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The process of software testing usually involves the correction of a detected bug immedi-
ately upon detection. In this article, in contrast, we discuss continuous time testing of a
software with periodic debugging in which bugs are corrected, instead of at the instants
of their detection, at some pre-specified time points. Under the assumption of renewal
distribution for the time between successive occurrence of a bug, maximum-likelihood
estimation of the initial number of bugs in the software is considered, when the renewal
distribution belongs to any general parametric family or is arbitrary. The asymptotic prop-
erties of the estimated model parameters are also discussed. Finally, we investigate the
finite sample properties of the estimators, specially that of the number of initial number
of bugs, through simulation.

Keywords: asymptotic distribution, non-parametric estimation, parametric estimation, periodic
debugging, renewal process, software testing

1. INTRODUCTION

Software testing is a process to check the functionality of a software. Specifically, it is to
check whether the output produced by a software in response to a given input meets the
specified requirements or not. A software may fail due to numerous diverse causes. A single
bug/fault in the software can give rise to more than one instances of error/failure. While
testing a software, the tester tries to identify the errors with the corresponding bugs which
are responsible for their occurrences. Consequently, these bugs are removed or corrected
(i.e., debugging) in order to make the software more reliable.
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Software reliability modeling is based on software failure process, which can be modeled
either through the inter-failure times or through the point process generated by software
failures. Jelinski and Moranda [15] introduced the pioneering model of software reliability
based on inter-failure times of the software. Alleviating few objections to the basic Jelin-
ski–Moranda model, a geometric de-eutrophication model was proposed by Moranda in [20]
and a birth process approach to this geometric software reliability model was discussed by
Boland and Singh in [2]. Based on the point process modeling approach, Goel and Oku-
moto [9] and Musa and Okumoto [21] considered smooth deterministic decreasing function
(exponential and logarithmic form, respectively) for the software failure rate resulting in a
Non-homogeneous Poisson process (NHPP) modeling of the software failure. Lin and Pham
[17] considered imperfect debugging based on an NHPP software reliability growth models
(SRGMs), while Huang and Lyu [12] and Okamura et al. [25] considered estimation of the
related parameters. See also Nishio and Dohi [23], Kim et al. [16] and Pavlov et al. [26]. A
semi-parametric software reliability model has been proposed by Vignesh et al. [32] to ana-
lyze a bug database having multiple types of bugs. Extensive surveys on software reliability
models can be found in [4, 19, 27, 28, 31, 36].

A critical assumption used in most of the software reliability models discussed above
is that the bugs are removed or corrected as and when they are detected. However, in
practice, there exists a time delay between the bug detection and the bug correction process
[13]. Several researchers (for example, Xie et al. [35], Wu et al. [34] and Wang et al. [33]
among others) studied different software reliability models considering both software bug-
detection and delayed bug-correction process. Software reliability estimation under a delayed
debugging scenario with multiple software release was also studied by Yang et al. [37]. A
generalized modeling framework of bug detection and correction processes with bivariate
distribution is studied by Okamura and Dohi [24]. Under the Markov model assumption
(unlike the NHPP, as before), Liu et al. [18] studied a software reliability model while
considering a separate as well as delayed debugging process. Gokhale et al. [10] also discussed
reliability estimates under various debugging policies according to which debugging may be
conducted.

In contrast to constant or random delayed debugging considered in the previous works,
in many practical situations, specifically in numerous in-house software testing, there are
some prefixed time points when debugging of the detected bugs takes place. The software
testing continues till the latest debugging time and the detected bugs are removed at the
subsequent scheduled time of debugging. This kind of software debugging policy, named as
periodic debugging schedule, may be necessary when subsequent versions of the software are
released at different times and testing continues with the most recent version. However, the
software reliability with periodic debugging has got scanty attention in the literature. Das
et al. [6] have considered such periodic debugging schedule under the HPP assumption for
the error occurrences due to each bug. Later, a discrete software reliability model has been
developed by Das et al. [5]. The main objective of this work is to study the software reliability
model, under the periodic debugging schedule, considering that the error occurrences due
to each bug follow a general renewal process. This work, therefore, generalizes the HPP
assumption (that is, the exponential renewal distribution) of Das et al. [6] by considering
any general renewal distribution. In this work, we focus on estimating ν, the number of
initial bugs in the software. Under the renewal process assumption, the maximum likelihood
estimator (MLE) of ν as well as its asymptotic distribution has been obtained under both
the parametric and non-parametric frameworks. Therefore, this work can be viewed as
a generalization, in the context of periodic debugging, of Dewanji et al. [7] and Dewanji
et al. [8], who have developed parametric and non-parametric methods, respectively, for
estimating ν based on software testing data with instantaneous debugging and recapture
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sampling, thus allowing more information than our periodic debugging schedule. In fact,
the data configuration of this work reduces to that of [8, 7] when there is only one single
debugging period.

The article is organized as follows. In Section 2, we describe the data arising from the
periodic debugging schedule under a continuous time scale and construct the likelihood
function under the renewal process assumption. Computational methods for obtaining a
parametric and a non-parametric estimate of ν along with the corresponding asymptotic
properties are provided in Sections 3 and 4, respectively. Section 5 reports results of a
simulation study to investigate the properties of the estimators developed in Sections 3 and
4. Section 6 contains some concluding remarks.

2. MODELING AND LIKELIHOOD

We assume that there are initially ν bugs in the software. The error occurrence times
due to each of these bugs follow a renewal process with common renewal density function
f(·). We also assume the ν bugs to be independent with respect to the corresponding
error occurrences. Note that the renewal process assumption for modeling inter-failure or
inter-event time is very common and widely used in various applications ([3, 14, 15, 30]).

In periodic debugging schedule, suppose there are k prefixed time points, 0 < τ1 <
· · · < τk < ∞, at which debugging is scheduled to take place. We observe the total number
of error occurrences, hereafter referred to as failures, M(≥ 0) between τ0 = 0 and τk along
with the identities of the corresponding bugs. The M failures may correspond to fewer than
M distinct bugs, since a particular bug may trigger more than one failure. Let M (d)(≥ 0)
denote the total number of distinct detected bugs, resulting in M failures. Suppose that the
ith distinct bug appears for the first time in the lith interval (τli−1, τli ], for i = 1, . . . ,M (d);
in addition, suppose that it appears mi − 1 more times (totaling mi times) in that interval
before being debugged at τli , with certainty and in a negligible amount of time without
introducing any other new bug (perfect debugging). We also observe tij

, the inter-event
(renewal) times of these mi failures, for j = 1, . . . ,mi, with ti1 being the first appearance
time in (τli−1, τli ]. Therefore,

∑mi

j=1 tij
≤ τli , and the difference τli −

∑mi

j=1 tij
, denoted by ci,

is the last censored event time for the ith detected bug. It is to be noted that
∑M(d)

i=1 mi = M .
As we have assumed that the bugs follow a renewal process with common arbitrary

renewal density function f(·), the likelihood contribution for the ith detected bug with
observed renewal times (ti1 , . . . , timi

) within (τli−1, τli ] is calculated as (
∏mi

j=1 f(tij
))F̄ (ci)

with ci as defined above, for i = 1, . . . ,M (d), where F̄ is the corresponding survival function.
Also, the likelihood contribution for each of the (ν − M (d)) undetected (by time τk) bugs
is F̄ (τk). Since the bugs are assumed to be independent with respect to the corresponding
error occurrences, we have the overall likelihood function as

L(ν, f) =
ν!

(ν − M (d))!
[F̄ (τk)]ν−M(d)

M(d)∏
i=1

⎡⎣⎛⎝mi∏
j=1

f(tij
)

⎞⎠ F̄ (ci)

⎤⎦ , (1)

where the first factor gives the number of ways M (d) bugs out of a total of ν bugs are detected
in the observed order. See Nayak [22] for details. It is to be noted that ν is the parameter
of primary interest while the renewal distribution may be treated as nuisance. In the fol-
lowing two sections, we develop a parametric and a non-parametric method, respectively,
for estimating ν.
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3. PARAMETRIC ESTIMATION

Let us assume that the renewal distribution has a parametric form with the associated
parameters φ (possibly, vector valued). Therefore, the likelihood function in (1) will be an
explicit function of ν, φ and can be written as

L(ν, φ) =
ν!

(ν − M (d))!
[F̄ (τk, φ)]ν−M(d)

M(d)∏
i=1

⎡⎣⎛⎝mi∏
j=1

f(tij
, φ)

⎞⎠ F̄ (ci, φ)

⎤⎦ . (2)

In order to find the MLE of ν, the likelihood function in (2) needs to be maximized w.r.t.
ν and φ. For a fixed value of φ, it can be seen that (2) is maximized over ν at

ν(φ) =

⌊
M (d)

1 − F̄ (τk, φ)

⌋
, (3)

where �z� is the largest integer less than or equal to z. However, for a fixed value of ν,
maximization of the likelihood function in (2) is needed to be maximized numerically, for
most of the renewal distributions. We propose the following algorithm to find the MLEs of
ν and φ.

Algorithm 1:

• Step 1: Start with an initial estimate ν0 of ν. Since ν ≥ M (d), we take ν0 = M (d).
• Step 2: Put ν = ν0 in (2) and then maximize L(ν0, φ) w.r.t φ to obtain

φ
0

= arg max
φ

L(ν0, φ).

Note that this maximization is to be done numerically.
• Step 3: Obtain ν1 = ν̂(φ

0
) using (3).

• Step 4: Go to Step 2 with ν1 replacing ν0 and iterate until it converges.

It is to be noted that the MLE of ν and φ may not always exist. As an example,
for exponential renewal distribution, a necessary and sufficient condition for existence and
uniqueness of MLE is M �= M (d) or M ≤ 1 + (2/τk)

∑k
i=1(

∑i−1
j=1

∑ν
l=1 I{tl1∈(τj−1,τj ]})(τi −

τi−1) (see [6]). Clearly, by the nature of it, the likelihood function (2) is non-decreasing over
the successive steps of Algorithm 1. However, it is to be noted that this algorithm often
fails to converge to the MLE due to the discrete nature of the parameter ν. In particular,
in the iterative step, sometime the change in the value of M (d)/(1 − F̄ (τk, φ)) in (3) is too
small to make a change in its integer part. As a result, the updated value of ν in (3) remains
unchanged. Thus, the above procedure gets stuck at some value of ν and the corresponding
φ, which are not the true MLE. Therefore, one can incorporate a slight modification to the
algorithm, as described next. Specifically, in step 3 of Algorithm 1, one can use the actual
value of M (d)/(1 − F̄ (τk, φ)), instead of its integer part, to update the estimate of ν. When
we stop the process, based on convergence, we take the integer part of the latest estimate
of ν for the MLE of ν. Alternatively, one can maximize (2) by direct search by checking it
for all ν ≥ Md.

Let the parametric MLEs of φ and ν be denoted by φ̂ and ν̂pa, respectively. In order to
derive the asymptotic properties of φ̂ and ν̂pa, as ν → ∞, we follow the general results of
Dewanji et al. [7] and get the following theorem (See the appendix for proof of the theorem).
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Theorem 1: As ν → ∞,

[ν−1/2(ν̂pa − ν), ν1/2(φ̂ − φ)] L−→ N(0,Σ),

where the covariance matrix Σ, as defined in Eq. (A.7) in appendix, can be consistently
estimated by

Σ̂ =

⎛⎜⎜⎜⎜⎝
1 − F̄ (τk, φ̂)

F̄ (τk, φ̂)
− ∂

∂φT
log F̄ (τk, φ̂)

− ∂

∂φ
log F̄ (τk, φ̂) −ν̂−1

pa

∂2

∂φ∂φT
log L(ν̂pa, φ̂).

⎞⎟⎟⎟⎟⎠
−1

(4)

In particular, the asymptotic variance of ν̂pa can be consistently estimated by

ν̂pa

⎡⎣1 − F̄ (τk, φ̂)

F̄ (τk, φ̂)
− ν̂pa

∂

∂φT
log F̄ (τk, φ̂)

(
∂2

∂φ∂φT
log L(ν̂pa, φ̂)

)−1
∂

∂φ
log F̄ (τk, φ̂)

⎤⎦−1

.

(5)

Note that, our primary interest lies in the asymptotic distribution of ν̂pa. In the software
reliability context, this limiting context is reasonable as most of the software with practical
significance contain thousands of lines of code with large number of bugs.

4. NONPARAMETRIC ESTIMATION

In this section, we do not make any assumption about the functional form of the renewal
distribution f . To find the non-parametric MLE of ν, one needs to maximize the likelihood
function (1) with respect to ν and the density function f . Toward this, one notices that the
renewal distribution f is not involved in the first factor ν/(ν − M (d))! in (1). Therefore, in
order to estimate f for a given ν, the product of all terms, excluding ν!/(ν − M (d))!, should
be considered. It can be seen that the product of those terms has the form of the Kaplan
and Meier likelihood function with censored data. Thus, as in the case of Kaplan–Meier
estimator, it is sufficient to consider all renewal distributions with mass concentrated at the
observed renewal times {tij

, j = 1, . . . ,mi, i = 1, . . . ,M
(d)
i }, and possibly one extra time

point greater than the largest debugging time, τk. Let y1 < · · · < yn denote the distinct
ordered values of the time points tij

s and fl denote the frequency of yl, for l = 1, . . . , n. We
shall consider all the probability distributions with sample space {y1, . . . , yn, yn+1}, where
yn+1 > τk is a suitably chosen time point.

Now, by putting πl = P (X = yl), l = 1, . . . , n + 1, with
∑n+1

l=1 πl = 1, the likelihood
function (1) can be written as a function of ν and π as

L(ν, π) =
ν!

(ν − M (d))!
[πn+1]ν−M(d)

n∏
l=1

(πl)fl

⎡⎣M(d)∏
i=1

(
∑

xh>ci

πh)

⎤⎦ , (6)

where π = (π1, . . . , πn+1)T. This likelihood function (6) can be maximized to obtain
the MLE of ν and π = [π1, . . . , πn+1]T. To avoid the maximization with the constraint
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l=1 πl = 1, however, it is more convenient to work with the discrete hazard components

λl = πl

/⎛⎝n+1∑
j=l

πj

⎞⎠ , l = 1, . . . , n,

instead of the probability masses. Note that the transformation from [π1, . . . , πn+1] to
[λ1, . . . , λn] is one-to-one, with π1 = λ1,

πl = λl

l−1∏
j=1

(1 − λj), l = 2, . . . , n and πn+1 =
n∏

j=1

(1 − λj).

Also note that, πl + · · · + πn+1 =
∏l−1

j=1(1 − λj). Hence, likelihood function (6) can be
written in terms of the discrete hazards λ1, λ2, . . . , λn as

L(ν, λ) =
ν!

(ν − M (d))!

⎡⎣ n∏
j=1

(1 − λj)

⎤⎦(ν−M(d))
n∏

l=1

⎡⎣λl

l−1∏
j=1

(1 − λj)

⎤⎦fl
⎡⎣M(d)∏

i=1

⎛⎝ [ci]∏
j=1

(1 − λj)

⎞⎠⎤⎦
=

ν!
(ν − M (d))!

[
n∏

l=1

(λl)fl

][
n∏

l=1

(1 − λl)cl(ν)

]
, (7)

where �ci� is the largest integer less than or equal to ci, cl(ν) = (ν − M (d)) +
∑n

u=l+1 fu + kl

with kl = {i : �ci� ≥ yl}.
For a fixed ν, the likelihood function (7) is maximized by

λ̂l(ν) =
fl

fl + cl(ν)
, l = 1, . . . , n, (8)

and by substituting (8) in (7), we get the profile likelihood function L1(ν) = L(ν, λ̂(ν))) as

L1(ν) =
ν!

(ν − M (d))!

[
n∏

l=1

(λ̂l(ν))fl

][
n∏

l=1

(1 − λ̂l(ν))cl(ν)

]
. (9)

The MLE of ν, denoted by ν̂np, can be obtained by maximizing L1(ν) in (9) with respect
to ν. An iterative procedure, as described next, is used for finding this ν̂np. Note that, for
a fixed λ,

L(ν + 1, λ)
L(ν, λ)

=
ν + 1

ν + 1 − M (d)

n∏
l=1

(1 − λl) ≥ or < 1 (10)

if and only if

ν ≤ or > M (d)

[
1 −

n∏
l=1

(1 − λl)

]−1

− 1 (11)

This gives the MLE of ν, for a given λ, as

ν(λ) =

⎢⎢⎢⎣M (d)

[
1 −

n∏
l=1

(1 − λl)

]−1
⎥⎥⎥⎦ . (12)

The estimates (8) and (12) together suggests the following algorithm for estimating ν and λ.

https://doi.org/10.1017/S0269964820000303 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000303


SOFTWARE RELIABILITY BASED ON RENEWAL PROCESS MODELING 93

Algorithm 2:

• Step 1: Start with an initial estimate ν0 of ν. Since ν ≥ M (d), we may take ν0 = M (d).
• Step 2: Obtain λ0 = λ̂(ν0) using (8).
• Step 3: Obtain ν1 = ν̂(λ0) using (12).
• Step 4: Go to Step 2 with ν1 replacing ν0 and iterate until it converges.

Similar to the parametric estimation in the previous section, while updating ν in step
3 of Algorithm 2, one can use the actual value of M (d)[1 −∏n

l=1(1 − λl)]−1, instead of its
integer part. Also, when we stop the process, based on convergence, we take the integer
part of the latest estimate of ν as the non-parametric MLE of ν. Alternatively, as in the
previous section, one can use a direct search method by maximizing the likelihood (7) for
all values of ν ≥ M (d).

In an attempt to investigate the asymptotic properties of the non-parametric MLEs of
ν and λ obtained by the above method, denoted by ν̂np and λ̂, respectively, as ν → ∞, let
us initially assume that the true renewal distribution is a discrete probability distribution
with a finite sample space Ω = {w1, w2, . . . , wN}, N > n, where w1 < w2 < · · · < wN1 <
τk < wN1+1 < · · · < wN (N1 < N) with the corresponding probabilities being p1, . . . , pN .
Transforming the probabilities to discrete hazards, as described earlier, we obtain a para-
metric model with (ν, λ) as the parameters. The general asymptotic results of Dewanji et
al. [7], as described in Section (3) for the problem in hand, are then applied to this non-
parametric model with discrete hazards. Let (ν̂w, λ̂w) denote the MLE of (ν, λ) under the
assumed discrete model. Note that, under this model, the observed renewal times must be
a subset of Ω and our non-parametric MLE (ν̂np, λ̂) coincides with (ν̂w, λ̂w).

Then, using the argument of Sen and Singer [29], as in Dewanji et al. [7], we conclude
that, as ν → ∞, [ν−1/2(ν̂w − ν), ν1/2(λ̂ − λ)] L−→N(0,Σ∗), where the covariance matrix

Σ∗ =

⎛⎜⎜⎝
F (τk, λ)/F̄ (τk, λ) − ∂

∂λT
log F̄ (τk, λ)

− ∂

∂λ
log F̄ (τk, λ) −ν−1 ∂2

∂λ∂λT
log L(ν, λ)

⎞⎟⎟⎠
−1

can be consistently estimated by

Σ̂∗ =

⎛⎜⎜⎝
F (τk, λ̂)/F̄ (τk, λ̂) − ∂

∂λT
log F̄ (τk, λ̂)

− ∂

∂λ
log F̄ (τk, λ̂) −ν̂−1

np

∂2

∂λ∂λT
log L(ν̂np, λ̂)

⎞⎟⎟⎠
−1

. (13)

It is to be noted that, since no observed renewal time can be larger than τk, the distri-
bution of ν̂w is affected only by F (t), 0 ≤ t ≤ τk. The tail of F, over (τk,∞), has no effect
on any statistical property of ν̂w. In addition, one can approximate a cdf F (t) by a distribu-
tion with finite sample space at least within the finite interval [0, τk]. Hence, heuristically,
for any arbitrary renewal distribution, the asymptotic distribution of ν−1/2(ν̂np − ν), as
ν → ∞, can be approximated by that of ν−1/2(ν̂w − ν), for some suitable choice of N1, N
and the mass points w1, . . . , wN , which is normal with mean zero and variance that can
be estimated by [F (τk, λ̂)/F̄ (τk, λ̂) − ν̂w

∑n
l=1(fl(1/λ̂l − 1)2 + cl(ν̂w))−1]−1, from the above
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Table 1. Empirical evaluation of the estimators for exponential distribution.

Model for
estimation ν F̄ ¯̂ν

(¯̂ν−ν)
ν

˜̂ν s(ν̂)
s(ν̂)

ν
˜s(ˆ)ν sse(ν̂) CP

0.1 99.79 −0.0021 99.68 5.69 0.0569 5.31 5.36 0.8929
100 0.2 99.56 −0.0044 98.51 11.25 0.1125 10.47 10.78 0.8891

0.3 108.54 0.0854 107.57 64.89 0.6489 62.86 55.82 0.8630
0.1 499.72 −0.0006 498.22 11.73 0.0235 11.61 11.26 0.9458

Exponential 500 0.2 499.48 −0.0010 497.10 22.79 0.0456 22.49 22.18 0.9349
0.3 503.22 0.0064 502.33 60.16 0.1203 58.97 59.13 0.9295
0.1 999.71 −0.0003 998.87 16.09 0.0161 16.07 16.35 0.9589

1,000 0.2 999.46 −0.0005 997.85 30.89 0.0309 30.92 31.13 0.9518
0.3 1,002.32 0.0023 1,001.19 102.33 0.1023 101.14 101.09 0.9416
0.1 119.97 0.1997 104.75 38.28 0.3828 37.62 42.14 0.8627

100 0.2 122.43 0.2243 103.70 54.77 0.5477 46.47 59.89 0.8029
0.3 134.23 0.3423 102.01 86.68 0.8668 57.21 94.26 0.7524
0.1 516.50 0.0330 503.10 70.51 0.1410 81.01 74.19 0.9306

Non-parametric 500 0.2 521.04 0.0421 497.89 99.89 0.1998 102.25 99.03 0.8512
0.3 530.99 0.0620 506.53 133.33 0.2667 127.90 141.65 0.7664
0.1 1,018.96 0.0190 1,002.80 105.28 0.1053 114.71 102.92 0.9486

1,000 0.2 1,020.69 0.0207 1,005.12 143.44 0.1434 144.91 147.47 0.9330
0.3 1,026.71 0.0267 996.26 183.44 0.1834 177.88 197.81 0.8831

result. Thus, as in (5), the asymptotic variance of ν̂np can be consistently estimated by

ν̂np

⎡⎣F (τk, λ̂)/F̄ (τk, λ̂) − ν̂np

n∑
l=1

(
fl

(
1

λ̂l

− 1
)2

+ cl(ν̂np)

)−1
⎤⎦−1

. (14)

The simulation results, reported in Section 5, agree with this heuristic conclusion.

5. A SIMULATION STUDY

In this section, some simulation results are reported to assess the performance of the para-
metric and non-parametric MLEs of ν. We consider three values of ν, namely, ν = 100, 500
and 1,000. The time between consecutive debugging is one and the number of debugging
time points k is equal to 10, resulting in τk = 10. We consider three types of renewal dis-
tributions, namely, exponential, Weibull and Gamma. These three distributions are most
common in event time analysis and cover both increasing and decreasing hazards. We have
tried some other distributions with qualitatively similar results. The model parameters are
chosen in a way such that F̄ (τk, ·) is equal to 0.1, 0.2 and 0.3. For a given choice of ν, τk

and the model parameters, we first generate the inter-event (renewal) times for a single bug
till the sum of these inter-event (renewal) times exceeds τk for the first time. We consider
these inter-event times including the last one which is right censored at τk. This process is
repeated ν times to have a single simulated data set. Note that for some of the ν bugs, the
first inter-event time may be greater than time τk, resulting in non-detected bugs.

For the exponential distribution, we take three choices of the rate parameter (λ) as
0.2303, 0.1609 and 0.1204 resulting in F̄ = F̄ (τk, λ) = e−λτk = 0.1, 0.2 and 0.3, respectively,
reflecting different extent of non-detection. As a result, for the exponential distribution,
we have 3 × 3 = 9 different parameter configurations. For each of the 9 configurations, we
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Table 2. Empirical performance of the estimators for (a) DFR Weibull distribution and
(b) IFR Weibull distribution.

Model for
estimations ν F̄ ¯̂ν

(¯̂ν−ν)
ν

˜̂ν s(ν̂)
s(ν̂)

ν s̃(ν̂) sse(ν̂) CP

(a) DFR Weibull distribution
0.1 93.22 −0.0678 92.58 6.62 0.0662 5.14 8.56 0.7172

100 0.2 90.49 −0.0951 89.88 15.18 0.1518 9.83 20.71 0.6417
0.3 88.73 −0.1127 87.03 23.85 0.2385 13.76 32.79 0.6182
0.1 475.23 −0.0495 472.42 15.69 0.0314 14.92 16.03 0.7551

Exponential 500 0.2 463.49 −0.0730 453.82 33.33 0.0667 30.84 35.67 0.7378
0.3 452.40 −0.0952 445.19 58.40 0.1168 52.77 61.13 0.7136
0.1 954.26 −0.0457 951.84 22.72 0.0227 22.10 22.56 0.7889

1,000 0.2 939.76 −0.0602 922.22 48.44 0.0484 46.29 49.37 0.7727
0.3 909.54 −0.0905 892.48 81.31 0.0813 77.99 82.14 0.7579
0.1 98.60 −0.0140 96.94 5.16 0.0516 3.88 7.37 0.8242

100 0.2 98.33 −0.0167 93.85 8.82 0.0882 5.59 9.47 0.7914
0.3 96.01 −0.0399 87.85 16.62 0.1662 12.02 15.58 0.7766
0.1 497.13 −0.0057 494.99 8.88 0.0178 7.32 9.76 0.9427

Weibull 500 0.2 495.85 −0.0083 489.96 15.38 0.0308 12.75 16.28 0.9212
0.3 494.80 −0.0104 486.93 34.38 0.0688 24.66 34.75 0.8769
0.1 997.26 −0.0027 994.93 12.65 0.0127 10.98 11.89 0.9522

1,000 0.2 995.52 −0.0045 990.99 21.78 0.0218 18.69 21.12 0.9472
0.3 991.57 −0.0084 983.96 47.39 0.0474 40.96 47.22 0.9065
0.1 113.47 0.1347 101.38 29.58 0.2958 31.74 32.75 0.7613

100 0.2 120.35 0.2035 103.77 46.81 0.4681 41.89 55.37 0.6931
0.3 128.70 0.2870 104.00 70.39 0.7039 49.79 79.96 0.6577
0.1 511.08 0.0222 496.35 59.31 0.1186 68.15 62.36 0.8215

Gamma 500 0.2 516.64 0.0333 503.04 87.90 0.1758 89.02 87.56 0.8111
0.3 520.00 0.0400 504.22 112.72 0.2254 108.69 116.10 0.7939
0.1 984.42 −0.0156 972.29 89.42 0.0894 96.73 89.89 0.8461

1,000 0.2 974.02 −0.0260 967.48 124.25 0.1243 124.91 125.57 0.8237
0.3 965.11 −0.0349 959.56 155.84 0.1558 151.50 154.90 0.8101
0.1 97.68 −0.0232 92.08 5.30 0.0530 4.09 18.05 0.7850

100 0.2 96.19 −0.0381 90.79 12.03 0.1203 10.59 16.49 0.7259
0.3 95.74 −0.0426 85.99 22.84 0.2284 19.95 26.46 0.6682
0.1 491.39 −0.0172 488.38 12.40 0.0248 10.68 15.06 0.8973

Non-parametric 500 0.2 485.42 −0.0292 480.38 26.49 0.0530 23.95 28.16 0.8825
0.3 482.80 −0.0344 471.19 47.95 0.0959 44.56 45.02 0.8393
0.1 1,011.58 0.0116 1,000.62 17.89 0.0179 15.84 18.59 0.9355

1,000 0.2 1,013.79 0.0138 1,003.81 37.96 0.0380 35.67 38.78 0.9159
0.3 1,015.43 0.0154 993.63 66.49 0.0665 65.12 66.72 0.8660

(b) IFR Weibull distribution
0.1 106.65 0.0665 101.86 7.49 0.0749 6.84 6.68 0.7765

100 0.2 113.72 0.1372 108.55 26.39 0.2639 21.20 30.57 0.7071
0.3 120.28 0.2028 120.74 47.93 0.4793 42.16 61.39 0.6829
0.1 532.10 0.0642 521.87 15.98 0.0320 14.32 15.38 0.8213

Exponential 500 0.2 560.23 0.1205 553.22 36.74 0.0735 35.76 38.21 0.8093
0.3 600.16 0.2003 631.39 100.54 0.2011 99.91 116.03 0.7765
0.1 1,040.08 0.0401 1,051.53 23.78 0.0238 24.38 25.89 0.8599

Continued.
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Table 2. Continued.
Model for

estimations ν F̄ ¯̂ν
(¯̂ν−ν)

ν
˜̂ν s(ν̂)

s(ν̂)
ν s̃(ν̂) sse(ν̂) CP

1,000 0.2 1,101.55 0.1016 1,109.39 50.61 0.0506 50.60 50.02 0.8437
0.3 1,150.91 0.1509 1,252.28 123.84 0.1238 126.59 125.97 0.8148
0.1 99.66 −0.0034 97.11 6.09 0.0609 5.08 6.92 0.9036

100 0.2 99.34 −0.0066 94.65 14.02 0.1402 9.56 16.62 0.8409
0.3 100.74 0.0074 91.47 22.00 0.2200 13.31 24.24 0.7467
0.1 499.33 −0.0013 493.83 14.42 0.0288 13.87 14.67 0.9645

Weibull 500 0.2 501.31 0.0026 498.62 31.00 0.0620 29.02 30.58 0.9442
0.3 498.15 −0.0037 490.59 55.86 0.1117 47.44 59.66 0.9427
0.1 1,000.00 0.0000 997.03 20.48 0.0205 20.01 20.20 0.9719

1,000 0.2 999.59 −0.0004 994.19 43.91 0.0439 42.25 45.39 0.9694
0.3 998.53 −0.0015 990.66 77.03 0.0770 71.95 80.08 0.9616
0.1 123.14 0.2314 100.02 46.19 0.4619 42.50 59.62 0.8396

100 0.2 130.26 0.3026 99.48 77.68 0.7768 52.95 73.79 0.7829
0.3 135.40 0.3540 101.33 95.94 0.9594 64.67 93.17 0.7059
0.1 521.65 0.0433 491.69 78.76 0.1575 92.16 85.27 0.9234

Gamma 500 0.2 530.92 0.0618 502.98 117.19 0.2344 119.92 124.58 0.8679
0.3 538.47 0.0769 504.69 158.21 0.3164 145.65 161.35 0.7749
0.1 1,026.54 0.0265 1,006.24 117.11 0.1171 133.45 117.26 0.9499

1,000 0.2 1,026.78 0.0268 997.61 165.33 0.1653 166.34 171.39 0.9066
0.3 1,027.42 0.0274 991.71 212.36 0.2124 204.44 211.58 0.8817
0.1 98.83 −0.0117 97.92 6.54 0.0654 6.34 12.30 0.8889

100 0.2 97.79 −0.0221 94.81 16.29 0.1629 14.97 19.11 0.8107
0.3 94.67 −0.0533 88.93 27.70 0.2770 23.47 25.22 0.7202
0.1 504.33 0.0087 497.88 15.83 0.0317 16.50 19.44 0.9369

Non-parametric 500 0.2 507.98 0.0160 499.92 34.11 0.0682 34.48 36.60 0.9210
0.3 511.20 0.0224 490.98 60.42 0.1208 61.04 61.33 0.8916
0.1 1,008.21 0.0082 997.86 22.83 0.0228 21.11 23.98 0.9646

1,000 0.2 1,015.79 0.0158 994.00 48.45 0.0485 45.30 50.97 0.9251
0.3 1,020.20 0.0202 990.93 85.12 0.0851 84.18 88.75 0.9105

generate 10,000 data sets. For each such simulated data set, we compute the parametric
and non-parametric MLEs, ν̂pa and ν̂np, respectively, of ν along with the corresponding
standard errors, obtained from (5) and (14) and denoted by ŝ(ν̂pa) and ŝ(ν̂np), respectively.
Since ν is the parameter of primary interest, for the sake of convenience in presenting the
results, let us denote its MLE by ν̂ and the corresponding standard error as ŝ(ν̂), while
the kind of MLE (parametric or non-parametric) will be clear from the context. We take
the average and median of ν̂’s and the average of the corresponding standard errors ŝ(ν̂)
over the 10,000 simulations and denote them by ν̂, ˜̂ν and s(ν̂), respectively. We also obtain
the sample standard error of ν̂ from the 10,000 values of ν̂ and denote it by sse(ν̂). The
estimated coverage probability, denoted by CP, is computed as the proportion of times (out
of 10,000 simulations) the asymptotic 95% confidence interval, obtained through the normal
approximation of ν̂, contains the true ν. For the purpose of comparison, we also provide
relative bias and relative standard error defined as (¯̂ν − ν)/ν and s(ν̂)/ν, respectively. The
results are reported in Table 1.

It is to be noted that the ML estimates are nearly unbiased in all the cases and, also,
the average standard error under s(ν̂) and the sample standard error under sse(ν̂) are very
close specially for large ν and small F̄ (τk, λ). As expected, the estimator ν̂ seems to perform
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Table 3. Empirical performance of the estimators for (a) DFR Gamma distribution and
(b) IFR Gamma distribution.

Model for
estimation ν F̄ ¯̂ν

(¯̂ν−ν)
ν

˜̂ν s(ν̂)
s(ν̂)

ν s̃(ν̂) sse(ν̂) CP

(a) DFR Gamma distribution
0.1 88.67 −0.1133 86.66 7.52 0.0752 6.58 19.02 0.7233

100 0.2 81.12 −0.1888 79.48 17.01 0.1701 14.79 38.29 0.6593
0.3 70.81 −0.2919 65.55 26.41 0.2641 24.43 56.12 0.6108
0.1 448.21 −0.1036 441.92 17.85 0.0357 15.87 18.05 0.7981

Exponential 500 0.2 407.47 −0.1851 400.53 38.19 0.0764 35.12 40.36 0.7532
0.3 386.12 −0.2278 375.31 65.49 0.1310 62.02 67.49 0.7055
0.1 897.82 −0.1022 893.17 25.70 0.0257 22.51 26.42 0.8296

1,000 0.2 822.84 −0.1772 817.41 54.46 0.0545 50.06 56.39 0.7939
0.3 776.11 −0.2239 770.40 91.16 0.0912 88.72 87.25 0.7678
0.1 115.71 0.1571 100.21 35.79 0.3579 33.78 43.08 0.8112

100 0.2 118.70 0.1870 98.84 52.01 0.5201 42.36 64.00 0.7754
0.3 133.94 0.3394 103.16 83.43 0.8343 54.33 96.27 0.7056
0.1 511.46 0.0229 498.95 69.32 0.1386 75.55 74.35 0.9092

Weibull 500 0.2 516.74 0.0335 502.59 98.27 0.1965 96.84 102.68 0.8922
0.3 527.47 0.0549 504.05 127.06 0.2541 118.70 147.48 0.8804
0.1 1,011.92 0.0119 1,007.19 103.97 0.1040 108.68 107.79 0.9364

1,000 0.2 1,017.98 0.0180 1,010.86 137.67 0.1377 136.24 137.11 0.9200
0.3 1,022.35 0.0224 1,013.49 171.95 0.1720 167.05 180.39 0.9044
0.1 100.40 0.0040 97.98 5.42 0.0542 6.12 20.46 0.8321

100 0.2 100.70 0.0070 98.21 6.19 0.0619 7.28 16.33 0.7950
0.3 98.18 −0.0182 96.46 10.29 0.1029 12.68 12.51 0.7775
0.1 498.52 −0.0030 497.87 12.80 0.0256 11.07 19.34 0.9329

Gamma 500 0.2 497.77 −0.0045 493.93 19.26 0.0385 17.90 22.94 0.9320
0.3 497.63 −0.0047 485.97 30.60 0.0612 29.87 28.89 0.9217
0.1 997.66 −0.0023 996.94 18.21 0.0182 16.25 18.29 0.9662

1,000 0.2 997.53 −0.0025 993.95 32.19 0.0322 30.27 31.98 0.9473
0.3 997.43 −0.0026 988.87 46.81 0.0468 43.64 44.14 0.9381
0.1 99.52 −0.0048 97.16 6.15 0.0615 5.15 10.09 0.8277

100 0.2 99.06 −0.0094 94.92 14.28 0.1428 9.35 20.80 0.7813
0.3 97.06 −0.0294 88.98 23.44 0.2344 14.08 30.39 0.7181
0.1 502.29 0.0046 501.14 14.31 0.0286 13.86 14.75 0.9245

Non-parametric 500 0.2 503.44 0.0069 498.79 30.61 0.0612 28.53 32.34 0.9228
0.3 511.10 0.0222 506.88 54.49 0.1090 47.77 58.24 0.8869
0.1 1,004.49 0.0045 999.34 20.34 0.0203 19.98 20.97 0.9524

1,000 0.2 1,006.07 0.0061 1,001.29 43.43 0.0434 42.10 43.53 0.9435
0.3 1,020.87 0.0209 1,000.87 75.58 0.0756 72.08 76.31 0.9139

(b) IFR Gamma distribution
0.1 91.36 −0.0864 90.02 6.50 0.0650 5.20 7.27 0.7019

100 0.2 82.21 −0.1779 78.46 17.09 0.1709 9.70 25.13 0.6243
0.3 69.88 −0.3012 64.59 27.56 0.2756 12.77 43.33 0.5619
0.1 464.11 −0.0718 461.26 15.89 0.0318 15.42 15.52 0.7201

Exponential 500 0.2 420.31 −0.1594 414.31 35.36 0.0707 31.89 37.64 0.6912
0.3 394.70 −0.2106 379.08 63.80 0.1276 54.17 67.53 0.6565
0.1 939.20 −0.0608 938.08 23.27 0.0233 22.86 22.21 0.7662

Continued.
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Table 3. Continued.
Model for
estimation ν F̄ ¯̂ν

(¯̂ν−ν)
ν

˜̂ν s(ν̂)
s(ν̂)

ν s̃(ν̂) sse(ν̂) CP

1,000 0.2 889.37 −0.1106 881.72 50.85 0.0509 48.39 52.70 0.7010
0.3 791.39 −0.2086 780.27 89.95 0.0900 83.51 89.03 0.6787
0.1 122.03 0.2203 105.14 39.97 0.3997 39.30 48.56 0.7407

100 0.2 130.06 0.3006 102.50 63.93 0.6393 47.18 82.95 0.6877
0.3 139.59 0.3959 100.11 92.45 0.9245 61.33 100.70 0.6024
0.1 525.09 0.0502 497.93 67.49 0.1350 84.51 75.47 0.8454

Weibull 500 0.2 526.83 0.0537 504.85 100.73 0.2015 109.99 100.48 0.8209
0.3 537.56 0.0751 507.95 139.80 0.2796 135.70 149.09 0.8000
0.1 1,024.94 0.0249 1,000.93 98.80 0.0988 120.51 105.16 0.8706

1,000 0.2 1,032.03 0.0320 1,005.39 144.06 0.1441 153.16 148.77 0.8445
0.3 1,032.95 0.0330 1,007.31 191.91 0.1919 186.95 200.27 0.8332
0.1 100.28 0.0028 99.93 3.14 0.0314 7.66 15.67 0.7985

100 0.2 98.43 −0.0157 92.96 8.29 0.0829 12.85 28.41 0.7475
0.3 96.29 −0.0371 88.97 10.06 0.1006 20.92 37.72 0.7001
0.1 499.51 −0.0010 496.85 11.92 0.0238 10.79 13.58 0.8980

Gamma 500 0.2 495.61 −0.0088 490.96 18.17 0.0363 16.88 20.88 0.8765
0.3 494.47 −0.0111 489.99 29.10 0.0582 25.72 35.84 0.8602
0.1 1,000.55 0.0005 998.82 19.61 0.0196 18.93 19.95 0.9426

1,000 0.2 993.85 −0.0061 987.93 32.71 0.0327 30.08 33.26 0.9379
0.3 992.11 −0.0079 979.98 47.22 0.0472 45.85 49.14 0.8978
0.1 97.40 −0.0260 98.12 6.12 0.0612 8.85 11.38 0.7728

100 0.2 95.75 −0.0425 97.08 14.19 0.1419 17.40 24.26 0.7100
0.3 90.70 −0.0930 91.79 22.07 0.2207 26.52 50.06 0.6388
0.1 493.80 −0.0124 491.59 15.06 0.0301 14.83 18.48 0.8647

Non-parametric 500 0.2 487.50 −0.0250 484.73 32.58 0.0652 31.74 39.38 0.8413
0.3 484.85 −0.0303 479.96 59.52 0.1190 57.62 69.04 0.8155
0.1 989.63 −0.0104 983.66 21.63 0.0216 21.12 22.08 0.9281

1,000 0.2 979.72 −0.0203 970.93 46.82 0.0468 45.39 46.11 0.9097
0.3 973.79 −0.0262 962.39 83.84 0.0838 81.76 84.90 0.8842

better with respect to relative bias, relative standard error and CP with increasing ν and
decreasing F̄ (tk, λ). Also, the CP values are close to 0.95, specially for large ν, suggest-
ing convergence to normality. However, in all aspects, the performance of the parametric
estimator is better than the performance of the non-parametric estimator, as expected. We
have also investigated the effect of assuming Weibull or Gamma distribution for the estima-
tion of ν, when the true distribution is exponential. It is noticed that the estimates under
the assumption of Gamma or Weibull distribution, when the true distribution is exponen-
tial, are quite similar to those under the correct assumption of exponential distribution
(not reported). This seems natural as the exponential distribution is a special form of both
Gamma and Weibull.

Similar simulation setup is also used for Weibull and Gamma distribution. In addition,
we also consider both the increasing failure rate (IFR) and decreasing failure rate (DFR)
type parameter set-up for these two distributions. For IFR Weibull distribution, the shape
and scale (1/λ) parameters are chosen as (1.1, 4.685), (1.1, 6.488) and (1.1, 8.477) and, for
DFR Weibull distribution, those are selected as (0.9, 3.959), (0.9, 5.893) and (0.9, 8.136) such
that the resulting F̄ is 0.1, 0.2 and 0.3, respectively. Results of simulation for both the IFR
and DFR Weibull distributions are reported in Table 2(a) and (b), respectively.
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Table 4. Simulation results with varying number of debugging for Weibull distribution.

Model for estimation Failure rate k ¯̂ν
(¯̂ν−ν)

ν s(ν̂)
s(ν̂)

ν CP

1 999.74 −0.0003 16.85 0.0169 0.9539
DFR 2 998.37 −0.0016 18.58 0.0186 0.9526

5 996.49 −0.0035 20.51 0.0205 0.9516
Weibull 10 995.52 −0.0045 21.78 0.0218 0.9472

1 1,000.05 5E-05 23.45 0.0235 0.9747
IFR 2 1,000.24 0.0002 33.19 0.0332 0.9716

5 1,000.37 0.0004 36.66 0.0367 0.9697
10 999.59 −0.0004 43.91 0.0439 0.9694
1 1,000.82 0.0008 26.03 0.0260 0.9383

DFR 2 1,002.92 0.0029 28.08 0.0280 0.9351
5 1,007.84 0.0078 32.63 0.0326 0.9249

Non-parametric 10 1,013.79 0.0138 37.96 0.0380 0.9159
1 1,000.96 0.0010 29.25 0.0293 0.9546

IFR 2 1,005.90 0.0059 37.33 0.0373 0.9344
5 1,013.89 0.0139 42.10 0.0421 0.9293
10 1,015.79 0.0158 48.45 0.0485 0.9251

Table 5. Simulation results with varying number of debugging for Gamma distribution.

Model for estimation Failure rate k ¯̂ν
(¯̂ν−ν)

ν s(ν̂)
s(ν̂)

ν CP

1 1,000.48 0.0005 21.69 0.0216 0.9612
DFR 2 1,000.98 0.0010 25.75 0.0258 0.9548

5 998.03 −0.0020 27.67 0.0277 0.9493
Gamma 10 997.53 −0.0025 32.19 0.0322 0.9473

1 1,000.14 0.0001 22.26 0.0223 0.9615
IFR 2 999.24 −0.0008 27.12 0.0271 0.9501

5 999.01 −0.0010 29.55 0.0296 0.9389
10 993.85 −0.0062 32.71 0.0327 0.9379
1 1,001.62 0.0016 26.72 0.0267 0.9672

DFR 2 1,002.17 0.0022 32.90 0.0329 0.9623
5 1,004.47 0.0045 39.28 0.0393 0.9512

Non-parametric 10 1,006.07 0.0061 43.43 0.0434 0.9435
1 999.50 −0.0005 28.60 0.0286 0.9517

IFR 2 1,003.17 0.0032 36.14 0.0361 0.9424
5 1,013.19 0.0132 41.57 0.0416 0.9239
10 979.72 −0.0203 46.82 0.0468 0.9097

From Table 2(a) and (b), it can be seen that, for both the DFR and IFR Weibull dis-
tributions, the relative bias and relative standard error decrease and CP becomes closer
to 0.95 as ν increases and F̄ (tk, λ) decreases. Besides, the parametric estimator performs
better than the non-parametric estimator, as expected. However, it can be seen that the non-
parametric estimator performs better than the estimators under exponential and Gamma
distributions when data follow Weibull distribution. Therefore, under mis-specified distri-
bution, non-parametric estimator is superior than all the wrongly specified estimators, as
expected.

We also consider DFR and IFR Gamma distributions for the simulation model. For
DFR Gamma distribution, we choose (0.9, 4.702), (0.9, 6.849) and (0.9, 9.307) as the three
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pairs of shape and scale parameters resulting in F̄ = 0.1, 0.2 and 0.3, respectively. Similarly,
for IFR Gamma distribution, corresponding pairs of parameters are (1.1, 4.042), (1.1, 5.695)
and (1.1, 7.507). The simulation results corresponding to IFR Gamma and DFR Gamma
can be seen in Table 3(a) and (b), respectively. The performance of these estimators is
qualitatively similar to that of the previous estimators.

To study the effect of the number and size of debugging intervals, we have carried out
another simulation study with fixed τk = 10, while the number k of debugging is varied as
1, 2, 5 and 10 with the corresponding time between successive debugging being 10, 5, 2 and
1, respectively. The probability of non-detection F̄ (tk) is kept fixed at 0.2 and ν is fixed
as 1,000. The same simulation exercise as before is carried out in 10,000 repetitions. The
results for Weibull and Gamma distributions are presented in Tables 4 and 5, respectively.
For such result with exponential distribution, one is referred to Das et al. [6].

The average standard error and the sample standard error turn out to be very close,
as before, and so only the s(ν̂)’s are reported. The estimator ν̂ seems to perform better
with respect to relative bias, relative standard error and CP with decreasing number k of
debugging intervals. Therefore, a single debugging schedule at the end of testing at time
τk seems to be the most efficient design (see [6] for similar result). However, as remarked
earlier, a schedule of more than one debugging intervals may be necessary due to the market
demand for software release.

6. CONCLUDING REMARKS

In this work, we suggest both parametric and non-parametric methods to estimate the initial
number of bugs present in a software, assuming that the successive times of appearances
of the bugs follow independent and identically distributed renewal processes, where the
common renewal distribution may belong to a specific parametric family or is arbitrary. It
is seen through simulation studies that the estimator of ν performs the best if the assumed
parametric model for the renewal process is correct. On the other hand, the estimate of
ν is observed to be biased if the assumed model is not correct (see Tables 2(a),(b) and
3(a),(b)). It is therefore important to check for the validity of the assumed model. One can
carry out a simulation-based test for the goodness of fit for an assumed model based on a
suitable test statistic, for example, the modified Kolmogorov–Smirnov statistic of Bhuyan
and Dewanji [1] (see also [11]). Nevertheless, the proposed non-parametric estimate is seen
to be insensitive to such model mis-specification.

It is also seen that, when ν is small and the F̄ (τk) is high, the estimate of ν sometimes
diverges to infinity. In our previous study with exponential renewal distribution (see [6]),
we have shown that the condition M (d) �= M is one of the sufficient conditions for finite
estimate of ν; hence, a necessary condition for the estimate of ν being infinity is M (d) = M .
In our simulation study with arbitrary renewal distribution, we have seen that, whenever the
estimate ν̂ diverges to infinity, the value of M (d) equals M, in line with the result obtained
for exponential renewal distribution.

It is to be noted that, other than applying Algorithms 1 and 2 to estimate ν, one can
also resort to some direct search method as indicated in Sections 3 and 4. It is seen that
the estimates of ν by both the methods turn out to be very close.

In studying the asymptotic properties of the proposed estimates of ν, we have con-
sidered the limiting situation with ν → ∞. These results are useful in software reliability
context, as most programs of practical significance contain thousands of lines of code and
contain numerous bugs. It is to be noted that general asymptotic results, as τk → ∞, are not
meaningful in this context, since there is usually a fixed and finite time period for software
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testing and also because the situation τk → ∞ will detect all the bugs in principle rendering
the estimation to be useless.

From the efficiency point of view, we have seen that the choice of k = 1 minimizes the
variance of ν̂. However, in reality, the design issue will force more than one debugging period
(i.e., k > 1) due to other practical considerations and cost aspects. In addition, for a fixed k,
an interesting design consideration may deal with choosing the values of the τi’s optimally
incorporating the cost incurred in testing as well as the cost of bug arrivals after software
release.

The current study design can be extended for analysis of failures in some repairable
systems with non-fatal failures. For example, in a parallel system with multiple components,
failures of some of the components can be observed and recorded, but no repair action is
taken until a prefixed time of repair when all the failed components would be repaired.
Although the repair schedule may mimic the periodic debugging schedule of the present
work, a different modelling approach may be required since repaired components rejoin the
system as operational and become susceptible to further failure, unlike the corrected bugs
in the software. Also, there is no such unknown quantity similar to the number of bugs in
a general repairable system. On the other hand, there is some similarity with failure mode
analysis in which a system is subject to testing for identifying the different unknown failure
modes of the system under specific operating conditions.
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APPENDIX

PROOF OF THEOREM 1: Let the ν bugs be labeled as 1, . . . , ν and let Xj denote the observation
from the jth bug (possibly unobservable). If the jth bug is not detected, let us write Xj = 0;
otherwise, Xj consists of the debugging time τlj (say) of the jth bug and the number mj of times
it appears in [τlj−1, τlj ) along with the times of failures {tj1 < · · · < tjmj

}. The labeling of Xj ’s are

clearly hypothetical since the labeling 1, . . . , ν is not observed. However, the Xj ’s are independent
and identically distributed with the common probability distribution given by

pX(xj ; φ) =

⎧⎪⎪⎨⎪⎪⎩
F̄ (τk, φ), if xj = 0

F̄ (cj , φ)

mj∏
s=1

f(tjs
, φ), otherwise,

(A.1)
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where cj = τlj − tjmj
. The joint distribution of (X1, . . . , Xν) is, therefore,

∏ν
j=1 pX(xj ; φ), which

is proportional to L(ν, φ) in (2).

For a finite dimensional φ = [φ1, . . . , φp]T, similar to the technique used in Dewanji et al. [7],

we define Vj = [V1j , V2j , . . . , Vp+1,j ]
T where

V1j =

⎧⎨⎩−1 − F̄ (τk, φ)

F̄ (τk, φ)
, if xj = 0

1, otherwise;

(A.2)

and

Vh+1,j =
∂

∂φh
log pX(xj ; φ) (A.3)

for h = 1, . . . , p and j = 1, . . . , ν.
It can be verified that E[Vj ] = 0 and their variances are as follows

Var[V1j ] =
1 − F̄ (τk, φ)

F̄ (τk, φ)

and

Var[Vh+1,j ] = E

[
− ∂2

∂φ2
h

log pX(xj ; φ)

]
= Ih+1,h+1(φ), say,

for h = 1, . . . , p and j = 1, . . . , ν. It can also be verified that

Cov[V1j , Vh+1,j ] =
∂

∂φh
log F̄ (τk, φ) = I1,h+1(φ), say, (A.4)

and

Cov[Vg+1,j , Vh+1,j ] = E

[
− ∂2

∂φg∂φh
log pX(xj ; φ)

]
= Ig+1,h+1(φ), say, (A.5)

for g, h = 1, . . . , p and j = 1, . . . , ν. Therefore, writing

uh,ν = ν−1/2
ν∑

j=1

Vh,j , for h = 1, . . . , p + 1,

we have, by the central limit theorem,

uν =

⎛⎜⎝ u1ν

...
up+1,ν

⎞⎟⎠ = ν−1/2
ν∑

j=1

⎛⎜⎝ V1j
...

Vp+1,j

⎞⎟⎠ L−→ N(0, Σ−1), as ν → ∞, (A.6)

where

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝

1 − F̄ (τk, φ)

F̄ (τk, φ)
I12(φ) . . . I1,p+1(φ)

I12(φ) I22(φ) . . . I2,p+1(φ)
...

...
. . .

...
I1,p+1(φ) I2,p+1(φ) . . . Ip+1,p+1(φ)

⎞⎟⎟⎟⎟⎟⎟⎠

−1

. (A.7)

For bounded (a1, a), where a = [a2, . . . , ap+1]
T, following the technique of Dewanji et al. [7] and

writing l(ν, φ) = log L(ν, φ), we consider

l(ν + ν1/2a1, φ + ν−1/2a) − l(ν, φ). (A.8)
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Now, Eq. (A.8) can be further reduced to

p+1∑
h=1

ahuh,ν −
p+1∑
h=2

h−1∑
g=1

agahIh,g(φ) − a2
1

2

(
1 − F̄ (τk, φ)

F̄ (τk, φ)

)
−

p+1∑
h=2

a2
h

2
Ih,h(φ) + op(1). (A.9)

Then, using the argument of Sen and Singer [29], as in Dewanji et al. [7], we can find the asymptotic
distributions of ν̂pa and φ̂ as stated in Theorem 1. �
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