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The paper is concerned with heat and sweat transport in porous textile media with a non-local

thermal radiation and phase change. The model, based on a combination of these classical

heat transfer mechanisms (convection, conduction and radiation), is governed by a nonlinear,

degenerate and strongly coupled parabolic system. The thermal radiative flow is described by

a radiation transport equation and characterized by the thermal absorptivity and emissivity

of fibre. A conservative boundary condition is introduced to describe the radiative heat flux

interacting with environment. With the conservative boundary condition, we prove the global

existence of positive/non-negative weak solutions of a nonlinear parabolic system. A typical

clothing assembly with a polyester batting material sandwiched in two laminated covers

is investigated numerically. Numerical results show that the contribution of radiative heat

transfer is comparable with that of conduction/convection in the sweating system.

Key words: Heat and moisture transfer; Radiative heat transfer; Porous media; Global weak

solution

1 Introduction

The heat and sweat transport in fibrous porous media has attracted much attention

in the last decades due to its applications in modern textile industry [4, 8, 11, 13, 15, 17,

18, 23, 26, 27, 33–35]. A typical application is a clothing assembly, consisting of a thick

porous fibrous batting sandwiched in two thin cover fabrics. The outer cover of the

assembly is exposed to a cold environment with fixed temperature and relative humidity,

while the inner cover is exposed to a mixture of air and vapour at higher temperature

and relative humidity (e.g. human skin; see Figure 1 for the schematic diagram). Some

earlier works can be found in [6, 26] with relative simple models. More precise models

have been described recently by many authors as single-component compressible fluid

flows [9,12,23,24], multi-component compressible fluid flows [15,34,35] or incompressible

fluid flows [1, 5, 31] through porous textile media. In these models, the air/vapour gas

mixture moves through the porous textile media by convection and diffusion, which are

induced by pressure and concentration gradients. Heat is transferred by convection in

gas and by conduction in all phases (liquid, fibre and gas), and phase changes occur

in the form of evaporation/condensation. Mathematically, the heat and sweat transport

in porous textile media is governed by a system of nonlinear, degenerate and strongly
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Figure 1. Schematic diagram of the porous textile assembly.

coupled parabolic equations. Mathematical analysis for the system of nonlinear parabolic

equations can be found in our recent works [19, 20, 22].

The radiative heat transfer in porous fibre materials was studied by several authors. The

approaches depend heavily upon applications involved. A simple and classical way is to

consider radiative transfer as a ‘radiative conductivity’, with which the radiative flux was

assumed to be proportional to the temperature gradient. This approach is valid in general

when the penetration depth for radiation into fibre materials is small compared with the

sample thickness. A more precise approximation of the radiative thermal conductivity

was presented in [7]. On the other hand, the thermal radiation due to fresh fire (short

time) was studied in [28, 30, 34] in terms of the Beer’s law to describe an in-depth

absorption of radiation in fibrous garment, where the radiative heat flux at the depth x

was given by qr = qrfe
−γx. The effect of radiative heat transfer through textile batting

of large porosity was investigated in [10], where the radiative and conductive heat flows

were assumed to be of the same size. In [10], the radiative heat flux was divided into

two parts, from all angles in the right-hand and left-hand half spaces. The fluxes were

governed by a system of differential equations with certain mixed boundary conditions.

Both absorption and emission of the fibre were considered. Recently, this approach was

used by several authors [3,9,23] to investigate heat and moisture transport through porous

textile media with typical 95–99% porosity. Fan et al. [9] applied the radiative thermal

transfer approach to study heat and vapour transport through clothing assemblies. In

addition to the radiative heat transfer, the vapour diffusion and mixture conduction were

also included in their model. An analytic solution of the system of mixed boundary

value problems for radiative heat fluxes was obtained, with which the heat and moisture

transport was described by a system of nonlinear parabolic equations with a non-local

radiative source. Cheng and Wang [3] proposed the Galerkin finite element method for

a simplified one-dimensional model with such a radiative source, in which only vapour

diffusion and heat conductive processes were included and the vapour bulk motion was

neglected. However, in all these previous works [3,9,21,23], the radiative heat transfer was

not included in the boundary conditions for energy equation. The non-conserved boundary

conditions result in an unnecessary difficulty in the analysis and possible non-existence of

solution for a nonlinear parabolic system.
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In this paper, we will study the heat and moisture flow through porous textile materials

with the radiative thermal transfer proposed in [10], which is governed mathematically

by a system of nonlinear, degenerate and strongly coupled parabolic partial differential

equations (PDEs) [9,15], with a non-local radiative source. A conservative boundary con-

dition is proposed for the energy (temperature) equation. With the conservative boundary

condition and a closed form of radiative source, we prove the existence of weak solutions

for the system of nonlinear parabolic equations.

2 Mathematical equations

Here we consider a single component model of heat and sweat transport system in a one-

dimensional setting since the thickness of clothing assemblies is often smaller compared

with the sizes of other two dimensions. The model described below is mainly based on

the works in [19, 33], which can also be viewed as a generalization of models developed

earlier in [4, 17, 23, 26].

2.1 Mathematical equations

Based on the conservation of mass and energy, the model can be described by

∂

∂t
(εC) +

∂

∂x
(ugεC) = −Γce, (2.1)

∂

∂t
(C̄hT ) +

∂

∂x
(εC̄gugCT ) =

∂

∂x

(
κ

∂T

∂x

)
+ λMΓce + Γr, (2.2)

∂

∂t
(ρf(1 − ε′)W ) = MΓce. (2.3)

Here C is the vapour concentration (mol/m3), T is the temperature (K), W is the mass of

liquid water relative to the mass of fibre (%), M is the molecular weight of water and λ is

the latent heat of evaporation/condensation in the wet zone, while in the frozen zone, it

represents the latent heat of sublimation. In this case, the volume content of liquid water

on the fibre surface is given by
ρf
ρw
W (1 − ε′), and therefore the porosities with liquid water

content (ε) and without liquid water content (ε′) are related by

ε = ε′ − ρf

ρw
W (1 − ε′),

where ρf and ρw are the densities of fibre and water, respectively.

The effective heat capacity C̄h is defined as in [35] by the conservative form,

C̄h = εC̄gC + (1 − ε)C̄s,

where C̄g and C̄s are the molar heat capacities of gas and the fibre/liquid water,

respectively.
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The effective heat conductivity κ is defined by

κ = εκg + (1 − ε)κs, (2.4)

where κg and κs are the thermal conductivities of gas and fibre/liquid water, respectively.

The vapour velocity (volumetric discharge) is given by the Darcy’s law,

ug = −kgkrg

μgC

∂P

∂x
, (2.5)

where kg and krg denote the permeability and relative permeability of vapour, respectively,

and μg is the viscosity of vapour. Usually, the relative permeability is defined by krg =

(1 − s)3, where s = 1 − ε/ε′ denotes the volumetric liquid saturation in the inner fibre void

space. More detailed descriptions can be found in [15, 34].

The condensation/evaporation rate Γce is often described in terms of the Hertz–

Knudsen equation [16],

H :=
(1 − ε)E

Rf

√
1

2πMR

(
P − Psat(T )√

T

)
, (2.6)

where R is the universal gas constant, Rf is the radius of fibre and E is the non-

dimensional phase change coefficient. The vapour pressure is given by P = RCT because

of the ideal gas assumption. The saturation pressure Psat is determined from experimental

measurements [8]. Physically, the condensation occurs when H > 0 (i.e. P > Psat), and the

evaporation occurs only when H < 0 and simultaneously the amount of liquid water in the

core void is positive. For certain clothing assembling cases presented in [9, 23], numerical

simulations show that the physical process in the whole batting area is in condensation

and no dry zone exists after a short period. In these models, the condensation/evaporation

rate was defined directly by Γce = H . On the other hand, a pure evaporation process was

considered in [1, 5] for a motorcycle helmet model and [14] for a bread baking model, in

which

Γce = h(W)H, (2.7)

where h(·) was the Heaviside function. More precise formulation was given in [35] by

Γce := H+ − a(W )H−, (2.8)

where H± = (|H | ±H)/2 and a(W ) is a monotonically increasing function with a(0) = 0

and 0 � a(W ) � 1. The above formulation is valid for simultaneous condensation/

evaporation cases.

2.2 The radiation

In this paper, we will pay more attention to the radiative heat transfer rate Γr . Based on

the works in [7, 9], the radiative heat transfer rate can be defined by

Γr =
∂FL
∂x

− ∂FR
∂x

, (2.9)
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where FL and FR , the total thermal radiation fluxes travelling to the left and right,

respectively, satisfy the differential equations

∂FL
∂x

= β(FL − σT 4), (2.10)

∂FR
∂x

= −β(FR − σT 4) (2.11)

with the coupled boundary conditions

(1 − ε1)FL(0, t) + ε1σT
4(0, t) = FR(0, t) , (2.12)

(1 − ε2)FR(L, t) + ε2σT
4(L, t) = FL(L, t), (2.13)

where 0 < εi < 1 (i = 1, 2) denote the emissivities of the covers, β is the absorptiv-

ity/emissitivity of the batting [2] and σ is the Stefan–Boltzmann constant.

The solution of differential equations (2.10) and (2.11) was obtained analytically in [9].

A closed form is given by

FL = −σeβx [gl(x, t) + fl] , (2.14)

FR = σe−βx [gr(x, t) + fr] , (2.15)

where

gl(x, t) =

∫ x

0

βe−βξT 4(ξ, t)dξ, gr(x, t) =

∫ x

0

βeβξT 4(ξ, t)dξ.

With the boundary conditions, we have

fr = ε1T
4(0, t) − (1 − ε1)fl

= −
(1 − ε1)

[
(1 − ε2)e

−βLgr(L, t) + eβLgl(L, t) + ε2T
4(L, t)

]
+ ε1e

βLT 4(0, t)

(1 − ε2)(1 − ε1)e−βL − eβL
,

fl =
(1 − ε2)e

−βLgr(L, t) + eβLgl(L, t) + ε1(1 − ε2)e
−βLT 4(0, t) + ε2T

4(L, t)

(1 − ε2)(1 − ε1)e−βL − eβL
.

We note that fr � 0, fl � 0. Then

Γr = β(FL + FR) − 2βσT 4(x, t) . (2.16)

2.3 Initial/boundary conditions

Since the thickness of cover layers is much smaller than that of the batting layer, the

properties of heat and sweat transfer in the covers were often described by simple

resistances to heat and vapour transfer. A class of the commonly used Robin-type

boundary conditions were used by several authors, in which boundary conditions were

defined by a combined simulation of cover layers and ambient environment. However,

the effect of the radiative heat transfer was not considered in these boundary conditions,

although it was introduced in the equations. Such non-conservative boundary conditions

may make the theoretical analysis more difficult or impossible.
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Table 1. Physical parameters for the cover material

Properties Laminated Unit

Thickness 5.15 × 10−4 m

Density 4.27 × 103 kg/m3

Porosity 0.1

Thermal resistance 3.16 × 10−2 (Rt) km2/W

Resistance to vapour 1.4379 × 102 (Rg) s/m

Here we introduce conservative boundary conditions. For mass conservation,

ugεC|x=0 = sw, (2.17)

ugεC|x=L =
1

Rog + 1/Ho
g

(C − Co), (2.18)

where sw denotes the local sweating rate, which is a function of the local skin temperature,

the average of skin temperature and the body temperature in general [25], and Co is the

vapour concentration of the outer environment. Ro
g is the resistance of the outer cover to

gas and Ho
g denotes the mass transfer coefficient in the outer environment for gas. For

energy conservation,(
ugεC̄gCT − κ

∂T

∂x
− (FL − FR)

)∣∣∣∣
x=0

= C̄gT sw +
1

Rit + 1/Hi
t

(T i − T ) + ε1σ(|T i|4 − T 4), (2.19)(
ugεC̄gCT − κ

∂T

∂x
− (FL − FR)

)∣∣∣∣
x=L

=
C̄g

Ro
g + 1/Ho

g

(C − Co)T +
1

Rot + 1/Ho
t

(T − T o) + ε2σ(T 4 − |T o|4), (2.20)

where Rit and Ro
t are the resistances of the inner and outer covers to heat, Hi

t and Ho
t

denote the mass transfer coefficients in the inner and outer environment for heat, and T i

and T o are the temperature of the inner and outer environment respectively.

The initial conditions are given by

T = 25◦C, C = 65%
Psat(T )

RT
, W = 0, for t = 0. (2.21)

3 Numerical results and discussion

In this section, computational results are presented for heat/sweat transfer in a clothing

assembly with a 10-pile polyester batting sandwiched in two laminated covers. Physical

parameter values for both cover and batting materials are presented in Tables 1 and 2,

and other parameter values can be found in [9, 15, 34]. Experimental measurements for

water accumulated in the cloth assembly were given in [8].
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Table 2. Physical parameters for the batting material

Properties Polyester Unit

Thickness (L) 4.92 × 10−3 × 10 m

Fibre density (ρf) 1.39 × 103 kg/m3

Porosity (ε′) 0.993

Phase change coefficient (E) 2.4 × 10−6

Radius of fibre (Rf) 1.03 × 10−5 m
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Figure 2. (Colour online) Numerical results with the Robin boundary conditions (β = 400).

To compare with the experimental measurements done in [8], we solve the system

(2.1)–(2.3) with the Robin boundary conditions and the initial conditions given in (2.21).

Here all numerical results are obtained by using the finite volume method presented

in [29,34] with Δt = 10 s, Δx = L/100 (1% of the batting length). Numerical simulations

with smaller time and spatial steps are also made to ensure the convergence of numerical

results.

We present in Figure 2 numerical results at 8 hours and 24 hours, respectively, in which

C , T and W are the vapour concentration, temperature and water content respectively.

The comparisons with experimental measurements of water content done in [8] are given

in last two figures. In Figures 3 and 4, we present numerical results with a normal human

sweating rate (sw = 30 mLm−2 h−1) and an extreme sweating rate (sw = 300 mL m−2 h−1),

respectively. In the normal case, since the sweating rate is relatively low and the vapour
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Figure 3. (Colour online) Numerical results of normal human sweating system (β = 400).

density is much small, the condensation (Γce � 0) mainly occurs near to the outer cover.

In the extremal case, due to the increase in sweating rate, the water content is much larger

than that in the normal case and a stronger condensation near the inner cover can be

observed.

To see more clearly the effect of radiative heat transfer, in Figure 5, we present

the heat fluxes of convection/conduction and radiation, and the source functions from

condensation/evaporation and radiation, for the normal human sweating system at 8

hours with β = 400 and 1400, respectively. In the case of β = 400, one can see that

the convection/conduction flux is dominant near the two covers, mainly due to large

vapour velocity near the inner cover induced by the coming sweat and the relatively large

conductivity of ice near the outer cover. Apart from this, the radiation flux is comparable

with the convection/conduction flux in general. Since β defines the absorptivity/emissivity

of radiation, the radiation flux decreases as β increases. Also, one can see in the last two

figures that there are large variations in the radiative heat transfer rate (source) near

the inner and outer covers since it is a function of T 4 and the temperature arrives

its maximum and minimum there, respectively. Moreover, in the case of β = 1400, the

convection/conduction flux is absolutely dominant everywhere.

In Figure 6, we present numerical results of an extremal human sweating system at

1 hour with β = 400 and 1400. Due to the large amount of sweat coming from the

inner cover, a stronger condensation occurs near the inner cover, which results in lower

convection/conduction flux near the cover.
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Figure 4. (Colour online) Numerical results of an extremal human sweating system (β = 400).

4 Analysis

Theoretical analysis for the above system without radiative heat transfer was given in [22].

In this section, we present a priori estimates for the solution of the system, from which,

together with the standard construction of approximate solution and fixed-point theory,

the existence of weak solution follows immediately. In the proof, the conservative form of

boundary conditions plays an important role.

For a textile model, the water content in the batting area usually is relatively small and

one often assumes that all these physical parameters involved in the system (2.1)–(2.2)

are positive constants. For simplicity, we also neglect evaporation/condensation in phase

change. With these techniques used in [19, 22], it is not difficult to extend the approach

to more general cases. Under the above assumptions, with non-dimensionalization, the

system (2.1)–(2.2) reduces to

ρt − (ζ(ρθ)x)x = 0, (4.1)

(ρθ)t + ηθt − (ζ(ρθ)xθ)x − (κ(ρ)θx)x = Γr(θ), (4.2)

for x ∈ Ω := (0, 1), t > 0, where (·)μ = ∂
∂μ

for μ = x, t, ρ = ρ(x, t) and θ = θ(x, t) represent

the vapour density and the temperature, respectively, Γr = β(FL(θ) + FR(θ)) − 2βσθ4 as

defined in (2.10)–(2.13) with L = 1, η and ζ are positive constants, and κ(ρ) = κ1 +κ2ρ
2 is

the heat conductivity coefficient with κi (i = 1, 2) being positive constants. A more general
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Figure 5. (Colour online) Fluxes and sources for a normal human sweating system at 8 hours. In

the top subfigures, - - - represents convection/conduction heat fluxes, and — represents radiative

heat flux. In the bottom subfigures, - - - represents condensation/evaporation source (Γce), and —

represents radiative heat transfer rate (Γr).

form of κ(ρ) can be found in [32]. The corresponding boundary conditions are given by

−ζ(ρθ)x|x=0 = s0, (4.3)

−ζ(ρθ)x|x=1 = α1(ρ(1, t) − ρ̄1), (4.4)

and

−κ(ρ)θx|x=0 − (FL − FR)|x=0 = β0(θ̄0 − θ(0, t)) + ε1σ(θ̄4
0 − θ4(0, t)), (4.5)

−κ(ρ)θx|x=1 − (FL − FR)|x=1 = β1(θ(1, t) − θ̄1) + ε2σ(θ4(1, t) − θ̄4
1), (4.6)

and the initial conditions are

ρ(x, 0) = ρ0(x), θ(x, 0) = θ0(x), x ∈ (0, 1) . (4.7)

We assume that all the above parameters are positive constants, ρ0 is non-negative and θ0

is strictly positive. To simplify the notations, we denote by C a generic positive constant

which solely depends upon the physical parameters involved in the equations as well as in

the initial and boundary conditions, and δ is a small generic positive constant. In [19,22],
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Figure 6. (Colour online) Fluxes and sources for an extremal human sweating system at 1 hour.

In the top subfigures, - - - represents convection/conduction heat fluxes, and — represents radiative

heat flux. In the bottom subfigures, - - - represents condensation/evaporation source (Γce), and —

represents radiative heat transfer rate (Γr).

the existence of a weak solution for the above system without radiative heat transfer

was proved by constructing a sequence of approximate solution (ρ, θ) ∈ W
2,1
2 (QT ), where

QT := Ω × [0, T ] for some positive constant T . We present a priori estimates for the

solution of the system (4.1)–(4.2), where we assume that (ρ, θ) ∈ W
2,1
2 (QT ).

4.1 Positivity/non-negativity

First, we rewrite the system (4.1)–(4.2) by

ρt − (ζ(ρθ)x)x = 0, (4.8)

(ρ+ η)θt − ζ(ρθ)xθx − (κ(ρ)θx)x = Γr(θ), (4.9)

where the second equation is obtained by adding (4.1) times −θ to (4.2).

In this section, we will prove that there exists a constant θmin > 0 such that

θ � θmin, and ρ � 0, for (x, t) ∈ QT . (4.10)

The following lemma is useful for our proof.
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Lemma 4.1 Both thermal radiation fluxes travelling to the left and right are non-negative,

i.e.

FL � 0, FR � 0.

Proof The second inequality above can be observed directly from (2.15). By (2.14), we

can express FL by

FL = σeβx
[∫ 1

0

βe−βξθ4dξ −
∫ x

0

βe−βξθ4dξ

]
+ σeβx

[
−

∫ 1

0

βe−βξθ4dξ − fl

]

= σeβx
∫ 1

x

βe−βξθ4dξ + σeβxf, (4.11)

where

f =
1

eβ − (1 − ε2)(1 − ε1)e−β
[
(1 − ε2)e

−βgr(1, t)

+ (1 − ε2)(1 − ε1)e
−βgl(1, t) + ε1(1 − ε2)e

−βθ4(0, t) + ε2θ
4(1, t)

]
.

Since f � 0, we can see FL � 0 immediately. �

Due to the uniform continuity of ρ in QT and η being positive, there exists t∗ (only

depends on η) such that when |t1 − t2| � t∗, |ρ(x, t1) − ρ(x, t2)| � η
2
. Since (ρ, θ) ∈ C(Q̄T )

and ρ0(x) is non-negative, we have ρ(x, t) � − η
2

in [0, t∗]. Now we prove the uniform

positivity of θ in Qt∗ .

Let θ+ = max{θ, 0} and θ− = max{−θ, 0}. Then θ = θ+ − θ−. Subtracting (4.8) times

|θ−|2 from (4.9) times 2θ−, and integrating the resulting equation, we obtain

∫ t∗

0

∫
Ω

((ρ+ η)|θ−|2)τdxdτ−
∫ t∗

0

|θ−|2 · ζ(ρθ)x
∣∣∣∣
1

0

dτ+ 2

∫ t∗

0

(κθx) · θ−
∣∣∣∣
1

0

dτ

+ 2

∫ t∗

0

∫
Ω

κ|θ−
x |2dxdτ = −2

∫ t∗

0

∫
Ω

Γr · θ−dxdτ . (4.12)

By the boundary conditions (4.3)–(4.6), we have

∫
Ω

(ρ+ η)|θ−|2dx+ 2

∫ t∗

0

∫
Ω

κ|θ−
x |2dxdτ+ 2

∫ t∗

0

∫
Ω

β(FL + FR)θ−dxdτ

+ 2

∫ t∗

0

{
θ−(0, τ)

[
β0(θ−(0, τ) + θ̄0) + ε1σθ̄

4
0 + ε1FL(0, τ)

]
+ θ−(1, τ)

[
β1(θ−(1, τ) + θ̄1) + ε2σθ̄

4
1 + ε2FR(1, τ)

]}
dτ

� 4‖θ−‖3
L∞(QT )

∫ t∗

0

∫
Ω

βσ|θ−|2dxdτ+

∫ t∗

0

[
s0 + α1

(
ρ̄1 +

η

2

)]
‖θ−‖2

L∞(Ω)dτ

+ 4

∫ t∗

0

σ(ε1 + ε2)‖θ−‖5
L∞(Ω)dτ. (4.13)
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Since θ ∈ W
2,1
2 (QT ) , θ ∈ C(Q̄T ) and

‖θ‖C(Q̄T ) � ‖θ‖
W

2,1
2 (QT ).

By noting the inequalities

‖θ−‖2
L∞(Ω) � δ‖θ−

x ‖2
L2(Ω) + C(δ)‖θ−‖2

L2(Ω),

‖θ−‖5
L∞(Ω) � C‖θ−

x ‖5/2

L2(Ω)
‖θ−‖5/2

L2(Ω)
+ C‖θ−‖5

L2(Ω),

we can arrive at

∫
Ω

|θ−|2dx �

∫ t∗

0

C∗(τ)

∫
Ω

|θ−|2dxdτ,

where C∗(τ) = C‖θ−‖3
L∞(QT )+C‖θ−

x ‖5/2

L2(Ω)
+C(δ) is integrable in (0, T ). Using the Gronwall’s

inequality, we derive θ− ≡ 0, which implies θ = θ+ � 0.

Moreover, let θ̃ = θet − δ1. Subtracting (4.8) times |θ̃−|2 from (4.9) times 2θ̃− and

integrating the resulting equation again, we obtain

∫ t∗

0

∫
Ω

((ρ+ η)|θ̃−|2)τdxdτ−
∫ t∗

0

|θ̃−|2 · ζ(ρθ)x
∣∣∣1
0
dτ+ 2

∫ t∗

0

(κθ̃x) · θ̃−
∣∣∣1
0
dτ

+ 2

∫ t∗

0

∫
Ω

κ|θ̃−
x |2dxdτ+ 2

∫ t∗

0

∫
Ω

(ρ+ η)δ1θ̃
−dxdτ

= 2

∫ t∗

0

∫
Ω

(ρ+ η)|θ̃−|2dxdτ− 2

∫ t∗

0

∫
Ω

eτΓr · θ̃−dxdτ, (4.14)

with the boundary conditions

−κ(ρ)θ̃x|x=0 − et(FL − FR)|x=0 = β0
[
(etθ̄0 − δ1) − θ̃(0, t)

]
+ ε1σe

t
[
θ̄4

0 − (e−t(θ̃(0, t) + δ1))
4
]
,

−κ(ρ)θ̃x|x=1 − et(FL − FR)|x=1 = β1
[
θ̃(1, t) − (etθ̄1 − δ1)

]
+ ε2σe

t
[
(e−t(θ̃(1, t) + δ1))

4 − θ̄4
1

]
,

and the initial condition θ̃(x, 0) = etθ0(x) − δ1.

If we take

δ1 = min
x∈[0,1]

{θ̄0, θ̄1, θ0(x), 1},

the above system has the same structure as the system (4.5)–(4.6). Taking the same

approach, we can see that θ̃ � 0, thus θ � e−T δ1.
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Next, we prove the non-negativity of ρ in Qt∗ . Multiplying (4.1) by ρ− and integrating

the resulting equation give

∫
Ω

|ρ−|2
2

dx+

∫ t∗

0

∫
Ω

ζθ|ρ−
x |2dxdτ

+

∫ t∗

0

[
α1ρ−(1, τ)(ρ−(1, τ) + ρ̄1) + ρ−(0, τ)s0

]
dτ

= −
∫ t∗

0

∫
Ω

ζθxρ
−ρ−

x dxdτ

�

∫ t∗

0

∫
Ω

( ζ

2θ
θ2
x|ρ−|2 +

ζ

2
θ|ρ−

x |2
)
dxdτ (4.15)

�

∫ t∗

0

ζeT

2δ1
‖θx‖2

L∞(Ω)

∫
Ω

|ρ−|2dxdτ+

∫ t∗

0

∫
Ω

ζ

2
θ|ρ−

x |2dxdτ,

which implies

∫
Ω

|ρ−|2dx �

∫ t∗

0

ζeT

δ1
‖θx‖2

L∞(Ω)

∫
Ω

|ρ−|2dxdτ.

Since θ ∈ W
2,1
2 (QT ) and ‖θx‖2

L∞(Ω) is integrable, using the Gronwall’s inequality again, we

derive that ρ− ≡ 0. Thus, ρ = ρ+ � 0 in Qt∗ .

Using the same approach, we can prove ρ � 0, θ � e−Tδ1 in [t∗, 2t∗]. Repeat the above

process for any given T > 0, we can see that ρ � 0, θ � e−T δ1 in QT .

4.2 Uniform estimates

We start from the estimates for θ. Integrating equation (4.2) over Qt leads to

∫
Ω

(ρ+ η)θ
∣∣∣t
0
dx−

∫ t

0

ζ(ρθ)xθ
∣∣∣1
0
dτ−

∫ t

0

(κθx)
∣∣∣1
0
dτ =

∫ t

0

(FL − FR)
∣∣∣1
0
dτ, (4.16)

which with boundary conditions gives

∫
Ω

(ρ+ η)θdx+

∫ t

0

a1ρ(1, τ)θ(1, τ)dτ

+

∫ t

0

[
β0θ(0, τ) + β1θ(1, τ) + ε1σθ

4(0, τ) + ε2σθ
4(1, τ)

]
dτ

=

∫
Ω

(ρ0 + η)θ0dx+

∫ t

0

[
s0θ(0, τ) + α1ρ̄1θ(1, τ)

]
dτ

+

∫ t

0

[
β0θ̄0 + β1θ̄1 + ε1σθ̄

4
0 + ε2σθ̄

4
1

]
dτ.

By noting the fact

a1θ
a � a2θ

b + Ca, (4.17)
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for any θ � 0, and a, b, a1, b1 being positive constants with a < b, we have

max
0�τ�t

‖θ(·, τ)‖L1(Ω) � CT ,

∫ t

0

θ4(0, τ)dτ � CT ,

∫ t

0

θ4(1, τ)dτ � CT , (4.18)

where CT is a constant depending on T .

Lemma 4.2 Let FL and FR be the radiation fluxes defined in (2.14)–(2.15). Then

ε2θ
l(1, τ)FR(1, τ) + ε1θ

l(0, τ)FL(0, τ)

� (1 + δ)ε2σθ
l+4(1, τ) + (1 + δ)ε1σθ

l+4(0, τ) + δ‖θ‖l+4
Ll+4(Ω)

+ C(δ) (4.19)

and

∫ t

0

∫
Ω

β(FL + FR)θldxdτ � δ

∫
Ω

θl+1dx+

∫ t

0

δ‖θ‖l+4
Ll+4(Ω)

dτ+

(
CT

δ

)l+1

(4.20)

for any l > 0.

Proof By (2.14)–(2.15) with L = 1, we can see that

fl � − 1

eβ − (1 − ε1)(1 − ε2)e−β

[
(1 − ε2)β‖θ‖4

L4(Ω) + βeβ‖θ‖4
L4(Ω)

+ (1 − ε2)ε1e
−βθ4(0, τ) + ε2θ

4(1, τ)
]
,

and moreover

ε2θ
l(1, τ)FR(1, τ) + ε1θ

l(0, τ)FL(0, τ)

= ε2βσe
−βθl(1, τ)

∫ 1

0

eβξθ4(ξ, τ)dξ + ε1ε2θ
l(1, τ)σe−βθ4(0, τ)

−
[
ε2(1 − ε1)σe

−βθl(1, τ) + ε1σθ
l(0, τ)

]
fl

�

[
ε2βσ + ε2(1 − ε1)βσe

−β (1 − ε2) + eβ

eβ − (1 − ε1)(1 − ε2)e−β

]
θl(1, τ)‖θ‖4

L4(Ω)

+ ε1βσ
(1 − ε2) + eβ

eβ − (1 − ε1)(1 − ε2)e−β θ
l(0, τ)‖θ‖4

L4(Ω)

+
ε2(1 − ε1)e

−β + ε1

eβ − (1 − ε1)(1 − ε2)e−β ε2σθ
l+4(1, τ) +

ε1(1 − ε2)e
−β + ε2

eβ − (1 − ε1)(1 − ε2)e−β ε1σθ
l+4(0, τ)

� Cθl(1, τ)‖θ‖4
L4(Ω) + Cθl(0, τ)‖θ‖4

L4(Ω) + ε2σθ
l+4(1, τ) + ε1σθ

l+4(0, τ), (4.21)

where we have noted that

ε2(1 − ε1)e
−β + ε1

eβ − (1 − ε1)(1 − ε2)e−β � 1,
ε1(1 − ε2)e

−β + ε2

eβ − (1 − ε1)(1 − ε2)e−β � 1.
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By (4.18), we further have

θl(ξ, τ)‖θ‖4
L4(Ω) � θl(ξ, τ)

(
δ‖θ‖4

Ll+4(Ω) + C(δ)‖θ‖4
L1(Ω)

)
� δθl+4(ξ, τ) + δ‖θ‖l+4

Ll+4(Ω)
+ C(δ),

for ξ = 0, 1. (4.19) can be obtained by substituting these inequalities into (4.21).

To prove (4.20), we rewrite the sum of the radiation fluxes as

β(FL + FR) = −β2σeβx
∫ x

0

e−βξθ4(ξ, τ)dξ + β2σe−βx
∫ x

0

eβξθ4(ξ, τ)dξ

+ ε1βσe
−βxθ4(0, τ) −

(
βσeβx + βσe−βx(1 − ε1)

)
fl .

Since

−eβx
∫ x

0

e−βξθ4(ξ, τ)dξ � −eβx
∫ x

0

e−βxθ4(ξ, τ)dξ = −
∫ x

0

θ4(ξ, τ)dτ

e−βx
∫ x

0

eβξθ4(ξ, τ)dξ � e−βx
∫ x

0

eβxθ4(ξ, τ)dξ =

∫ x

0

θ4(ξ, τ)dτ,

we have∫
Ω

β(FL + FR)θldx �

∫
Ω

[
ε1βσe

−βxθ4(0, τ) −
(
βσeβx + βσe−βx(1 − ε1)

)
fl

]
θldx

� ε1βσθ
4(0, τ)‖θ‖lLl (Ω)

+
eβ + (1 − ε1)

eβ − (1 − ε1)(1 − ε2)e−β βσ
[(

(1 − ε2)β + βeβ
)
‖θ‖4

L4(Ω)

+ ε1(1 − ε2)e
−βθ4(0, τ) + ε2θ

4(1, τ)
]
‖θ‖lLl (Ω)

� C
[
θ4(0, τ)‖θ‖lLl (Ω) + θ4(1, τ)‖θ‖lLl (Ω) + ‖θ‖4

L4(Ω)‖θ‖lLl (Ω)

]
.

By (4.17)–(4.18) we further have

∫ t

0

θ4(ξ, τ)‖θ‖lLl (Ω)dτ �

(∫ t

0

θ4(ξ, τ)dτ

)
‖θ‖lLl (Ω)

� δ

∫
Ω

θl+1dx+

(
CT

δ

)l+1

for ξ = 0, 1, and by noting the fact that

‖θ‖L4(Ω) � ‖θ‖δ0

L1(Ω)
‖θ‖1−δ0

Ll+4(Ω)
,

where δ0 ∈ ( 1
16
, 1

4
),

‖θ‖4
L4(Ω)‖θ‖lLl (Ω) � (CT )4δ0‖θ‖l+4−4δ0

Ll+4(Ω)

� δ‖θ‖l+4
Ll+4(Ω)

+

(
CT

δ

)l+1

.
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If follows that

∫ t

0

∫
Ω

β(FL + FR)θldxdτ � δ

∫
Ω

θl+1dx+

∫ t

0

δ‖θ‖l+4
Ll+4(Ω)

dτ+

(
CT

δ

)l+1

.

The proof is complete. �

By subtracting (4.1) times l × θl+1 from (4.2) times (l + 1) × θl and integrating the

resulting equation over Qt, we get

∫
Ω

(ρ+ η)θl+1dx+

∫ t

0

I(τ)dτ+

∫ t

0

∫
Ω

κ(ρ)l(l + 1)θl−1|θx|2dxdτ

=

∫
Ω

(ρ0 + η)θl+1
0 dx+

∫ t

0

∫
Ω

(l + 1)Γrθ
ldxdτ, (4.22)

where

I(τ) = −ζ(ρθ)xθl+1
∣∣∣x=1

x=0
− (l + 1)(κ(ρ)θx)θ

l
∣∣∣x=1

x=0

=
[
α1(ρ(1, τ) − ρ̄1)θ

l+1(1, τ) − s0θ
l+1(0, τ)

]
+ (l + 1)

[
β1θl(1, τ)(θ(1, τ) − θ̄1) + β0θl(0, τ)(θ(0, τ) − θ̄0)

]
+ (l + 1)

[
ε2σθ

l(1, τ)(θ4(1, τ) − θ̄4
1) + ε1σθ

l(0, τ)(θ(0, τ)4 − θ̄4
0)

]
+ (l + 1)

[
θl(1, τ)(FL − FR)|x=1 − θl(0, τ)|(FL − FR)x=0

]
.

For l
2

� α1ρ̄1

β1 + s0
β0 , by (2.12)–(2.13) and (4.17), we note that

I(τ) � −(l + 1)

[(
2

β1

)l (
β1θ̄1 + ε2σθ̄

4
1

)l+1
+

(
2

β0

)l (
β0θ̄0 + ε1σθ̄

4
0

)l+1

]

+ (l + 1)
[
ε2σθ

l+4(1, τ) + ε1σθ
l+4(0, τ)

]
+ (l + 1)θl(1, τ)

[
ε2σθ

4(1, τ) − ε2FR(1, τ)
]

+ (l + 1)θl(0, τ)
[
ε1σθ

4(0, τ) − ε1FL(0, τ)
]
.

Then (4.22) reduces to

∫
Ω

(ρ+ η)θl+1dx+

∫ t

0

∫
Ω

κ(ρ)l(l + 1)θl−1|θx|2dxdτ

+

∫ t

0

2σ(l + 1)
[
ε2θ

l+4(1, τ) + ε1θ
l+4(0, τ)

]
dτ+

∫ t

0

∫
Ω

2βσ(l + 1)θl+4(x, τ)dxdτ

� Cl+1
0 +

∫ t

0

(l + 1)
[
ε2θ

l(1, τ)FR(1, τ) + ε1θ
l(0, τ)FL(0, τ)

]
dτ

+

∫ t

0

∫
Ω

(l + 1)β(FL + FR)θldxdτ, (4.23)
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where

Cl+1
0 �

∫
Ω

(ρ0 + η)θl+1
0 dx

+T (l + 1)

[(
2

β1

)l (
β1θ̄1 + ε2σθ̄

4
1

)l+1
+

(
2

β0

)l (
β0θ̄0 + ε1σθ̄

4
0

)l+1

]
.

From Lemma 4.2, we see that

∫
Ω

(
ρ+

η

2

)
θl+1dx+

∫ t

0

∫
Ω

κ(ρ)l(l + 1)θl−1|θx|2dxdτ � Cl+1
1 , (4.24)

where Cl+1
1 � Cl+1

0 + C(δ) + (CT
δ

)l+1. Thus, we have

||θ||Ll+1(QT ) � C1.

By taking l → ∞,

||θ||L∞(QT ) � C1. (4.25)

On the other hand, with (4.25), taking l = 1 in (4.22) gives

∫ t

0

∫
Ω

κ(ρ)|θx|2dxdτ � C1. (4.26)

To estimate ρ, we integrate (4.1) times ρ over Qt to get

∫
Ω

ρ2

2
dx+

∫ t

0

∫
Ω

ζρ2
xθdxdτ+

∫ t

0

α1ρ2(1, τ)dτ

=

∫
Ω

ρ2
0

2
dx+

∫ t

0

[
α1ρ(1, τ)ρ̄1 + ρ(0, τ)s0

]
dτ−

∫ t

0

∫
Ω

ζθxρρxdxdτ

�

∫
Ω

ρ2
0

2
dx+

∫ t

0

[
α1ρ(1, τ)ρ̄1 + ρ(0, τ)s0

]
dτ

+

∫ t

0

∫
Ω

ζ

2
ρ2
xθdxdτ+

∫ t

0

∫
Ω

ζ

2θ
ρ2θ2

xdxdτ. (4.27)

By noting that

‖ρ‖2
L∞(Ω) � δ‖ρx‖2

L2(Ω) + C(δ)‖ρ‖2
L2(Ω) + C,

from which, with (4.10) and (4.26), we obtain

∫
Ω

ρ2dx �

∫ t

0

∫
Ω

C(δ)ρ2dx+ C1.

Using the Gronwall’s inequality, we have

sup
0�t�T

∫
Ω

ρ2dx � C1. (4.28)
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With the above inequality, (4.27) implies

∫ T

0

∫
Ω

ρ2
xdxdτ � C1. (4.29)

With the above a priori estimates, the existence of a weak solution can be obtained by

a routine argument with the Leray–Schauder fixed-point theorem [19,22]. We summarize

the main result of this section into the following theorem.

Theorem 4.1 If the initial data (ρ0, θ0) satisfies ρ0 ∈ L2(Ω) , θ0 ∈ L∞(Ω) and ρ0 > 0,

θ0 � θmin for some positive constant θmin, then there exists a global weak solution (ρ, θ) to

the initial-boundary value problem (4.1)–(4.7) such that

ρ ∈ L∞(0, T ;L2(Ω)), ρ ∈ L4(QT ), ρx ∈ L2(QT );

θ, θ−1 ∈ L∞(QT ), (1 + ρ)θx ∈ L2(QT )
(4.30)

and

∫ T

0

∫
Ω

(−ρφt + ζ(ρθ)xφx)dxdt−
∫ T

0

s0φ(0, t)dt

+

∫ T

0

α1(ρ(1, t) − ρ̄1)φ(1, t)dt =

∫
Ω

ρ0φ(x, 0)dx (4.31)

and

∫ T

0

∫
Ω

[−(ρ+ η)θψt + ζ(ρθ)xθψx + κθxψx + (FL − FR)ψx] dxdt

+

∫ T

0

[
−s0θ(0, t)ψ(0, t) + a1(ρ(1, t) − ρ̄1)θ(1, t)ψ(1, t)

]
dt

+

∫ T

0

[
β0(θ(0, t) − θ̄0) + ε1σ

(
θ4(0, t) − θ̄4

0

)]
ψ(0, t)dt

+

∫ T

0

[
β1(θ(1, t) − θ̄1) + ε2σ

(
θ4(1, t) − θ̄4

1

)]
ψ(1, t)dt

=

∫
Ω

(ρ0θ0 + ηθ0)ψ(x, 0)dx (4.32)

for any test functions φ,ψ ∈ C∞(QT ) which vanish at t = T .
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