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SUMMARY
The complexity and uncertainty of the cross-sectional shape
of the parts to be mated is one of the main reasons that
misalignment between them occurs in assembly processes.
Misalignment cannot only give rise to assembly failure but
also cause damage to the parts or a robot due to large contact
force. Therefore, misalignment sensing and compensation is
essential for successful assembly operation. In this paper, we
propose a novel misalignment estimation and compensation
method which does not need any advance information on
the cross-sectional shapes of the mating parts. This method
utilizes a ϕ − r transformation and an M-estimation pattern
matching technique with misalignment images of a peg and
a hole taken by an omni-directional visual sensing system
during assembly. At every sampling instant during assembly
action, it furnishes information on the relative position and
orientation between the mating parts, and thus helps to
estimate and compensate any possible misalignment between
them. Also, a series of experiments are performed with a
couple of peg-in-hole tasks, and the results are discussed.
The experimental results show that the proposed method is
effective for misalignment compensation in robotic assembly
even though there is no prior information on part geometry
and the images are very noisy.

KEYWORDS: Misalignment compensation; Robotic assem-
bly; Cross-sectional shape; M-estimation; Omni-directional
sensing system.

1. INTRODUCTION
A flexible assembly system (FAS) for small quantity batch
production can handle several and different kinds of parts
in each stage due to its flexibility. Robotic assembly is one
of the effective means implementing such FAS. One of the
difficulties that occur during part mating of robot-based
assembly is a misalignment problem, which is defined as
the relative position and orientation between mating parts.
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Misalignment can not only give rise to assembly failure but
also cause damage to the parts or a robot due to large contact
force. Therefore, misalignment sensing and compensation is
essential for successful assembly operation.1

In order to find misalignment, information on the relative
position and orientation between the parts to be mated is
necessary, and it can be obtained from the relative cross-
sectional geometry between the parts. Therefore, there is a
need for a robotic assembly system to have the capabilities
to estimate misalignment during assembly and to overcome
any uncertainties arising from shape complexity, although the
cross-sectional shapes of the parts are not known in advance.

Misalignment can be detected by a number of techniques
using a force/torque sensor, a proximity sensor or a visual
sensor.2–5 Among them, a visual sensing technique is often
incorporated into an assembly system since it can detect the
shape of a part at a distance, as well as a large misalignment.
However, a visual sensing system usually obtains only local
information due to self-occlusion problem, i.e. some regions
are occluded by the mating part itself in the viewing direction.
For this reason, it is generally not easy to estimate the
misalignment between mating parts with complicated cross-
sectional shapes.

In order to overcome the self-occlusion and the difficulties
due to geometrical complexity, Miura6 introduced a camera
relocation method. However, this is very time-consuming
because it needs image processing of several images and
relocating a camera. To solve this problem, the authors have
developed an omni-directional sensing system using double
conic mirrors.7,8 This system can overcome self-occlusion,
and detect immediately the misalignment between mating
parts. Besides, it can overcome the difficulties caused by
shape complexity in detecting the misalignment. In case of a
peg-in-hole assembly task, however, it is not easy to discern
a peg and a hole separately in a misalignment image taken
during assembly operation without any advance information
on their relative motion and geometry.

Many researches have been done to develop a method on
how to discern the mating parts from each other, i.e. a peg and
a hole in a misalignment image. One of them utilizes a CAD-
based model to obtain geometrical information.9,10 However,
this requires an additional model to handle uncertainty even
though it is not easy to construct the model coping with
unexpected environmental change. And, there is a method
based on image processing, such as chain coding or edge
following.11 In addition, there are many researches using AI
techniques, such as inductive learning,12 fuzzy13 or neural
network14 which deals with a geometrical model, including
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Fig. 1. Schematic diagram of the omni-directional sensing system.

uncertainties. These methods are considerably capable of
adapting to the changeable environment for themselves, but
they need a great number of learning data or experience-based
rules. Also, they need a time-consuming learning procedure
to construct a new assembly strategy in accordance with
a change of assembly conditions, since the data and rules
depend largely on the change.

In this paper, we propose a novel method to estimate
and correct the misalignment between the mating parts by
discerning a peg and a hole from each other even though
their relative geometrical information is not given in advance.
This method utilizes an omni-directional sensing system that
can obtain the 2π misalignment image between the mating
parts. From the edge information, the geometric relations,
such as the relative position and orientation between the
mating parts are obtained. A pattern matching technique
using a ϕ − r transformation and an M-estimation is used
to differentiate a peg and a hole from each other in one
image of a peg and a hole, and at the same time to correct
misalignment between them. And a series of experiments
are performed with the parts having circular and rectangular-
shaped cross-sections in order to investigate the performance
of the proposed method.

The paper is organized as follows: section 2 proposes an
effective method to recognize a peg and a hole separately
in a misalignment image taken by an omni-directional
sensing system without prior information on part geometry.
It describes the results obtained from a series of experiments
to show the effectiveness of the proposed method. section 3
describes a robust pattern matching method to correct the
misalignment between the mating parts. Finally, section 4
draws some conclusions.

2. RECOGNITION OF A PEG AND A HOLE

2.1. Misalignment detection by an omni-directional
sensing system
Let us assume that an omni-directional sensing system is
used in order to obtain the misalignment image formed by
mating parts, because it has a capability of detecting the 2π

image of the boundary interface between misaligned parts
without self-occlusion, as described in section 1. Fig. 1(a)
illustrates a basic configuration of the sensing system. The
detailed explanation about the system such as the mapping
principle and features can be referred to in reference [7].
The system consists of four components: an inside-conic
mirror and an outside-conic mirror, a pair of plane mirrors,
a camera, and a gripper. The goal of the sensing system is
to obtain a 2π coaxial image without self-occlusion. The
inside-conic mirror is a configuration obtained by the 360◦
rotation of the finite patch of a plane mirror with respect to
the vertex axis, as shown in Fig. 1(b). With this configuration,
the inside conic mirror is capable of reflecting the 2π figure
of an object encompassed by the mirror itself without self-
occlusion. In this way, the inside-conic mirror is used to
obtain the 2π cross-sectional geometry of the mating part
without self-occlusion.

However, additional optical components are required to
detect 2π shape by using a camera on off-axis, as shown
in Fig. 1(a). First, an outside-conic mirror, placed co-axially
at the center of the inside-conic mirror is used to collect
the 2π image captured in the inside-conic mirror surface.
The collected 2π image is projected onto the image plane
of the camera, using two plane mirrors: one is placed
above the outside-conic mirror and the other is placed below
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Fig. 2. Conceptual illustration of a ϕ − r algorithm.

the camera, as shown in Fig. 1(a). According to this principle,
this system is eventually capable of obtaining not only a 2π

coaxial image of the combined shape formed between a peg
and a hole without self-occlusion, but also omni-directional
side-views such, as figures denoted as a, b, c and d, as shown
in Fig. 1(c).

2.2. Problem statements
Figure 2(a) shows a conceptual diagram of the misalignment
image detected by the omni-directional sensing system. This
2π coaxial shape is generally characterized according to the
double conic projection8 when a peg with arbitrary shape is
captured by the omni-directional sensing system, as shown
in the top left of Fig. 2(a). To make the problem simple, let us
assume that a peg and a hole are rigid and the cross-sectional
shapes are previously not known. Then, the obtained 2π

coaxial image reveals several helpful cues to discern a peg
and a hole, as stated below.

(a) There is no shape deformation for a peg and a hole during
the mating period, and their cross-sectional shapes are
identical.

(b) A peg exists above a hole during the mating period, and
thus the hole shape is always occluded by a peg shape. In
this case, the same part of the boundary edge of the hole
is cut by that of the peg.

(c) Cross-sectional shapes of a peg and a hole in a
misalignment image remain unchanged, and they have
a relation of an Euclidean transformation.

2.3. Feature extraction by ϕ − r transformation
In order to correct misalignment, it is necessary to discern
a peg and a hole from each other. And, based on this
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information, the size and the direction of misalignment in
the course of assembly are identified. Finally, misalignment is
corrected for successful assembly. In this paper, we introduce
an efficient feature based method to extract the features for
discerning a peg and hole. First, let us set up an xy-coordinate
system centered at an image center Oc in the misalignment
image, as shown in Fig. 2(a). Then, the azimuth angle ϕ

is defined as a counterclockwise angle with respect to the
x-axis in the coordinates. Let us call the angle ϕs the sampling
angle, with which the number of the sample is given when
the 2π angle is divided at an interval of ϕs . We draw radial
lines at the interval of ϕs starting from the center Oc outward
in a misalignment image plane. Then, a radial line li that the
azimuth angle ϕi is equal to iϕs among them is defined as
follows;

y = tan(ϕi) · x, i = 1, 2, . . . , int(2π/ϕs) (1)

where the symbol ϕi represents the azimuth angle of iϕs ,
the subscript i means the i-th line, and the symbol ‘int’
denotes integer. In addition, the lines encounter point blobs
on boundary edges of a peg and hole. All intersection points
(ϕi, rj ) are defined as follows;

rj =
√

x2
k + y2

l , ϕi = tan−1

(
yl

xk

)
(2)

where the radial distance rj is defined as the distance from
the image center Oc to an intersection point (ϕi, rj ) and
(xk, yl) is the position of a point blob joined to form the radial
line li .

Computing the radial distances and transforming them
into the ϕ − r space by using the relation (2), the ϕ − r

graph is then obtained, as shown in Fig. 2(b). Accordingly,
representing the radial distances of the points intersecting the
line li in the ϕ − r space as a set Ri , it is given as follows:

Ri = {
ri

1, r
i
2, . . . , r

i
n, . . . , r

i
N

}
(3)

where N is the maximum number of radial elements in the
set, and the superscript i denotes the i-th radial line li at the
azimuth angle of ϕi . The set Ri includes the radial distances to
noises, as well as the distances to point blobs on the boundary
edges of a peg and a hole in the 2π coaxial misalignment
image.

The distribution features of the set Ri are unknown because
the shapes of mating parts is not given a priori. Therefore,
an algorithm clustering the elements in the set Ri needs to
be proposed, with which the elements are classified in a self-
organized manner under consideration of their distribution
features.8 For instance, the first clustered class has a high
probability to be classified into a peg, the second has the next
highest probability to be classified into a hole and noises,
and the other classes having low probability are classified
into environment and background noises. The segmentation
between boundary shapes of a peg and a hole in a noisy image
can be executed by using an appropriate algorithm based on
these interesting features.

2.4. Recognition experiments
A series of experiments have been performed with respect
to typical pegs whose cross-sectional area has circular and
rectangular shapes, as shown in Fig. 3(a) and Fig. 4(a). The
experiments have been performed with the sampling angle
ϕs = 2.5◦ for the cylindrical peg and ϕs = 2◦ for the three-
dimensional rectangular peg.

Figure 3(a) shows the 2π coaxial misalignment image for
the three-dimensional cylindrical peg and hole detected by
the proposed sensing system. As expected, self-occlusion
does not occur. Fig. 3(b) shows the edge image after thinning
operation with respect to the misalignment image of Fig. 3(a).
Fig. 3(c) indicates the ϕ − r graph of the misalignment image
of Fig. 3(b), and Fig. 3(d) shows a procedure searching a
peg and a hole in the 2π coaxial edge image through the
detection of the intersection blobs along the radial lines drawn
at an interval of ϕs = 2.5◦. Fig. 3(e) and Fig. 3(f) show the
recognition results of the peg and the hole, in which case
the information about shapes and location of the peg and the
hole are previously not given.

The results show that, although the thinned image contains
various noises, the peg and the hole are recognized easily
by using the proposed algorithm. The blobs of the recognized
hole becomes rarer than those of the peg because the location
far from the center has lower sampling resolution than that
of a closer location when the boundary edges are detected
by the radial line at an interval of ϕs . The result also shows
that the recognized hole includes much more noises than
the peg. This is due to the fact that the secondly detected
noises are considered as a part of the hole as described
in section 2.3, although the hole boundary edge does not
exist at the right-hand side of the image, as shown in
Fig. 3(b).

Similarly, Fig. 4 shows a procedure recognizing a rec-
tangular peg and a hole. The peg and the hole are detected
in a way similar to the case of the circular peg and the
hole. The results show that the rectangular peg and the hole
are segmented well in a thinned image containing noises.
Also, the detected top edge found in Fig. 4(b) is neglected
through the correction procedure. The vertical edge noises are
completely eliminated according to the procedure described
in section 2.4.

In summary, the experimental results show that, although
the shapes of a peg and a hole are not given beforehand, they
are segmented from the misalignment image through the
ϕ − r algorithm. It is shown that they are identified simply
by using a few cues such as the distance and the occurrence
order in the ϕ − r space, although the edge images contain
a lot of noises. In addition, if the cut-off level of noises is
increased, it is natural that much more noise be removed.
On the other hand, the shapes of the peg and the hole may
not be reconstructed correctly. In other words, there is a
trade-off between the noise cut-off level and accuracy of
reconstruction of real shapes.

Since there is also a similar relationship between sampling
angle and searching time, it is necessary to select the
sampling angle under consideration of minimum achievable
value of the sampling resolution ϕr . In these experiments, it
is found that the sampling angle in the range of 1◦ ∼ 2.5◦ and
the noise cut-off level of 5 pixels give stable results.
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3. MISALIGNMENT CORRECTION
BY ROBUST MATCHING

3.1. Misalignment corrective motion using an M-estimator
According to the precondition (a) described in section 2.2,
it is assumed that the shape of a peg and that of a hole

appearing in a misalignment image are identical to each other.
In order to compensate for identified misalignment under
the condition, the peg is moved toward the hole, and then
the geometrical shape of the peg is matched to that of the
hole. As a method for matching, a transformation between
the peg and the hole can be utilized, and it is defined by the
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motion parameters such as the rotation and the translation
between two boundary shapes before and after motion. Let
us locate a set of N pairs of corresponding points (pi, hi),
which are called control points in two shapes of a peg and a
hole, pi ∈ Ps and hi ∈Hs , i = 1, 2, . . . , N , where Ps , Hs is a
set of the points which belong to the edge of the peg and the

hole respectively. Then, the matching problem is to find the
transformation T that minimizes an error function defined as
follows;15

e =
N∑
i

|T · pi − hi |2. (4)
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However, it is not easy to obtain the transformation
by using Eq. (4) for arbitrary curves. As an alternative,
minimizing a distance function given in Eq. (5), which is
defined by the distances between the points that belong to
the edge of the peg and the hole, can be used.

e =
N∑
i

‖T · pi − hi‖2 (5)

Here, ‖ · ‖ represents the norm of a matrix. As the peg
moves toward the hole, a transformation T needs to be
re-computed repeatedly to obtain more accurate and new
transformation. Starting from an initial transformation T0, it
can be represented by an iterative form as follows;

ek =
N∑
i

∥∥Tk ·pk
i − hi

∥∥2
(6)

where superscript k denotes an iteration number. In addition,
the sensing system obtains a 2π coaxial misalignment image,
which remain unchanged, and so the transformation can be
considered as an Euclidean transformation, as assumed in
the precondition (c) of section 2.2. Hence, it is given as
follows;

T =

 a b c

−b a d

0 0 1


 (7)

where a and b represent the orientation components of the
misalignment between a peg and a hole, and c and d represent
the position components of the misalignment.

Let us assume that there are two boundary shapes of a peg
and a hole detected by an image sensing system, as shown
in Fig. 5. Then, cppi represents a pixel point (xpi, ypi, 1)t on

the boundary edge of a peg in an image, where t denotes the
transpose of a vector. The normal distance di between a pixel
point cppi = (xpi, ypi, 1)t and a tangential line lti is given
by

di = Aixpi + Biypi + Ci√
A2

i + B2
i

(8)

where the tangential line lti is defined as Aix +Biy +Ci = 0.
The line lti is the tangential line at a point cphi = (xhi, yhi, 1)t

which is the intersection point of the hole boundary and the
normal line lni at a point cppi = (xpi, ypi, 1)t . Then, based
on Eq. (8), the newly modified error function of Eq. (6) is
defined as follows;

ek =
∑

i

(
dk

i

)2 =
∑

i

1(
A2

i + B2
i

)(
Ai

(
axk−1

i + byk−1
i + c

)

+ Bi

(−bxk−1
i + ayk−1

i + d
) + Ci

)2
(9)

where a, b, c, d are the elements of a transformation matrix
T, and xk−1

i , yk−1
i denote a point on the peg boundary at

(k-1)-th iteration.
However, this function has the same weight factors for

all related points regardless of their distance values, and
so it can not reduce the effect of the noises which the
recognized image of a peg and a hole might contain. In
other words, a more robust method is necessary to estimate
more accurate motion parameters. This study utilizes an
M-estimator which is robust to noisy images.16,17 The error
function of Eq. (9) is then modified by the M-estimation as
follows;

ek =
∑

i

w
(
dk−1

i

) · (dk
i

)2
(10)
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where w denotes a weight factor which is defined by

w
(
dk−1

i

) =



1 for di ≤ σ

σ
/∣∣dk−1

i

∣∣ for σ < di < 3σ

0 for di > 3σ

(11)

where σ is a constant value such as standard deviation. In
other words, the robotic motion parameters for misalignment
correction can be obtained by minimizing the error function
of Eq. (10) by least square method. Explaining in detail,
the least square solutions can be obtained from that the
partial derivatives of the error function with respect to the
motion parameters are equivalent to zeros. Differentiating
the error function with respect to the motion parameters
pm = (a, b, c, d)t , then ∂ek

∂a
= 0, ∂ek

∂b
= 0, ∂ek

∂c
= 0, ∂ek

∂d
= 0.

Solving these equations, the motion parameter vector pm

is given by

pm = D−1
l Dr (12)

where

Dl =




∑
i

w
(
dk−1

i

)
(Aixi + Biyi )2 ∑

i

w
(
dk−1

i

)
(Aiyi − Bixi )(Aixi + Biyi )

∑
i

w
(
dk−1

i

)
Ai (Aixi + Biyi )

∑
i

w
(
dk−1

i

)
Bi (Aixi + Biyi )

∑
i

w
(
dk−1

i

)
(Aixi + Biyi )(Aiyi − Bixi )

∑
i

w
(
dk−1

i

)
(Aiyi − Bixi )2 ∑

i

w
(
dk−1

i

)
Ai (Aiyi − Bixi )

∑
i

w
(
dk−1

i

)
Bi (Aiyi − Bixi )

∑
i

w
(
dk−1

i

)
Ai (Aixi + Biyi )

∑
i

w
(
dk−1

i

)
Ai (Aiyi − Bixi )

∑
i

w
(
dk−1

i

)
A2

i

∑
i

w
(
dk−1

i

)
AiBi

∑
i

w
(
dk−1

i

)
Bi (Aixi + Biyi )

∑
i

w
(
dk−1

i

)
Bi (Aiyi − Bixi )

∑
i

w
(
dk−1

i

)
AiBi

∑
i

w
(
dk−1

i

)
B2

i




Dr =




− ∑
i

w
(
dk−1

i

)
Ci(Aixi + Biyi)

− ∑
i

w
(
dk−1

i

)
Ci(Aiyi − Bixi)

− ∑
i

w
(
dk−1

i

)
CiAi

− ∑
i

w
(
dk−1

i

)
CiBi




.

In conclusion, the motion parameters a, b, c, d can be
obtained from Eq. (12) by an iterative operation. On the other
hand, the robotic corrective motion also can be represented
by using another motion parameter vector prm = (tx, ty, α)t

as follows:

prm =

 tx

ty
α


 =


 c

d

tan−1(b/a)


 (13)

where tx and ty denote the translation in x and y direction,
and α denotes the orientation angle of the corrective motion.

3.2. Misalignment correction experiments
In order to investigate the effectiveness of the algorithm
proposed in section 3.1, a series of experiments were
performed under a couple of conditions of part mating. As
shown in Fig. 6, misalignment correction experiments were
performed by using the pegs and the holes with circular
and rectangular cross-sectional shapes, respectively. Fig. 6(a)
shows the edge images in the initial position. First, the edge
images of a peg and a hole are extracted from the original

images such as Fig. 3(a) or Fig. 4(a), which are taken by
the omni-directional sensing system. Next, the peg and the
hole are recognized separately from the misalignment edge
images by using the ϕ − r transformation, which is described
in section 2.3.

In these experiments, the boundary edges were sampled at
an interval of 4◦ for the circular cross-sectional shaped peg
and hole, and 2◦ for the rectangular cross-sectional shaped
peg and hole. These sampling angles are much larger than
the resolution ϕr = 0.24◦ of the implemented sensing system.
In the initial position, the misalignment ratio between the
circular peg and its corresponding hole is about 60%, and
the misalignment ration in the case of the rectangular peg
and hole is about 80%. The misalignment ratio is defined
as the ratio of the area of the visible part of a hole to the
cross-sectional area of a peg.

Fig. 6(b) and Fig. 6(c) show the states after 5 and 10
corrective motion using the proposed corrective matching
algorithm. Each time an iteration is executed, the corrective

motion parameters of Eq. (13) are computed by the method
described in section 3.1. As a result of the robotic corrective
motion by the parameters, the peg in the misaligned position
is moved gradually to the hole position. In the end, the as-
sembly operation is completed successfully through complex
matching. Also, these experimental results show that the pro-
posed algorithm works effectively in noisy images too. Com-
paring with the two cases of a circular peg and a rectangular
peg in these experiments, the rectangular peg needs more
iterations to correct the misalignment due to the complexity
of the shape. The results indicate that, as the part shape be-
comes more complicated, the matching process takes longer
time and the misalignment correction need more iterations.

On the other hand, there is another factor which has an
influence on the misalignment correction, it is misalignment
ration. Fig. 7 shows the convergence rate of iterative
misalignment correction according to the misalignment
ratios of 80%, 70% and 60% in a circular-shaped peg-in-
hole task. The results show faster convergence rate as the
misalignment ratio is small. Also, a small misalignment ratio
results in a short matching time, and so we can select a small
sampling angle. However, the cases with small misalignment
ratios are more sensitive to noises because the number of data
points for matching is small.

From these experimental results, it is concluded that the
proposed misalignment corrective method, using the ϕ − r

transformation and the M-estimator, is effective in robotic
assembly although any information on the part geometry is
not given in advance.
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Fig. 6. Correction of misalignment between a peg and a hole.

4. CONCLUSIONS
In this paper, we have proposed a novel method to estimate
and correct the misalignment between the mating parts
by discerning a peg and a hole from each other in a
misalignment image without any advance information on
part geometry in robotic assembly. This method utilized
an omni-directional sensing system that can obtain the 2π

misalignment image between the mating parts. A feature
extraction algorithm using a ϕ − r transformation method
has been developed to recognize a peg and a hole separately
in an image. And, a misalignment corrective algorithm using
an M-estimator has been developed on the basis of the

misalignment estimation algorithm between the recognized
peg and hole. To confirm the effectiveness of the proposed
method, a series of experiments have been performed with a
couple of part shapes and assembly conditions.

The experimental results show that the proposed method
can recognize a peg and a hole effectively by using only a
few features such as the distance and the order of occurrence
defined in the ϕ − r space, even though the edge images
contain a lot of noise. And the misalignment between the
mating parts was corrected successfully by using a pattern
matching technique in spite of a lot of noise. Therefore,
it is concluded that the proposed misalignment corrective
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Fig. 7. Convergence rate according to the misalignment ratio.

method using the ϕ − r transformation and the M-estimator
is effective in robotic assembly and adapts flexibly to
unexpected changes of assembly conditions.

References
1. C. S. G. Lee, R. C. Gonzalez and K. S. Fu, Tutorial on Robotics

(IEEE Computer Society Press, 1986) pp. 447–565.
2. H. S. Cho, H. J. Warnecke and D. G. Gwon, “Robotic assembly:

a synthesizing overview,” Robotica 5, Part 2, 153–165 (1987).
3. Y. Zhou, B. J. Nelson and B. Vikranditya, “Integrating

optical force sensing with visual servoing for microassembly,”
J. Intelligent and Robotic System 28, 259–276 (2000).

4. J. Y. Kim, H. S. Cho and S. Kim, “A visual sensing system
for measuring parts deformation and misalignments in flexible
parts assembly,” Optics and Lasers Engineering 15, No. 5,
379–401 (1998).

5. J. Y. Kim and H. S. Cho, “A neural net-based assembly
algorithm for flexible parts assembly,” J. Intelligent and
Robotic Systems 29, No. 2, 133–160 (2000).

6. J. Miura and K. Ikeuchi, “Generating visual sensing strategies
in assembly task,” IEEE Int. Conf. on Robotics and Automation
(1995) pp. 1912–1918.

7. W. S. Kim and H. S. Cho, “A new omni-directional image sens-
ing system for assembling parts with arbitrary cross-sectional
shapes,” IEEE/ASME Trans. on Mechatronics 3, No. 4,
275–292 (1998).

8. W. S. Kim, H. S. Cho and S. Kim, “Distortion analysis in an
omni-directional image sensing system for assembly,” IEEE
Symp. on Assembly and Task Planning (1997) pp. 257–262.

9. C. S. G. Lee and E. S. H. Hou, “Automatic generation and
synthesis of C-frames for mechanical parts in an insertion
task”, IEEE J. of Robotics and Automation 4, No. 3, 287–293
(1988).

10. T. Lozano-Perez, M. T. Mason and R. H. Taylor, “Automatic
synthesis of fine-motion strategies for robots,” Int. J. of
Robotics Research 3, No. 1, 3–24 (1984).

11. D. H. Ballard and C. M. Brown, Computer Vision (Prentice
Hall, Inc. 1982).

12. B. Dufay and J. Latombe, “An approach to automatic robot
programming based on inductive learning,” Int. J. of Robotics
Research 3, No. 4, 3–20 (1984).

13. Y. K. Park and H. S. Cho, “A fuzzy rule-based assembly
algorithm for precise parts mating,” Mechatronics 3, No. 4,
433–450 (1993).

14. H. Asada, “Teaching and learning of compliance using neural
nets: Representation and generation of nonlinear compliance,”
IEEE Int. Conf. on Robotics and Automation (1990) pp. 1237–
1244.

15. R. M. Haralick and L. G. Sappiro, Computer and Robot Vision
(Addison-Wesley Co., Vol. II, 1992) pp. 167–178.

16. Z. Zhang, “Parameter estimation techniques: a Tutorial with
application to conic fitting,” INRIA Technical Report, No. 2676
(1995).

17. P. J. Hubber, Robust Statistics (John Wiley & Sons, 1981).

https://doi.org/10.1017/S0263574704000979 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000979

