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Abstract

Richard Jeffrey’s “Conditioning, Kinematics, and Exchangeability” is one of the foundational
documents of probability kinematics. However, the section entitled “Successive Updating”
contains a subtle error regarding the applicability of updating by so-called relevance quotients
in order to ensure the commutativity of successive probability kinematical revisions. Upon
becoming aware of this error, Jeffrey formulated the appropriate remedy, but he never dis-
cussed the issue in print. To head off any confusion, it seems worthwhile to alert readers of
Jeffrey’s “Conditioning, Kinematics, and Exchangeability” to the aforementioned error and to
document his remedy, placing it in the context of both earlier and subsequent work on com-
muting probability kinematical revisions.1

1. Introduction
Along with Richard Jeffrey’s book The Logic of Decision (1983) and the mathematically
bountiful article “Updating Subjective Probability” (Diaconis and Zabell 1982),
Jeffrey’s “Conditioning, Kinematics, and Exchangeability” (1988, 1992) is one of the
foundational documents of probability kinematics. Among other things, it gives a
beautifully lucid account of various equivalent formulations of the preconditions
for updating a prior by conditioning or by probability kinematics. However, the sec-
tion entitled “Successive Updating” contains a subtle error regarding the applicability
of updating by so-called relevance quotients in order to ensure the commutativity of
successive probability kinematical revisions. Upon becoming aware of this error,
Jeffrey formulated the appropriate remedy, but he never discussed the issue in print.
To head off any confusion, it seems worthwhile to alert readers of Jeffrey’s
“Conditioning, Kinematics, and Exchangeability” to the aforementioned error and
to document his remedy, placing it in the context of both earlier and subsequent work
on commuting probability kinematical revisions.

Although this Discussion Note touches on some of the philosophical and method-
ological issues that arise in choosing the correct representation of what is learned
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1 This Discussion Note summarizes and elaborates on discussions between Jeffrey and the author that
occurred during the late 1990s. The core of those discussions is described in section 5.
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from new evidence alone, it is intended primarily to clarify certain mathematical
aspects of successive probability kinematical revisions. More detailed discussions
of associated philosophical issues may be found in Field (1978), Lange (2000),
Wagner (2002), and Hawthorne (2004).

2. Notation and terminology
In what follows, Ω denotes a set of possible states of the world, conceived as mutually
exclusive and exhaustive, and A denotes an algebra of subsets (called events) of Ω. If p
and q are finitely additive probability measures on A and A ∈ A, the relevance quotient
(terminology attributed to Carnap), denoted by Rqp�A�, is defined by the formula
Rqp�A� :� q�A�=p�A�. Typically, q is thought of as resulting from the revision of p as
a result of encountering new evidence. In such cases, p is called the prior probability,
and q is called the posterior probability. If q comes from p by conditioning on the event
E, then

Rqp�A� � p�AjE�=p�A� � p�A \ E�=p�A�p�E� � p�EjA�=p�E�:

Note that Rqp�A� contains implicit restraints on the prior p. As a simple example, if
Rqp�A� � 2; then, necessarily, p�A� ≤ 1/2. We will return to this apparently trivial
observation later in this note.

If p and q are as stated previously, and A and B are events, the Bayes factor, denoted

by Bqp�A : B�, is defined by the formula Bqp�A : B� :� q�A�=q�B�
p�A�=p�B�, which is simply the ratio of

the new to old odds on A against B. Relevance quotients and Bayes factors are con-
nected by the formula

Bqp�A : B� � Rqp�A�
Rqp�B� : (1)

When q comes from p by conditioning on E, then Bqp�A : B� reduces to the familiar like-
lihood ratio p�EjA�=p�EjB�:

3. Probability kinematics
In the remainder of this note, all probability measures are assumed to be strictly coher-
ent, in the sense that every nonempty event A is assigned a nonzero probability. This
assumption, although inessential, allows us to avoid the distraction of continually
having to postulate the positivity of various probabilities in theorems and their
proofs.

Suppose that p is your prior probability on A, and E � fE1; . . . ; Eng is a partition of
Ω, with each Ei 2 A. New evidence prompts you to revise p to the posterior probability
measure q as follows. Based on the total evidence, old as well as new, you first assess
the posterior probabilities q�Ei� � ei, where, of course, e1 � � � � � en � 1: Judging that
you have learned nothing that would disturb any of the prior conditional probabilities
p�AjEi�, you adopt the rigidity condition q�AjEi� � p�AjEi�, for all A 2 A and i � 1; . . . ; n.
This fully and uniquely determines q (Jeffrey 1983) by the formula
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q�A� �
Xn
i�1

eip�AjEi�: (2)

When probability measures q and p are related by equation (2), we say that q has
come from p by probability kinematics (henceforth, PK), or by Jeffrey conditioning, on the
partition E.

4. Successive updating

4.1. The elementary model
Consider two possible successive updating schemes. In the first instance, p is first
revised to q by PK on the partition E � fE1; . . . ; Eng of Ω, with q�Ei� � ei, and then
q is revised to r on the partition F � fF1; . . . ; Fmg of Ω, with r�Fj� � fj. In the second
instance, p is first revised to q0 by PK on F, with q0�Fj� � fj, and then q0 is revised to r0

by PK on E, with r0�Ei� � ei (figure 1).
If it turns out that r0 � r, the successive PK revisions are said to commute: It is

straightforward to verify that

r�A� �
X
i;j

eifj
p�Ei�q�FJ�

p�AEiFj� (3)

r0�A� �
X
i;j

eifj
q0�Ei�p�FJ�

p�AEiFj�: (4)

It is obvious from equations (3) and (4) that the conditions q0�Ei� � p�Ei� and
q�Fj� � p�Fj�, which Diaconis and Zabell (1982) dub with the beautifully suggestive
nomenclature Jeffrey independence, are sufficient to ensure commutativity. In fact, they
prove that Jeffrey independence is necessary for commutativity as well. In general,
however, r0 may differ from r. Individuals who have found this troubling (see Lange
[2000] for some sample references) presumably subscribe to the following two
principles:

1. If the revisions of p to q, and of q0 to r0, are based on identical new learning, and
the revisions of q to r, and of p to q0, are based on identical new learning, then it
ought to be the case that r0 � r:

Figure 1. Elementary successive updating.
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2. Identical new learning prompting the revisions of p to q, and of q0 to r0, should
be represented by the identities r0�Ei� � q�Ei� � ei, for all i. Identical new learn-
ing prompting the revisions of q to r, and of p to q0, should be represented by the
identities q0�Fj� � r�Fj� � fj, for all j:

Although the first of these principles seems uncontroversial, the second is profoundly
mistaken. This was already noted by Carnap in correspondence with Jeffrey in the late
1950s, as described by Jeffrey (1975). Carnap pointed out (in the terminology of our
current example) that the probabilities r0�Ei� are based not only on the new learning
prompting the revision of the probabilities q0�Ei� but also on the totality of evidence
incorporated in the latter probabilities. Similar remarks apply, of course, to the prob-
abilities q0�Fj�: Carnap’s point was forcefully reiterated by Field (1978), who proceeded
to identify the correct representation of what is learned from new evidence alone, the
details of which we examine in the next subsection.

4.2. The extended model: Field’s analysis
The term extended model refers to the generalization of figure 1 shown in figure 2. As
our notation suggests, it is no longer assumed in the extended model that e0i � ei or
that f 0j � fj: Under what conditions do we get commutativity in this model? Hartry
Field (1978), presumably inspired by the old Bayesian idea (Good 1950, 1983) that
ratios of new to old odds furnish the correct representation of what is learned from
new evidence alone, established the remarkable result that the classical PK formula in
equation (2) could be transformed into a “re-parameterized” form:

q�A� �
Xn
i�1

Gip�AEi�=
Xn
i�1

Gip�Ei�; where Gi : �
Yn
k�1

Bqp�Ei : Ek�
 !

1=n

:2 (5)

Figure 2. Extended successive updating.

2 Note that Gi is simply the geometric mean of certain Bayes factors. Field actually expressed Gi in the
form eαi , where αi � ln Gi , and interpreted αi as expressing the direct and immediate effect of a given
stimulus. However, Garber (1980) noted that if αi > 0, repeated exposure to that stimulus would then
drive the value of q�Ei� toward 1. Unfortunately, Garber’s counterexample led philosophers to ignore
Field’s beautiful re-parameterization of JC, which, as we’ll see, clearly, and for the first time, exhibited
sufficient conditions for successive JC revisions on different partitions to commute. As argued by Wagner
(2002), Field’s analysis can easily be divested of its physicalist gloss.
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The analogous re-parameterizations of the classical formulas for r; q0; and r0 are

r�A� �
Xm
j�1

gjq�AFj�=
Xm
j�1

gjq�Fj�; where gj :�
Ym
k�1

Brq�Fj : Fk�
 !

1=m

(6)

q0�A� �
Xm
j�1

g0jp�AFj�=
Xm
j�1

g0jp�Fj�; where g0j :�
Ym
k�1

Bq
0
p �Fj : Fk�

 !
1=m

; (7)

and

r0�A� �
Xn
i�1

G0iq
0�AEi�=

Xn
i�1

G0iq
0�Ei�where G0i :�

Yn
k�1

Br
0
q0 �Ei : Ek�

 !
1=n

: (8)

Combining equations (5)–(8) yields the successive PK revision formulas

r�A� �
X
i;j

Gigjp�AEiFj�=
X
i; j

Gigjp�EiFj� (9)

and

r0�A� �
X
i;j

G0ig
0
jp�AEiFj�=

X
i; j

G0ig
0
jp�EiFj�; (10)

from which the following theorem follows immediately:

Theorem 1. The Field parameter identities

G0i � Gi; for 1 ≤ i ≤ n; and g0j � gj; for 1 ≤ j ≤ m; (11)

imply that r’ = r.

Proof. Obvious. □

It is important not to read more into these results than has so far been established. In
figure 2, it is assumed that p; q; r; q0, and r0 are fully defined probability measures on the
algebra A; that q has come from p, and r0 from q0, by PK on E; and that r has come from
q; and q0 from p, by PK on F. Then, if it is determined that G0i � Gi and g0j � gj, it follows
that r0 � r:

Consider, however, the following different scenario, in which the preceding
assumptions hold only for p; q, and r, and the parameters Gi and gj have been deter-
mined. Can we then design revisions q0 of p by PK on F, and r0 of q0 by PK on E, so
that we are guaranteed to have r0 � r? The natural move is to define q0 and r0 by
the formulas

q0�A� :�
Xm
j�1

gjp�AFj�=
Xm
j�1

gjp�Fj� (12)
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and

r0�A� :�
Xn
i�1

Giq0�AEi�=
Xn
i�1

Giq0�Ei�: (13)

To show that this is the right move, however, requires a proof of the following
theorems. First, we need to take note of a key property of products of Field
parameters.

Theorem 2.
Qn
i�1

Gi �
Qn
i�1

G0i �
Qm
j�1

gj �
Qm
j�1

g0j � 1.

Proof. By equations (5) and (1),
Qn
i�1

Gi �
Qn
i�1

Qn
k�1

Rqp�Ei�=Rqp�Ek�
� �

1=n
�

Qn
i�1

Rqp�Ei�n=�
Qn
k�1

Rqp�Ek��n
� �

1=n
� 11=n � 1. □

Next, we can show that the probabilities defined by equations (12) and (13) behave
just as we intend.

Theorem 3. (i) The set function q0 defined by equation (12) is a probability measure
on A and comes from p by PK on F. Moreover,

g0j :�
Ym
k�1

Bq
0
p �Fj : Fk�

 !
1=m

� gj: (14)

(ii) The set function r0 defined by equation (13) is a probability measure on A, and r0

comes from q0 by PK on E. Moreover,

G0i :�
Yn
k�1

Br
0
q0 �Ei : Ek

 !
1=n

� Gi: (15)

So by theorem 2, r0 � r:

Proof. (i) It is easy to show that q0 is an additive set function on A and that
q0�Ω� � 1: Also,

q0�AjFj� � q0�AFj�=q0�Fj� � �gjp�AFj�=
Pm
j�1

gjp�Fj��=�gjp�Fj�=
Pm
j�1

gjp�Fj�� � p�AjFj�,
and so q0 comes from p by PK on F. Finally, equation (13) implies that

Bq
0
p �Fj : Fk� � gj=gk, and so

Qm
k�1

Bq
0
p �Fj : Fk�

� �
1=m

� �gmj =g1 � � � gm�1=m � gj, by theorem

1. The proof of (ii) is similar. □

In the next section, we will encounter an attempt to simplify Field’s analysis for
which analogues of equations (14) and (15) fail to obtain.
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5. Jeffrey’s proposal
In an attempt to simplify Field’s parameterization of JC, Jeffrey noted that in the

extended model, the classical PK formula q�A� � Pn
i�1

eip�AjEi� can be recast as

q�A� � Pn
i�1

Rip�AEi�, where Ri � Rqp�Ei�. Similarly, one can recast the classical formulas

for r; q0; and r0 as r�A� � Pm
j�1

ρjq�AFj�, q0�A� �
Pm
j�1

ρ0jp�AFj�, and r0�A� � Pn
i�1

R0iq
0�AEi�,

where ρj � Rrq�Fj�, ρ0j � Rq
0
p �Fj�, and R0i � Rr

0
q0 �Ei�. It follows that

r�A� �
X
i; j

Riρjp�AEiFj�; and r0�A� �
X
i; j

R0iρ
0
jp�AEiFj�: (16)

So if the relevance quotient identities

R0i � Ri; i � 1; . . . ; n and ρ0j � ρj; j � 1; . . . ;m (17)

hold, then r0 � r:
Again, it is important to keep in mind here that this commutativity result depends

on the assumption that p, q, r, q 0, and r 0 are fully defined probability measures on the
algebra A; that q has come from p, and r0 from q0, by PK on E; and that r has come from
q; and q0 from p, by PK on F. Then, if it is determined that R0i � Ri and ρ0j � ρj, it fol-
lows that r0 � r: But suppose that only p, q, and r have been assessed and the rele-
vance quotients Ri and ρj have been evaluated. Can we then design PK revisions of p to
q0on F, and of q0to r0on E, so that we are guaranteed to have r0 � r? Jeffrey proposed
setting q0�Fj� equal to ρjp�Fj� and setting r0�Ei� equal to Riq0�Ei�. That this may some-
times fail to do the trick can be seen from the example in Jeffrey’s table 2 (1988, 236;
1992, 134). In this example, Ω � f1; 2; 3; 4g; E1 � f1; 2g; E2 � f3; 4g, F1 � f1; 4g, and
F2 � f2; 3g: The prior p is defined by p�i� � i=10; for i � 1; . . . ; 4: The probability mea-
sure q comes from p by PK on fE1; E2g; with q�E1� � q�E2� � 1=2, and the probability
measure r comes from q by PK on fF1; F2g; with r�F1� � r�F2� � 1=2: In table 1, the
distracting arithmetic mistakes in Jeffrey’s table have been corrected (with corrected
values in parentheses) so that the error in his proposal for defining q0�Fj� and r0�Ei�
stands out more clearly.

Note that we do in fact arrive at r0 � r: This was, of course, predictable, in view of
the commutativity of ordinary multiplication. But an odd thing occurs on the path
from p to r 0: we pass through what we have labeled “q 0,” which fails to define a prob-
ability measure because its entries do not sum to 1. This is simply an illustration of the
fact, remarked upon in section 2, that the relevance quotient Rqp�A� contains implicit
constraints on the prior probability p�A�: So although the positive real numbers
ρ1; . . . ; ρn might function as a sequence of relevance quotients, in the sense that there
exist probabilities π1; . . . ;πn with π1 � � � � � πn � 1 andρ1π1 � � � � � ρnπn � 1, this
need not be the case for every sequence of probabilities that sum to 1, just as we saw in
table 1.

Upon becoming aware of this problem, Jeffrey proposed to repair the array marked
“q 0” by normalizing, that is, by dividing each of its entries by 441/437, which then
defines, by the array marked q0 in table 2, a genuine probability measure. But
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now, if the entries in the first row of q0 are multiplied by 5/3, and the entries in the
second row are multiplied by 5/7, the resulting array fails to define a probability mea-
sure because its entries, predictably, sum to 437/441. Dividing every entry in that
table by 437/441 then defines, by the array marked r0 in table 2, a genuine probability
measure. Moreover, r0 � r, as intended.

Notice that the commutativity in table 2 is, contrary to what Jeffrey had hoped
for,3 no longer accounted for by relevance quotient identities. What we get instead
are the relevance quotient proportionalities ρ0j ∝ ρj and R0i ∝ Ri, with

ρ0j � �437=441� � ρj; j � 1; 2 and R0i � �441=437� � Ri; i � 1; 2: (18)

As we will see in section 7, analogous proportionalities prove to be the rule, rather
than the exception, in the most general parameterization of JC.

Table 1. Jeffrey’s Table 2 (arithmetic corrected)

3 “Updating is always commutative when taking a step is a matter of setting ratios : : : of new to old cell
probabilities” (Jeffrey 1988, 236; 1992, 134).
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6. The Jeffrey–Hendrickson parameterization of JC
It is ironic that while Jeffrey sought to simplify Field’s analysis of commutativity by
employing relevance quotients, he had in hand, in Jeffrey and Hendrickson (1988/
1989), the perfect parameterization of JC for accomplishing that task. The Jeffrey–
Hendrickson transformation of the classical formula in equation (2) takes the form

q�A� �
Xn
i�1

Bip�AEi�=
Xn
i�1

Bip�Ei�; where Bi :� Bqp�Ei : E1�: (19)

r�A� �
Xm
j�1

bjq�AFj�=
Xm
j�1

bjq�Fj�; where bj :� Brq�Fj : F1�; (20)

q0�A� �
Xm
j�1

b0jp�AFj�=
Xm
j�1

b0jp�Fj�; where b0j :� Bq
0
p �Fj : F1�; and (21)

r0�A� �
Xn
i�1

B0iq
0�AEi�=

Xn
i�1

B0iq
0�Ei�; where B0i :� Br

0
q0 �Ei : E1�; (22)

Table 2. Table 1, rectified by normalizing
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from which it follows that

r0�A� �
X
i; j

B0ib
0
jp�AEiFj�=

X
i; j

B0ib
0
jp�EiFj�; and (23)

r�A� �
X
i; j

Bibjp�AEiFj�=
X
i; j

Bibjp�EiFj�: (24)

Theorem 4. The Jeffrey–Hendrickson parameter identities

B0i � Bi; for 1 ≤ i ≤ n; and b0j � bj; for 1 ≤ j ≤ m; (25)

are sufficient and, under the regularity conditions,

8i18i29j : p�Ei1Fj�p�Ei2Fj� > 0; and (26)

8j18jj9i : p�EiFj1�p�EiFj2� > 0; (27)

necessary for r0 � r.

Proof. See Wagner (2002, theorems 3.1 and 4.1). □

Here again, commutativity depends on the assumption that p, q, r, q 0, and r 0 are
fully defined probability measures on the algebra A; that q has come from p, and r0 from
q0, by PK on E; and that r has come from q; and q0 from p, by PK on F. Suppose, how-
ever, that only p, q, and r have been defined, and the parameters Bi and bj have been
determined. As in the case of Field’s parameterization, we can then design probability
measures q0 and r0 by means of the definitions

q0�A� :�
Xm
j�1

bjp�AFj�=
Xm
j�1

bjp�Fj� (28)

and

r0�A� :�
Xn
i�1

Biq0�AEi�=
Xn
i�1

Biq0�Ei� (29)

so that the following analogue of theorem 3 holds:

Theorem 5. (i) The set function q0 defined by equation (28) is a probability measure
on A and comes from p by PK on F. Moreover, b0j :� Bq

0
p �Fj : F1� � bj. (ii) The set func-

tion r0 defined by equation (29) is a probability measure on A, and r0 comes from q0 by
PK on E. Moreover, B0i :� Br

0
q0 �Ei : E1� � Bi. Hence, (iii) r0 � r:

Proof. The proofs of (i) and (ii) are straightforward, and (iii) then follows from
theorem 4. □
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7. A comprehensive parameterization of JC

Consider the formula q̂�A� � Pn
i�1

uip�AEi�; where p is a probability measure on A, and

the parameters ui are any positive real numbers whatsoever. It is easy to check that q̂ is a
nonnegative, additive set function on A. So q̂ is a probability measure if and only if

q̂�Ω� �Pn
i�1

uip�Ei� � 1: Consequently, whatever the value of
Pn
i�1

uip�Ei� turns out to be
(whether equal to 1 or not), the set function q, defined by

q�A� � q̂�A�=q̂�Ω� �
Xn
i�1

uip�AEi�=
Xn
i�1

uip�Ei�; (30)

is a probability measure on A. Moreover, because q�AjEi� � p�AjEi�, for all A 2 A
and 1 ≤ i ≤ n; q comes from p by PK on E.

Suppose now that E� fE1; . . . ; Eng, F� fF1; . . . ; Fmg, and �ui�1 ≤ i ≤ n; �u0i�1 ≤ i ≤ n;

�vj�1 ≤ j ≤ m; and �v0j�1 ≤ j ≤ m are sequences of arbitrary positive real numbers. Consider
the successive PK updating scenario shown in figure 3.

In figure 3, the probability measure q comes from p by PK on E in accord with the
formula in equation (30). Similarly, r comes from q by PK on F, q0 comes from p by PK
on F, and r0comes from q0 by PK on E by the analogous formulas

r�A� �
Xm
j�1

vjq�AFj�=
Xm
j�1

vjq�Fj�; (31)

q0�A� �
Xm
j�1

v0jp�AFj�=
Xm
j�1

v0jp�Fj�; (32)

and

r0�A� �
Xn
i�1

u0iq
0�AEi�=

Xn
i�1

u0iq
0�Ei�: (33)

It follows that

r�A� �
X
i; j

uivjp�AEiFj�=
X
i; j

uivjp�EiFj�; and (34)

Figure 3. Generalized successive PK updating.
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r0�A� �
X
i; j

u0iv
0
jp�AEiFj�=

X
i; j

u0iv
0
jp�EiFj�: (35)

From equations (34) and (35), a condition sufficient to ensure that r0 � r is obvious.

Theorem 6. If there exists a constant c such that u0i � c � ui, for 1 ≤ i ≤ n (symbol-
ized by u0i ∝ ui), and there exists a constant d such that v0j � d � vj for 1 ≤ j ≤ m (sym-
bolized by v0j ∝ vj), then r0 � r:

Proof. Straightforward. □

The proportionalities u0i ∝ ui and v0j ∝ vj turn out to be equivalent to certain Bayes
factor identities. In order to prove this assertion, however, we need to establish a few
preliminary results. We begin by establishing a connnection between the rather
abstract quantities ui appearing in the formula in equation (30) and certain Bayes
factors.

Theorem 7. For all 1 ≤ i; k ≤ n, ui=uk � Bqp�Ei : Ek�.

Proof. By the definition of Bqp�Ei : Ek�, along with the formula in equation (30), we
have

Bqp�Ei : Ek� �
q�Ei�p�Ek�
q�Ek�p�Ei�

�
uip�Ei�=

Pn
i�1

uip�Ei�

ukp�Ek�=
Pn
i�1

uip�Ei�
×

p�Ek�
p�Ei�

� ui
uk

: □

Remark. Analogous formulas for vj=vk, as well as for u0i=u
0
kand v0j=v

0
k, should be

obvious.

Theorem 8. In the successive updating scenario displayed in figure 3, the propor-
tionality u0i ∝ ui is equivalent to the Bayes factor identities

Br
0
q0 �Ei : Ek� � Bqp�Ei : Ek�; for 1 ≤ i; k ≤ n; (36)

and the proportionality v0j ∝ vj is equivalent to the Bayes factor identities

Bq
0
p �Fj : Fk� � Brq�Fj : Fk�; for 1 ≤ j; k ≤ m: (37)

Proof. Suppose first that u0i ∝ ui, so that there exists a constant c such that

u0i � c � ui, for i � 1; . . . ; n: By theorem 7, Br
0
q0 �Ei : Ek� �

u0i
u0
k
� c�ui

c�uk �
ui
uk
� Bqp�Ei : Ek�. By

theorem 7, equation (36), with k � 1, yields u0i
u01
� ui

u1
, whence u0i � c � ui, where

c � u01=u1. The proof that v0j ∝ vj is equivalent to equation (37) is nearly identical. □

The probability kinematical formulas in equations (30)–(33) encompass, inter alia,
(i) Field’s parameterizations (ui = Gi, vj = gj, etc.); (ii) Jeffrey’s parameterizations, after
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normalization (ui = Ri, vj = ρj, etc.); and (iii) the Jeffrey–Hendrickson parameteriza-
tions (ui = Bi, vj = bj, etc.).

In all of these cases, we have exhibited conditions sufficient to ensure commuta-
tivity. But the conditions necessary for commutativity have only been stated for the
Jeffrey–Hendrickson parameters. Bayes factor identities play a crucial role in formu-
lating such conditions for other parameterizations, as follows:

1. Recall that under the regularity conditions in equations (26) and (27),
commutativity implies the Jeffrey–Hendrickson parameter identities in
equation (25).

2. Observe that the identities in equation (25) imply the Bayes factor identities in
equations (36) and (37) because Bqp�Ei : Ek� � Bi=Bk, and so forth.

3. Observe that the Bayes factor identities imply the Field parameter identities in
equation (11).

4. Recall that, by theorem 8, the Bayes factor identities imply the parameter pro-
portionalities u0i ∝ ui and v0j ∝ vj:

We conclude the case for the primacy of Bayes factors in the representation of
what is learned from new evidence alone with the final observation that in the ele-
mentary model of sequential PK revision represented in figure 1, the Bayes factor
identities turn out to be both necessary and sufficient for Jeffrey independence.
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