2hy2 −H1+2 = 0, (26)

and then setting the middle layer depth to zero (y2 = 0). Returning to three-layer
flow, the matrix M is given by†

M =

(
r1 − F2

1 F2
2

r2 − F2
3 r2 − F2

2 − F2
3

)
, (27)

and the regularity condition becomes,(
∂J1

∂yi

)(
∂J2

∂x

)
y

=

(
∂J1

∂x

)
y

(
∂J2

∂yi

)
, i = 1, 2. (28)

The equation for the wave speed, det (Mc) = 0, is a quartic in c. If the four solutions
are real, two will correspond to the first mode with perturbations to the interfaces
having the same sign (and thus h′1, and h′1 + h′2 having the same sign) so that

r1 6 f
2
1 + f2

2 and r2 6 f
2
3 + f2

2 , (29a)

while for the second mode h′1 and h′1 + h′2 have opposite signs and so

r1 > f
2
1 + f2

2 and r2 > f
2
3 + f2

2 . (29b)

We now consider three-layer exchange flow through a pure contraction (with no
change in channel depth) with the interface depths in the reservoirs specified.

3.2. Finding solutions

In this section the procedure used to determine solutions for given reservoir conditions
is outlined. The numerical methods used to calculate the solutions presented are
described in Appendix A.

In general, the stratifications in the two reservoirs will be different. In this case the
flow in the channel will be connected to the reservoirs via one or more hydraulic
jumps. There are two stages in solving for the flow. First, the Bernoulli potentials and
the appropriate branches for the flow in the channel must be determined. Second,
the functional equation (7) must be solved to find the values of the fluxes and the
detailed structure of the flow in the channel. However, as we shall see in the following
examples, a knowledge of the solutions of the functional equations is needed for the
first stage as well as the second.

When invoking hydraulic jumps we require that the flow is supercritical with respect

† The equations here appear different from those in Smeed (2000). This is because we choose here
to use y1 and y2 as the independent variables (to be consistent with the multi-layer formulation)
whereas Smeed (2000) uses y1 and y3.
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Figure 3. (a) Solutions in the (q1, q2)-plane. The parameter r1 = 0.5 and the Bernoulli constants
are those for a static reservoir in which y1 = 0.4 and y2 = 0.2 (i.e. H1 = 0.2 and H2 = 0.3). The six
curves a, a′, b, b′, c, c′ indicate solutions for which there is one control. For each of these the flow is
subcritical to one side of x = 0 and one mode is supercritical on the other. The points x, x′, y, y′, z, z′
indicate solutions with two controls for which the flow is supercritical in both reservoirs. Between the
controls the flow is subcritical (unless the controls are coincident as in y, y′). (b) Sketches indicating
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to at least one mode on one side of the jump and subcritical on the other side of the
jump, and that there be no net gain in energy at the jump.

When the stratification is the same in the two reservoirs and all the layer depths
are O(1) then the Bernoulli constants H1 and H2 are determined by the reservoir
conditions and take the same values for all x. In this case solutions can be found for
a surface on the (q1, q2)-plane (see, for example, figure 3). On the boundary of the
domain in the (q1, q2)-plane for which such solutions are possible the flow becomes
critical at x = 0. Note that in the lock exchange configuration used in the experiments
the actual flow realized (starting with the same interface depths in both reservoirs)
would be one of no flow, i.e. q1 = q2 = 0.

If one interface has the same in height in both reservoirs but the other has
different values then there must be a hydraulic jump at which the Bernoulli constant
can change. Hydraulic jumps are a transition from supercritical to subcritical flow.
However, the flow in both reservoirs is subcritical and so the supercritical flow can
only occur in a bounded interval. There must therefore be a second transition and
this occurs at a control. One control reduces the number of degrees of freedom by
one and so solutions can only be found on a line in the (q1, q2)-plane. In this case
both modes are subcritical upstream of the control and one mode is supercritical
downstream of the control.

There are three possible branches on which one mode is supercritical, and the
correct branch must be determined. On each branch one of the layer depths tends
to zero as the width of the channel tends to infinity. For the example in figure 3,
a, b, and c illustrate the three possible solutions of this type. Reservoir conditions for
which each of these can occur are indicated in figure 3(c). Further details are given
in Appendix B.

When both interfaces have different heights in the two reservoirs then there must
be at least two controls. This further reduces the degrees of freedom so that flows
with two controls can only be found at points in the (q1, q2)-plane. There are two
sorts of flow with two controls. In the first there are two regions in the channel in
which one mode only is supercritical, separated by a region in which either the flow
is subcritical or both modes are supercritical. In the second there is region in which
both modes are supercritical and a region in which both modes are subcritical; these
regions are separated by a region in which one mode only is supercritical.

For small changes in the reservoir conditions in the example of figure 3, flows of
the first type will occur. These are illustrated in types x, y, and z. Further details
are given in Appendix B. The reservoir conditions for which these flows could occur
are illustrated in figure 3(c). Note however, that for large changes to the reservoir
conditions different flow types may occur. These will be either of the second type
with two controls described above or of a type in which there are three controls.
These flow types are illustrated in figure 14 of Appendix B; however, a complete
description of the reservoir conditions for which they occur is beyond the scope of
this paper.

Flows with three controls are analogous to the maximal two-layer flows. Only one

the form of the solutions for the flow types a, b, c, x, y and z. Double arrowheads indicate that the
magnitude, and in some cases, direction of flow is variable. Note that the solutions a′, b′, c′, y′ and z′
are obtained by reflection about x = 0. (c) Illustration of how perturbing the basic state (in which
both reservoirs have the same stratification) gives rise to the different flow types in the channel.
(There is no scale on this plot, since the results are only valid for small perturbations about the
basic state.)
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Figure 4. Sketch of the apparatus used for the laboratory experiments.

Barrier

Fluid 2
Fluid 3

Fluid 1y1–

(a)

Barrier

Fluid 2
Fluid 3

Fluid 1y1–

(b)

Fluid 1 y1+

Figure 5. The stratification used in the laboratory experiments (a) for case A, (b) for case B. Note
that the stratification is inverted compared with the Red Sea (figure 1) for experimental convenience.

of the Bernoulli constants is set by the reservoir conditions, the other is determined
by the solution for the flow in the channel.

4. Experiments
We will concentrate on flows analogous to the Red Sea flow, with the upper layer

present in both reservoirs, while the middle layer is not present (initially) in one
reservoir and the densest layer is not present in the other (i.e. y2− = 0 and y3+ = 0).

4.1. Apparatus

The experiments were conducted in a rectangular Perspex tank 13 cm wide, 116 cm
long and 29 cm high. The tank was divided into two reservoirs by a smoothly curved
contraction formed using a D-shaped insert (figure 4). At the centre of the contraction
the channel width was reduced to 5 cm. A thin barrier was placed at this point before
the tank was filled, and the experiment was started by removing the barrier. The
fluids used were fresh water and salt solutions, with densities ranging from 1.00 to
1.15 g cm−3.

For each experiment the tank was first filled to the appropriate depth with the
densest fluid to be used. Lighter fluid was then added by introducing the fluid slowly
through a cut-out sponge floating on the surface. In the simplest case (case A; figure
5a), the densest fluid was present only on one side of the barrier, with the lightest
fluid above it and only fluid of intermediate density on the other side of the barrier.
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Typically, however, the densest fluid (fluid 1) was present on both sides of the barrier,
though with different depths either side of the barrier (case B). The lightest fluid
(fluid 3) was placed above the dense fluid on one side of the barrier while fluid of
intermediate density (fluid 2) was placed above the dense fluid on the other side of the
barrier (figure 5b). This arrangement is effectively an inversion of the Bab al Mandab
conditions, where it is the lightest, surface, layer that is present on both sides of the
constriction. For this reason we use y1 to denote the thickness of the densest layer in
the experiments.

Two visualization techniques were used. In the main technique there was general
lighting with a white background behind the tank and the various parts of the fluid
were marked with dyes. For some experiments a sheet of light, parallel with the long
side of the tank, was used. The light sheet was generated by a conventional slide
projector, with the light reflected up through the tank by a thin mirror. In this case
the fluids were marked with fluorescent dye and particles. The particles were pliolite,
of density between 1.02 and 1.03 g cm−3 and diameter approximately 0.5 mm. The
particles allowed direct measurement of the fluid velocities.

The experiments were recorded using a video system and analysed with DigImage
software (Dalziel 1992b). The digitized images consisted of arrays of 512× 512 pixels,
with intensities recorded as integers between 0 and 255. The positional accuracy
depends on the field of view: for the experiments with general lighting, positions were
measured to ±0.2 mm, while a smaller field of view gave an error of ±0.1 mm for
the light sheet experiments. For the experiments with general lighting, fluxes were
estimated from the flow beyond the contraction by measuring the speed and thickness
of the currents generated there. For the light sheet experiments the fluxes were
estimated from velocities and thicknesses measured at the centre of the contraction.
In addition to basic measurement errors, there is some uncertainty in defining an
interface position between miscible layers and (for the light sheet experiments) in
finding the velocity at the contraction where the flow is accelerating. The overall error
in any flux measurement we estimate to be 10% of the largest layer flux.

For most of the experiments the density difference between fluid 1 and fluid 2
was equal to that between fluid 2 and fluid 3, i.e. r1 = 0.5. A set of experiments
was also conducted with r1 = 0.67, i.e. with the density difference between fluid 1
and fluid 2 twice that between fluid 2 and fluid 3. A selection of interface heights
covering the possible cases was used, with particular concentration on the cases where
the interface between fluid 1 and fluid 3 is at half the total depth (y1− = 0.5). The
two-fluid exchange flows are all equivalent: (y1−, y1+) = (0, 0), (1, 0) or (0, 1) and r1
set to any value are all the same, subject to suitable rescaling.

4.2. General features

The removal of the barrier generates a small amount of motion and mixing, but the
flow quickly accelerates to a quasi-steady exchange flow. The initial acceleration time
scale (H/g′)1/2 is 1–2 s, while the time taken for the flow to be established throughout
the contraction is L/(g′H)1/2, where L is the length of the contraction, and is also of
the order of 1–2 s. In general the fluid of intermediate density flows as an intrusion in
one direction, while the other fluids flow in the opposite direction above and below;
thus there are usually two interfaces at the constriction. For some parameters, the
densest fluid flows in the same direction as the intermediate fluid, and there are also
cases where one layer is stationary. Examples of the flows are shown in figure 6.

The exchange flows are not completely steady because the flow alters the conditions
in the reservoirs, which in turn may alter the flow at the constriction. However, where
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(a)

(b)

(c)

Figure 6. Examples of flows through the constriction with fluid 2 dyed with fluorescein and lit
by a sheet of light. (a) Initially no fluid 1 to the right of the barrier (an example of case A flow,
y1− = 0.5, y1+ = 0); interfacial waves formed on both interfaces. (b) Fluid 1 present on both sides
of the barrier (an example of case B flow. y1− = 0.5, y1+ − 0.5); for these parameters interfacial
waves form on the upper interface only, (c) Another case B flow (y1− = 0.25, y1+ = 0.5); interfacial
waves are present on the upper interface and there is a small hydraulic jump on the lower interface
to the left of the contraction.

the flow is supercritical between the constriction and the reservoir (typically with a
hydraulic jump to match the channel and reservoir flows), then changing reservoir
conditions will not alter the exchange flow. Even if the flow is subcritical we can still
make useful estimates of interface heights and fluxes at the constriction, provided the
reservoir conditions are not changing too rapidly.

The interfaces were often seen to be unstable to interfacial waves, with these
waves generally propagating away from the constriction. For two-layer flows, critical
conditions are necessary (but not sufficient) for instability (Dalziel 1991). Where waves
are visible on both interfaces we take this as indicating a fully controlled flow with
supercritical conditions either side of the control. If at least one interface is smooth
then we take this to indicate that the flow is possibly not fully controlled. These waves
are described and discussed further in § 6. If the flow is not fully controlled, then it
may respond to the changing reservoir conditions and we do not have a properly
steady flow at the constriction.
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Figure 7. Results from the theory (lines) and laboratory experiments (symbols) for flows with only
fluid 2 to the right of the barrier (case A: y1+ = 0) showing the variation of (a) interface heights
and (b) fluxes with the position of the interface to the left of the barrier, y1−. The density differences
across the two interfaces are equal, i.e. r1 = 0.5.

5. Results
In this section we illustrate the three-layer exchange flows resulting from several

sets of reservoir conditions (defined in figure 5) and describe the dependence of the
flow upon the parameters describing the stratification. As mentioned above, all the
flows have y2− = y3+ = 0, i.e. fluid 2 not present to the left of the constriction, fluid
3 not present to the right.

5.1. Case A

In these experiments the fluid in the right-hand reservoir was of uniform density, ρ2,
i.e. y1+ = 0. In the left-hand reservoir there was a two-layer stratification with fluids
of density ρ1 and ρ3. Thus only two (independent) parameters are required to describe
the initial conditions: the stratification parameter, r1, and the height of the interface
in the left-hand reservoir, y1−. The results presented here are for the case r1 ≈ 0.5.

If the flux in a given layer is non-zero and that layer has vanishing thickness in
a reservoir, then the Froude number for that layer → ∞ and it can be shown that
the flow must be supercritical with respect to at least one mode (Smeed 2000). If one
layer (with non-zero flux) is vanishingly thin the flow is supercritical with respect to
only one mode, while if two layers are vanishingly thin the flow is supercritical with
respect to both internal modes. In reality, the flow in the reservoirs will be subcritical,
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the layers will have small but finite thickness, and hydraulic jumps will be required
to connect the reservoirs to the channel flow.

For our case A, the appropriate solution approaching the left-hand reservoir is
the branch of equations (9) with one-mode supercritical and with the depth of layer
2 tending to zero (y2− → 0). The appropriate solution approaching the right-hand
reservoir is one for which y1+ → 0 and y3+ → 0; in this case both the modes are
supercritical. The conditions in the left-hand reservoir prescribe H1 + H2, but the
remaining three parameters, q1, q2, and H1 −H2, are determined by the conditions at
the three controls. Note that two of the controls coincide at x = 0. This is in contrast
to the case of a sill (Smeed 2000) for which the controls are not coincident.

According to the theoretical results (for r1− = 0.5), there is a non-zero flux in all
layers for 0.27 < y1− < 0.73. For y1− 6 0.27 solutions of the above form cannot be
found. Instead layer 1 is arrested, while layer 3 is arrested for y1− > 0.73. However,
the arrested fluid is still present in the centre of the channel as an arrested wedge
for 0.20 < y1− < 0.27 and 0.73 < y1− < 0.80, similar to arrested wedges in forced
two-layer flows. As y1− → 0.27+ (i.e. from above), the virtual control xv → ∞. For
y1− = 0.27, the depth of layer 1 vanishes as x→∞; while for y1− < 0.27 the depth of
layer 1 vanishes at a point xw , with xw → ∞ as y1− → 0.27−, xw = 0 for y1− = 0.20
and xw → −∞ as y1− → 0+.

Experimental and theoretical results (interface heights at the constriction and layer
fluxes) for y1+ = 0, with 0 6 y1− 6 1, are shown in figure 7. The interfaces at the
contraction rise in response to a higher interface in the left-hand reservoir. The flux in
the intermediate intruding layer is fairly constant, while the flux in each of the other
two layers increases with increasing thickness of that layer in the reservoir. There is
good agreement between the experiments and the theory.

5.2. Case B

In these experiments the left-hand reservoir again has a two-layer stratification (with
fluids of density ρ1 and ρ3), but the right-hand reservoir now also has a two-layer
stratification (but with fluids of density ρ1 and ρ2), i.e. y1+ 6= 0. In this case three
parameters are required to describe the initial conditions: the stratification r1, and
the heights of the interfaces in the reservoirs, y1− and y1+. Most of the experiments
were with flows where the density differences ρ1−ρ2 and ρ2−ρ3 were equal, r1 ≈ 0.5,
so that the density of fluid 2 is the mean of fluids 1 and 3.

5.2.1. y1− = 0.5 and 0 6 y1+ 6 1

The experimental and theoretical results for the case y1− = 0.5 with 0 6 y1+ 6 1
are shown in figure 8. For y1+ = 1 there is no fluid 2 and the flow is the maximal
two-layer exchange between layers 1 and 3.

For y1+ a little less than 1 the fluxes in the layers are the same as for y1+ = 1, but
there is a stagnant wedge of fluid 2 to the right of the contraction. As y1+ is decreased
the nose of the wedge moves towards the constriction. According to the theory the
nose of the wedge is at x = 0 for y1+ = 0.75. Decreasing y1+ further reduces the
flux in layers 1 and 3, and increases the depth of layer 2 at the contraction but,
according to the theory, there is no flux in layer 2 until y1+ = 0.5. The values of y1+

at which these transitions occur in the experiments agree well with the theory, but
other parameters, for example the flux in layers 1 and 3, differ significantly from the
theory.

In fact the experimental results for y1+ = 0.5 are much more closely matched
by theoretical results with y1− = 0.6 than by the theoretical results with y1− = 0.5.
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Figure 8. Results from the theory (lines) and laboratory experiments (symbols) for flows with the
interface to the left of the barrier at half the total depth (y1− = 0.5), showing the variation of (a)
interface heights and (b) fluxes with the position of the interface to the right of the barrier, y1+.
The density differences across the two interfaces are equal, i.e. r1 = 0.5. Also shown are theoretical
results for y1− = 0.6.

As soon as the experiment is initiated fluid flows from one reservoir to the other,
thus changing the reservoir conditions (increasing y1− beyond 0.5). Thus the finite
nature of the experimental reservoirs and the absence of fully controlled conditions
at the contraction are important in determining the flow observed during most of
the experiment. Where the theoretical flow changes sharply for a small change in
reservoir conditions (in this case as y1− increases beyond 0.5), care must be taken in
interpreting the theoretical results. It is likely that better agreement would be obtained
if the volumes of the reservoirs were greater. Also, when the experiment is started
bores may propagate away from the contraction, modifying the effective reservoir
conditions (Lane-Serff & Woodward 2000). However, when the width of the reservoir
is much greater than the contraction we expect this effect to be small. The finite
volume of the reservoirs is likely to be the most significant factor in the experiments
reported here.

Decreasing y1+ below 0.5, there is a non-zero flux in layer 2. In the left-hand
reservoir the appropriate solution branch of equations (9) is the one with y2− → 0,
while in the right-hand reservoir y3+ → 0; this is same type of solution as y in figure
3, and there is a bounded region of subcritical flow between the two controls.

According to the theory the flux in layer 2 is a maximum for y1+ = 0.25. For
y1+ less than this value a third control is introduced into the flow and one of
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Figure 9. Results from the theory (lines) and laboratory experiments (symbols) for flows with the
density difference between fluid 1 and fluid 2 twice that between fluid 2 and fluid 3, i.e. r = 0.67,
for y1− = 0.5, showing the variation of (a) interface heights and (b) fluxes with y1+ 6 1. Compare
these results with the equivalent results for r1 = 0.5, figure 8.

the Bernoulli constants is determined by the solution to the hydraulic functional.
A hydraulic control is necessary to match the solution to the conditions in the
right-hand reservoir. Figure 8 indicates that for y1+ < 0.25 the agreement is much
better than for large values of y1+ (when both Bernoulli constants are set by the
reservoirs and the flow is thus much more sensitive to the finite size of the reser-
voirs).

A few experiments were conducted for y1− = 0.5 with the density difference between
fluid 1 and fluid 2 twice that between fluid 2 and fluid 3 (and thus r1 = 0.67). The
results are shown in figure 9. The results are very similar to the corresponding
experiments with r1 = 0.5 (figure 8), again highlighting the care that must be taken
when close to transition points in the parameter space.

5.2.2. y1+ = 0.5 and 0 6 y1− 6 1

Results for y1+ = 0.5, with 0 6 y1− 6 1 are shown in figure 10. According to the
theory, for y1− > 0.75 there is a two-layer exchange between fluids 1 and 2, and
a stagnant wedge of layer 3, the apex of which moves towards the constriction as
y1− → 0.75. On decreasing y1− further there is a non-zero flux in layer 3 and a, rapid
decrease in the fluxes of fluids 2 and 3. For 0.5 < y1− < 0.75 there are two controls
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Figure 10. Results from the theory (lines) and laboratory experiments (symbols) for flows with the
interface to the right of the barrier at half the total depth (y1+ = 0.5), showing the variation of (a)
interface heights and (b) fluxes with the position of the interface to the left of the barrier, y1−. (c)
Sketches of the flow types for y1+ = 0.5 with (i) y1− > 0.5, (ii) 0.5 > y1− > 0.45 and (iii) y1− < 0.45.
The density differences across the two interfaces are equal, i.e. r1 = 0.5.

bounding a subcritical regions between regions in which one mode is supercritical.
This is the same as the flow type y in figure 3.

For y1− less than 0.5 the flow changes qualitatively to one in which there
is a hydraulic jump in the left-hand reservoir. This transition is illustrated
schematically in figure 10(c). According to the theory there is a second transition
at y1− = 0.45. For smaller values of y1−, there are three controls and both modes
are supercritical before the hydraulic jumps. The case y1+ = 0.5 and y1− = 0.25
is shown in figure 6(c). There does indeed seem to be one, or possibly two, hy-
draulic jumps in the left-hand reservoir. The first, close to the constriction, affects
the upper interface principally and the second has a greater effect on the lower
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interface. These jumps can be distinguished from the interfacial waves in the exper-
iments because the jumps are stationary whereas the waves are swept away from the
contraction.

5.2.3. 0 < y1+ < 1 and 0 < y1− < 1

The interface heights and fluxes for all of the laboratory experiments with r1 = 0.5
are summarized in contour plots in figure 11. A few observations can be made from
these plots.

The depth of layer 1 is dependent principally on the average depths of that layer
in the two reservoirs (figure 11a), and the depth of layer 3 at the contraction is
dependent principally on the depth of that layer in the left-hand reservoir (figure
11b). The dependences of the fluxes are more complex. However, the flux in layer 1
depends most strongly on the change in depth of that layer between the two reservoirs
(figure 11c), and the flux in layer 2 depends most strongly upon the depth of that
layer in the right-hand reservoir (figure 11d). The flux in layer 3 depends mostly upon
the depth of that layer in the left-hand reservoir (figure 11e).

These trends are broadly in agreement with the theoretical results (as illustrated in
figures 8, 9 and 10). The theory does in general indicate greater nonlinearity in the
dependence upon the reservoir conditions than is observed.

6. Discussion
6.1. Instability and waves

The interfacial waves observed in the laboratory experiments give some information
about the character of the flow. Three main types of behaviour were observed (and
are summarized on figure 12): (i) waves formed on both interfaces, with the waves
propagating and growing away from the constriction in both directions, labelled
‘divergent/divergent’; (ii) waves formed only on the interface between fluids 2 and
3 (propagating and growing away from the constriction in both directions) with
the other interface smooth, labelled ‘divergent/smooth’; (iii) waves formed on the
interface between fluids 2 and 3, propagating and growing only to the right, with the
other interface smooth or absent at the constriction, labelled ‘right/various’.

The three wave regimes observed in the laboratory experiments correspond to three
types of theoretical flow, which can be illustrated with three examples: (y1−, y1+) =
(0.5, 0), (0.5, 0.35) and (0.5, 0.65). Once the theoretical fluxes and interface heights have
been found along the channel, we can solve equation (25) to find the wave speeds at
various positions along the channel and use equation (29) to identify the wave modes
(see figure 13).

For the first case (y1+ = 0), the theory implies that the flow is supercritical with
respect to mode 2 waves everywhere except at x = 0, where it is critical. For mode 1,
the flow is subcritical for x < 0, and indeed for x < xv , where this mode is critical. To
the right of xv , the flow is supercritical with respect to mode 1. All the wave speeds
for this case are real for all x. For the laboratory experiments with these parameters
the observed interfacial waves are in the ‘divergent/divergent’ regime, growing and
propagating away from the constriction.

As y1+ increases, the flow at the constriction remains the same, with the lower
interface undergoing a hydraulic jump to match onto the reservoir condition until, at
y1+ = 0.25, the virtual control is flooded so that for the second case (y1+ = 0.35) the
theory implies that the flow is subcritical with respect to mode 1 everywhere. There
is now a virtual control with xv < 0, and to the left of this the flow is supercritical
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Figure 11. Contour plots of results from the laboratory experiments showing (a, b) interface heights
and (c, d, e) fluxes as functions of the interface heights to each side of the barrier, y1− and y1+ for
r1 = 0.5.
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Figure 12. Different interfacial wave regimes observed in the laboratory experiments in the
(y1−, y1+)-parameter space. r1 = 0.5.
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Figure 13. Theoretical calculations of the interface positions along the channel for the cases (a)
(y1−, y1+) = (0.5, 0), (b) (0.5, 0.35) and (c) (0.5, 0.65). These are similar regimes to the experimental
flows in figure 6.
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with respect to mode 2. At the virtual control the flow is critical (with respect to
mode 2), and then subcritical between the virtual control and x = 0. For x > 0,
the flow is supercritical with respect to mode 2 and the wave speed is complex.
The corresponding laboratory experiments are in the ‘divergent/smooth’ regime with
waves on only one of the interfaces.

As y1+ increases further, the virtual control moves to the left away from the
constriction and layer 2 becomes blocked (q2 = 0). For the third case (y1+ = 0.65),
the flow is subcritical everywhere with respect to mode 1, while it is subcritical with
respect to mode 2 to the left of the constriction, critical at x = 0 and supercritical
(with complex wave speed) for x > 0. In this case the laboratory experiments are in
the ‘right/various’ regime, with waves forming on one interface and propagating in
one direction only.

Thus, while the different types of observed wave behaviours correspond to different
theoretical regimes, the relationship is not straightforward. The observed instabilities
are of finite wavelength and amplitude, so not directly related to the theory given
here (which is for linear perturbations of long wavelength). Theoretical treatments of
stratified shear flow instabilities generally predict fastest growth at short wavelengths.
A stability theory including short-wavelength and finite-amplitude perturbations may
give more accurate predictions.

6.2. Oceanographic implications

The laboratory and theoretical results illustrate how the flow through the constriction
responds to changes in the density structure in the two reservoirs. In particular, we
can identify the conditions necessary for flow in one or other of the layers to be
arrested or reversed. In the context of the Red Sea, the changes in the observed flow
in response to the monsoon winds can be interpreted in terms of the changes in
the interface depths. The main change in the stratification on each side of Bab al
Mandab between the winter and summer monsoon is that upwelling in the Gulf of
Aden during the summer monsoon results in a much shallower surface layer there
(see figure 1). In terms of our non-dimensional notation, the interface on the Red Sea
side of the strait remains approximately constant (y1− ≈ 0.5), while y1+ changes from
a large value in the winter to a smaller value in the summer. Referring to figure 8,
we can see that these changes in the interface positions account for changes in the
flow direction of fluid 1 (the surface layer in Bab al Mandab) and the arresting of
fluid 2 (the Gulf of Aden intermediate water), as well as changing the strength of the
outflow of Red Sea Overflow Water. In addition to the change in interface level, there
is also a seasonal change in the density of the surface water and thus in the relative
strengths of the interfaces, with r1 varying from approximately 0.5 (in the winter) to
approximately 0.67 (in the summer). Further details are given in Smeed (1997, 2000).

More generally, the accurate representation of flow through straits in ocean cir-
culation models is very challenging, because the resolution is usually inadequate.
The hydraulic approach we give here provides a possible method for parameterizing
these flows. This approach is particularly suited to isopycnic models, in which the
stratification is already expressed in terms of the thickness of discrete layers of fixed
density. The laboratory experiments draw attention to the care that must be taken in
using such a theoretical model. For some flows small changes in reservoir conditions
and effects not included in the model (e.g. viscosity, rotation) may result in flows with
substantially different fluxes than initially predicted.
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7. Summary and conclusions

We have extended hydraulic control theory to flows with multiple layers, which
allows the calculation of flows through a constriction driven by the stratification
on each side of the constriction. This powerful technique is illustrated with detailed
calculations for some three-layer pure exchange flows (i.e. zero net flux), which
give reasonable agreement with a corresponding set of laboratory experiments. The
laboratory experiments highlight details of the flow (instability and wave formation)
which could be explored in more detail.

In these hydraulic problems the flow is determined by the stratifications in the
reservoirs. In general the Bernoulli potentials will not take the same value in both
reservoirs. The exchange flow is then composed of a flow satisfying equations (6),
in which the Bernoulli potentials are constants, connected to the reservoirs via one
or more hydraulic jumps at which the Bernoulli potentials may change. There are
thus two steps to solving these fluid flow problems. First, one must determine the
appropriate values of the Bernoulli constants and the appropriate branches of the
solution for the Bernoulli-potential-conserving section of the flow. Second, one must
solve the functional problem represented by equation (7), to determine the values of
the fluxes and the structure of the flow.

In this paper we have focused our attention mainly upon the second step. The
numerical technique applied can readily be extended to flows with more than three
layers. However, the number of controls will in general be greater, adding to the
computational difficulty. For most of the reservoir stratifications used in this paper
the first step has been straightforward. In all cases, it was required that there be no
net energy gain at the jump. However, satisfying this condition is not sufficient to
determine the existence of a flow type. It is necessary to solve the functional solution
to verify the solution.

Whenever a layer is absent in a reservoir we have assumed that the appropriate
branch of the solution is the supercritical flow in which that layer depth tends to
zero as |x| → ∞. There are some exceptions to this rule, for example the flow types
sketched in figure 10(c) (i, ii) that occur for y1− > y1+ with r1 = 0.5. In this paper
these exceptions were determined by examining the behaviour of the solutions as the
parameter values were varied. Increasing the number of layers will significantly add
to the difficulty of this step.

While the theory is presented in general terms, more detailed calculations could
be conducted for flows with a net, forced flux through the channel and for more
complicated channels, including non-rectangular and having combinations of sills and
narrows. A further area that we will investigate is the effect of rotation on the flow.
The hydraulic functional formulation is suitable for incorporating this effect when the
potential vorticity is uniform in each layer (Gill 1977; Dalziel 1990). An interesting
aspect of rotating multi-layer flows is that the different wave modes may be affected in
different ways. For the flow through Bab al Mandab, for example, the Rossby radius
based on the speed of mode 1 internal waves is significantly larger than the width
of the strait (and so rotation would have little effect on this mode), while the Rossby
radius for the second wave mode is of the same order as the width of the strait (Pratt
et al. 1999). Thus the importance of rotation depends on how the flow is controlled.
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Appendix A. Numerical solutions
For the examples given in this paper the channel geometry is described by

b(x) = bm + (1− bm)e−x
2

, (A 1)

The maximum non-dimensional width, bm, was set equal to 3.5, approximately equal to
the ratio of the reservoir width to the constriction width in the laboratory experiments.

For given values of the fluxes and the Bernoulli constants, solutions for the layer
thicknesses, yi, as a function of x were obtained as follows. Given values y1(x), y2(x)
estimates of y1(x + δx), y2(x + δx) were calculated using a forward difference form
of equations (9). These estimates were then used as an initial guess for a numerical
procedure to find solutions to equations (6.1) and (6.2) at x + δx. To ensure that
solutions were obtained for the correct branch, the value of δx was varied so that
smaller values were used when the gradients of the yi were large or when a control
was approached.

Values of the fluxes and Bernoulli constants (if they are not defined by the reservoir
conditions) were obtained by solving a set of coupled nonlinear equations. For flows
with m controls the number of equations to be solved is 4m − 1. These are: the two
Bernoulli equations (6.1) and (6.2) at each control, the criticality equation (27) at each
control, and the regularity condition (28) at each control except the geometric control.
The variables for these equations include y1, y2 at each control, and the locations xv
of each of the m − 1 virtual controls. The remaining m variables are the unknown
flux (one control), two fluxes (two controls) or two fluxes and one Bernoulli constant
(three controls).

If one of the virtual controls is located at the geometric control then the four
equations (and three variables) corresponding to the virtual control are redundant.
These are replaced by a single equation:

∂ det M

∂x
= 0 at x = 0 (A 2)

If the flux in one layer is zero, then the equations to be solved will be modified. For
example, the case of a stagnant middle layer is discussed in Smeed (2000).

Appendix B. Determining Bernoulli constants in the channel
The basic state considered in figure 3, type 0, is one in which the stratification is

the same in both reservoirs (y1− = y1+ = 0.4, y2− = y2+ = 0.2). Here we consider
small variations about this basic state. The difference between the height of the upper
interface in the right- and left-hand reservoirs is

∆ Upper = y1+ − y1−. (B 1)

The corresponding difference for the lower interface is

∆ Lower = y1+ + y2+ − y1− − y2−. (B 2)

In the reservoirs the Bernoulli constants are (noting that h = 1) given by

H1± = ry1±, (B 3)
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H2± = (1− r)(y1± + y2±), (B 4)

where + (−) refers to the right- (left-) hand reservoir. Applying the condition that
there be no energy gain at a jump, we can now examine the conditions under which
each of the flows illustrated in figure 3(b) can occur. The results are illustrated in
figure 3(c). Note, however, that the energy conditions presented below are necessary
but not sufficient conditions for the flow to occur. The existence of the flow must be
verified by solution of the functional equations. Thus, these results are valid only for
small departures from the example of type 0 given in figure 3.

A full description of the possible flow states as a function of the full (five-
dimensional) parameter space of possible reservoir conditions is beyond the scope of
this paper. However, some of the other possible flow types are described at the end
of this Appendix. First we consider the flow types illustrated in figure 3.

Type a In this case the upper layer must have the same depth in both reservoirs i.e.

∆ Upper = 0. (B 5)

So that the energy condition is satisfied, the Bernoulli constant, H2, is determined
by the lesser of H2+ and H2−, i.e. type a occurs for ∆ Lower < 0 and type a′ for
∆ Lower > 0.

Type b In this case the lower layer must have the same depth in both reservoirs, i.e.

∆ Lower = 0. (B 6)

So that the energy condition is satisfied, the Bernoulli constant, H1, is determined
by the greater of H1+ and H1−, i.e. type b occurs for ∆ Upper < 0 and type b′ for
∆ Upper > 0.

Type c In this case the sum H1 +H2 is the same in both reservoirs. When r = 0.5
this is equivalent to

∆ Upper + ∆ Lower = 0. (B 7)

The energy condition implies that the Bernoulli constants H1 and H2 are set by the
reservoir for which H2 −H1 is the greatest. For r = 0.5 this is the right- (left-) hand
reservoir when ∆ Upper < (>)0, giving type c(c′).

Type x For type x, H1 is set by the left-hand reservoir and H2 is set by the right-
hand reservoir; thus the energy conditions require that H1+ < H1− and H2+ < H2−.
When r = 0.5, this is equivalent to

∆ Upper < 0 and ∆ Lower < 0. (B 8)

Similarly for type x′ the conditions are that

∆ Lower > 0 and ∆ Upper > 0. (B 9)

Type y In this case H2 is set by the right-hand reservoir and H1 +H2 is set by the
left-hand reservoir, so that H2 = H2+ and H1 = H1− + H2− − H2+. Thus the energy
conditions are H2 − H1 > H2− − H1− and H1 > H1+ implying that H2+ > H2− and
H1+ +H2+ < H1− +H2−. When r = 0.5, this is equivalent to

∆ Upper + ∆ Lower < 0 and ∆ Lower > 0. (B 10)

Similarly for type y′ the conditions are that

∆ Upper + ∆ Lower > 0 and ∆ Lower < 0. (B 11)

Type z In this case H1 is determined by the left-hand reservoir and H1 +H2 is set
by the right-hand reservoir, so that H1 = H1− and H1 = H1+ +H2+ −H2−. Thus the
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i ii iii

iv v vi

Figure 14. (i–iii) Examples of flow types with two controls in which there is a region where the
flow is subcritical with respect to both modes and another region where the flow is supercritical
with respect to both modes, (iv–vi): Examples of flow types with three controls.

energy conditions are H2 −H1 > H2− −H1− and H2 < H2+ implying that H1+ < H1−
and H1+ +H2+ > H1− +H2−. When r = 0.5, this is equivalent to

∆ Upper + ∆ Lower > 0 and ∆ Upper < 0 (B 12)

Similarly for type z′ the conditions are that

∆ Upper + ∆ Lower < 0 and ∆ Upper > 0. (B 13)

Further flow types Reservoir conditions significantly different from the basic state
in figure 3 can give rise to different flow types; some examples were discussed in § 5.
Six of these other types are illustrated in figure 14.

Types i–iii are further examples of flows with two controls, but in these flows both
Bernoulli constants are set in the left-hand reservoir. Approaching the right-hand
reservoir both modes are supercritical.

Types iv–vi are examples of flows with three controls. For these flow types only
one of the Bernoulli constants is determined by reservoir conditions (in the left-
hand reservoir), the other is determined by the solution of the hydraulic functional.
Approaching the right-hand reservoir both modes are supercritical, and approaching
the left-hand reservoir one mode is supercritical. Note that type v was discussed in
§ 5.1 (case A, when there was non-zero flux in each of the layers), and also § 5.2 (case
B, when y1+ < 0.25 (for r = 0.5)).
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