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The dynamics of settling particles in vertical
channel flows: gravity, lift and particle clusters
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The dynamics of settling finite-size particles in vertical channel flows of Newtonian and
viscoelastic carrier fluids is examined using particle resolved simulations. Comparison
with neutrally buoyant particles in the same configuration highlights the effect of
settling. The particle volume fraction is 5 %, and a gravity field acts counter to the flow
direction. Despite a modest density ratio (ρr = 1.15), qualitative changes arise due to
the relative velocity between the particle and fluid phases. While dense particles are
homogeneously distributed in the core of the channel, the mean concentration profile
peaks at approximately two particle diameters from the wall due to a competition between
shear- and rotation-induced lift forces. These forces act in the cross-stream directions, and
are analysed by evaluating conditional averages along individual particle trajectories. The
correlation between the angular and translational velocities of the particles highlights the
significance of the Magnus lift force in both the spanwise and wall-normal directions.
The collective behaviour of the particles is also intriguing. Using a Voronoï analysis,
strong clustering is identified in dense particles near the wall, which is shown to alter
their streamwise velocities. This clustering is attributed to the preferential transport of
aggregated particles towards the wall. The practical implication of the non-uniformity of
particle distribution is a significant increase in drag. When the carrier fluid is viscoelastic,
the particle migration is enhanced which leads to larger stresses, thus negating the capacity
of viscoelasticity to reduce turbulent drag.

Key words: polymers, particle/fluid flow, turbulence simulation

1. Introduction

Turbulent particle-laden flows are widely encountered in various environmental and
engineering applications. A vast majority of the literature on particle-turbulence
interactions in wall-bounded flows is dedicated to the study of neutrally buoyant particles,
where the mean particle slip velocity vanishes throughout the domain except in the

† Email address for correspondence: t.zaki@jhu.edu

© The Author(s), 2021. Published by Cambridge University Press 918 A33-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:t.zaki@jhu.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.304&domain=pdf
https://doi.org/10.1017/jfm.2021.304


A. Esteghamatian and T.A. Zaki

wall region. A finite density ratio in the presence of gravity results in settling of
particles, and the sustained wake region near the particles substantially alters the nature of
particle–turbulence interaction. In the present work, we investigated the effect of slightly
dense finite-size particles in vertical channel flows of Newtonian and viscoelastic carrier
fluids using direct numerical simulations.

When the particle size is smaller or on the same order as the viscous dissipation length,
turbulence modulation primarily depends on the Stokes number, defined as the ratio of
particles to fluid response times (see Elghobashi (2006), for regime classification based
on the Stokes number). A gravitational acceleration decouples the particle’s motion from
the fluid, induces anisotropy in small scales and, as a result, has an immediate impact on
turbulence modulation (Elghobashi & Truesdell 1993). It is known that small and heavy
particles attenuate the turbulence intensity in homogeneous isotropic condition (Gore &
Crowe 1989) as well as in turbulent channel flow (Tsuji, Morikawa & Shiomi 1984). In the
latter case the attenuation is particularly important in the cross-stream direction (Kulick,
Fessler & Eaton 1994). At high particle concentrations, however, the strong interphase
coupling triggers an alternative turbulence generation mechanism, where the turbulent
kinetic energy is entirely generated by particles’ slip velocities (Capecelatro, Desjardins
& Fox 2018). Particles motion is also influenced by gravity: in contrast to inertialess
particles (or fluid elements) that are trapped inside eddies, dense particles escape the
initially surrounding eddies faster than the eddy decay rate – a phenomenon known as
‘crossing trajectories’ which decreases particles’ dispersion due to the subdued correlated
motions (Wells & Stock 1983).

When the particle size lies in the inertial range of the turbulence, its wake interacts
with turbulent eddies of different sizes (Cisse, Homann & Bec 2013). At particle Reynolds
numbers Rep ≡ dpurms/ν ≈ 20 (where ν, dp and urms are the fluid kinematic viscosity,
particle diameter and turbulent velocity fluctuations) the region of interaction extends to
almost two particle diameters (Naso & Prosperetti 2010). Zeng, Balachandar & Najjar
(2010) studied isolated stationary particles in turbulent channel flow for a wide range
of particle Reynolds numbers based on the slip velocity (Rep = 42–450). The authors
highlighted the dual effect of particles, where the turbulence kinetic energy is (i)
suppressed due to the damping of the streamwise fluctuations and (ii) augmented by vortex
shedding and/or wake oscillations. Towards the lower range of particle Reynolds numbers
(Rep ≈ 26–33), Vreman & Kuerten (2018) considered a similar configuration and reported
that particles create sinks of turbulence kinetic energy near their surfaces, although the
turbulence suppression remains appreciable far from the particles. They concluded that
the primary reason for turbulence suppression is particle-induced non-uniformity of the
mean driving force of the flow, rather than turbulence modulations in the vicinity of the
particles. At the higher particle Reynolds numbers (Rep ≈ 400), Kajishima et al. (2001)
studied freely moving finite-size particles and investigated the influence of vortex shedding
on turbulence production in a vertical channel.

At Rep ≈ 136 and low volume fractions ϕ ≈ 0.5 %, Uhlmann (2008) reported enhanced
wall-normal mixing with flattening of the mean velocity profiles. They attributed the
near-wall peak of particles concentrations to migration of particles in the direction
opposite to gradients in the turbulence intensity – a phenomenon known as ‘turbophoresis’
(Caporaloni et al. 1975). In a follow-up study, Garcia-Villalba, Kidanemariam & Uhlmann
(2012) examined the same configuration with a streamwise length twice as long, and they
confirmed that particle and fluid statistics are not strongly affected by the streamwise
extension of the domain, yet extremely long columnar flow structures remain correlated
even at streamwise lengths of the order of 16h, where h is the channel half-width.
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Settling particles in vertical channel flows

Settling has also been examined in other canonical configurations including horizontal
wall-bounded flows and homogeneous shear. In the former, Shao, Wu & Yu (2012)
concluded that at high density ratios particles form a sediment layer over the horizontal
wall, which contributes to the turbulence intensity by vortex shedding, and Kidanemariam
et al. (2013) observed an apparent lag in the mean particle velocity compared with that of
the fluid due to particle accumulation in the low-speed regions. When gravity is directed
perpendicular to the plane of homogeneous shear, Tanaka (2017) concluded that the
Reynolds shear stress is markedly decreased in the wake of particles and, in turn, the
amplification of turbulent kinetic energy is reduced.

Another important implication of gravity and sustained particle wakes is the emergence
of particle clusters. In quiescent flow conditions and at sufficiently large Rep, the
reduced drag acting upon trailing particles promotes cluster formation (Fortes, Joseph
& Lundgren 1987; Wu & Manasseh 1998). This phenomenon has been extensively
studied both experimentally (Huisman et al. 2016) and numerically (Yin & Koch 2007),
and the onset of clustering is marked by a critical Galileo number which is defined
as the ratio between gravitational and viscous forces (Uhlmann & Doychev 2014). In
the presence of background turbulence, Chouippe & Uhlmann (2019) examined the
clustering of finite-size particles in the presence of gravity, and highlighted that the
background turbulence hinders cluster formation. Fiabane et al. (2012) experimentally
examined the clustering of finite-size particles, and concluded that a finite fluid/particle
density difference is crucial for cluster formation. In a vertical turbulent channel, cluster
formation induced by wake attraction is reported for particles with an unsteady wake
(Kajishima 2004), while particle distribution is reportedly more homogeneous than a
random distribution when wake oscillations are absent (Garcia-Villalba et al. 2012).
Overall, the influence of gravity on cluster formation is widely associated with the wake
attraction mechanism, while the role of lateral forces in particles clustering and collective
motion is less explored.

The literature on particle–turbulence interactions has predominately focused on
Newtonian fluids. In absence of turbulence, particles in non-Newtonian flows have been
studied (Zenit & Feng 2018), and the formation of particle-rich vertical columns has
been observed in experiments of non-Brownian particles settling in a shear-thinning fluid
(Bobroff & Phillips 1998; Mora, Talini & Allain 2005). Once turbulence enters the picture,
the vast literature on viscoelasticity (White & Mungal 2008; Samanta et al. 2013; Agarwal,
Brandt & Zaki 2014; Choueiri, Lopez & Hof 2018) has considered single-phase conditions
for three reasons. Firstly, polymers have been among the most effective drag reduction
technologies (Toms 1948; Virk, Mickley & Smith 1970). Secondly, even single-phase
viscoelastic flows exhibit puzzling dynamics that defy intuition based on Newtonian
conditions. Examples include vorticity propagation as waves in viscoelastic flows (Page
& Zaki 2014), enstrophy amplification in two dimensions due to polymer torque (Page &
Zaki 2015, 2016) and the initial destabilization of supercritical channel flow by increasing
elasticity prior to its stabilization at higher Weissenberg numbers (Lee & Zaki 2017).
The third reason is the lack of a mathematical framework that can facilitate progress in
characterizing the state of polymers in turbulence. This point was addressed recently by a
rigorous formulation for evaluating the mean conformation tensor (Hameduddin & Zaki
2019) and quantifying departures from that mean (Hameduddin et al. 2018; Hameduddin,
Gayme & Zaki 2019).

Building upon the above studies, it was recently possible to analyse the interplay of
viscoelasticity, particles and turbulence for neutrally buoyant particles (Esteghamatian &
Zaki 2019, 2020). In a viscoelastic channel flow at 5 % particle concentration, particles
periodically migrate away and towards the wall, while suppressing the turbulent activity,
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or reinforcing its hibernation. Viscoelasticity increased the formation of particle pairs
with an angled alignment with respect to the streamwise direction, while no significant
large-scale long-lived structure was identified (Esteghamatian & Zaki 2019). At 20 %
particle concentration, a viscoelastic drag increase was reported for elasticity levels above
a critical value. The enhanced polymer stress was attributed to strong deformations of
polymers in the vicinity of particle surface (Esteghamatian & Zaki 2020).

In this work, we explore the settling effect of particles in vertical channel flow of
Newtonian and viscoelastic fluids with direct numerical simulations. The particles are
larger than the Kolmogorov length scale, and eddies at inertial ranges are expectedly
affected by particles boundary layer and wake. Therefore, the computations resolve the
flow at the scale of particles with an immersed boundary method, and the polymer forces
are obtained by solving evolution equations for the polymer conformation tensor. The
work explores the impact of gravity on the particle dynamics, fluid–particle coupling and
the turbulent flow structures. Although the density ratio is modest, the findings are also
relevant to the cluster-induced turbulence (known as CIT) regime. The flow configuration,
governing equations and computational set-up are described in § 2. In § 3, we examine the
impact of particle settling on multiple aspects of the channel flow dynamics including:
the mean concentration and velocity profiles (§ 3.1); particle lift forces (§ 3.2); clusters
and microstructure (§ 3.3); and momentum balance and velocity fluctuations (§ 3.4).
Concluding remarks are provided in § 4.

2. Governing equations and numerical set-up

The computational domain is a plane channel, where the streamwise, wall-normal and
spanwise directions are denoted x, y and z (figure 1). The flow is maintained at a constant
mass flux in the x direction, and a gravitational field g acts in the opposite direction.
The bulk velocity, Ub, and the channel half-height, h, are adopted as characteristic scales.
The single-phase simulations are characterized by Reynolds number Re = hUb/ν and
Weissenberg number Wi = λUb/h, where ν and λ are the fluid total kinematic viscosity
and the polymer relaxation time. The particle-laden configuration requires four additional
dimensionless numbers: (i) dimensionless diameter of the particles dp/h; (ii) density ratio
between the particle and fluid phases, ρr ≡ ρp/ρf ; (iii) bulk volume fraction ϕ ≡ NpVp/Vt,
where Np is the number of particles, Vp is the volume of an individual particle and Vt is
the volume of the computational domain; (iv) Froude number defined as Fr = U2

b/(|g|h).
The governing equations for the fluid velocity uf , the hydrodynamic pressure p and the
polymer conformation tensor c in dimensionless form are

∇ · uf = 0, (2.1)

∂uf

∂t
+ uf · ∇uf + ∇p − β

Re
∇2uf − 1 − β

Re
∇ · T − F = 0, (2.2)

∂c

∂t
+ uf · ∇c − c · ∇uf − (c · ∇uf )

T + T = 0. (2.3)

In the above equations, F is a generic force, and β ≡ μs/(μs + μp) is the ratio of solvent
to total viscosity with the latter being comprised of the solvent μs and polymer μp
contributions. For the present dilute polymer solution, the viscoelastic stress tensor T is
expressed in terms of the conformation tensor using the FENE-P model,

T ≡ 1
Wi

(
c

ψ
− I

a

)
, ψ = 1 − tr(c)

L2
max

, a = 1 − 3
L2

max
, (2.4a–c)
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Settling particles in vertical channel flows

Lz

Lx

Ly

g

y

z
x

Figure 1. Schematic of the particle-laden simulations. No-slip boundary conditions uf = 0 are imposed at
y = {0, 2}, and periodicity is enforced in the x and z directions.

where I is the isotropic tensor and Lmax is the maximum extensibility of the polymer
chains. Particles’ motion in the presence of a gravitational field is governed by the
Newton-Euler equations,

Vp
dup

dt
=

∮
∂Vp

σ f · ndA + F c + 1
Fr
(ρr − 1)

g
|g| , (2.5)

Ip
dΩp

dt
=

∮
∂Vp

r × σ f · n dA, (2.6)

σ f = −pI + 2
β

Re
E + 1 − β

Re
T , (2.7)

where up, Ωp, Vp = πd3
p/6 and Ip = πd5

p/60 are the translational and angular velocities
and dimensionless volume and moment of inertia of a spherical particle, and E is the
strain-rate tensor of the fluid phase. The hydrodynamic stress tensor, σ f , is integrated
over a particle’s surface, and n denotes the outward unit vector normal to that surface.
The particle–particle and particle–wall repulsive collision forces, F c, are applied in the
opposite direction to n, and the last term on the right-hand side of (2.5) accounts for the
buoyancy force.

A complete description of our numerical algorithm is provided by Esteghamatian
& Zaki (2019) and, for completeness, only the main features are described here.
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The flow equations, (2.1) and (2.2), were solved using a fractional step algorithm on
a staggered grid with a local volume-flux formulation (Rosenfeld, Kwak & Vinokur
1991), and the conformation-tensor equations, (2.3), were solved using a third-order
accurate Runge–Kutta method. The viscous terms were solved implicitly in time using
the Crank–Nicolson scheme, while an explicit Adams–Bashforth scheme is adopted for
advection and stretching terms in (2.2) and (2.3). Following Dubief et al. (2005), a
semi-implicit approach that ensures the finite extensibility of the polymers was used to
discretize the polymer stress term. In particle-laden cases, a sharp-interface immersed
boundary force field (Nicolaou, Jung & Zaki 2015) enforces the no-slip boundary
condition at the surface of the particles (F = F IB in (2.2)), and the conformation tensor is
set to unity inside the particle domain. The short-range particle–particle and particle–wall
collision model introduced by Glowinski et al. (2001) is adopted, which is activated at
gap distances smaller than the diagonal of the fluid grid cell. The algorithm has been
extensively validated for simulations of Newtonian and viscoelastic flows (Lee & Zaki
2017; Wang, Wang & Zaki 2019b) including particle-laden conditions (Esteghamatian &
Zaki 2019, 2020).

The set of physical parameters are selected such that they demonstrate the effect of
settling on the dynamics of the flow and particles. The simulations will contrast dense
particles in Newtonian and viscoelastic fluids (designated ‘W0P5D’ and ‘W15P5D’) to
neutrally buoyant conditions (‘W0P5’ and ‘W15P5’) and single-phase flows (‘W0’ and
‘W15’). In the designation, ‘W’ refers to the Weissenberg number which is either Wi = 0
for Newtonian or Wi = 15 for viscoelastic flow; ‘P’ refers to the presence of a particle
phase with bulk particle volume fraction ϕ = 5 %; ‘D’ indicates dense particles. In the
Newtonian single-phase configuration, the friction Reynolds number Reτ ≡ huτ /ν ≈ 180,
where uτ ≡ √〈τw〉/ρ denotes the friction velocity and 〈τw〉 is the average wall shear
stress. The dimensionless particle diameter is dp/h = 1/9, and in viscous scaling they
lie in the range 20 ≤ d+ ≤ 32. With a particle response time based on Stokes drag,
tp ≡ dp

2ρp/18μ, the Stokes number is St ≡ htp/Ub ∼ O(1) or St+ ≡ tpu2
τ /ν ∼ O(10).

Interaction between the fluid and particle phases is, therefore, expected. Despite the mild
density ratio (ρr = 1.15) in dense cases, the settling effect is substantial, and the particle
Reynolds number defined based on the slip velocity, Rep ≡ dp(up − uf )/ν, is on average
Rep ≈ 130 in W0P5D and Rep ≈ 95 in W15P5D. The Galileo number is defined by the
ratio of viscous and gravitational forces, Ga ≡ (|ρr − 1|dp|g|)1/2dp/ν = 126 for the dense
particles, and a steady vertical particle wake is anticipated (Uhlmann & Doychev 2014).
A list of physical and computational parameters is provided in table 1.

A uniform Cartesian grid was used in all three directions in the particle-laden
simulations. In the single-phase cases, the grid spacing was uniform in the spanwise
and streamwise dimensions, and a hyperbolic tangent grid stretching was adopted in
the wall-normal direction. The domain size was 6 × 2 × 3 in streamwise, wall-normal
and spanwise directions in single-phase and neutrally buoyant particle-laden cases, while
in dense particle-laden cases the domain size was extended to 8 × 2 × 4.5. The grid
size was set to dp/Δx = 16 in all particle-laden conditions. Beyond the initial transient,
statistics were collected for sufficiently long periods (e.g. 900 convective time units for
case W0P5D), and convergence was verified by comparing results from half the number
of samples, and the total number of samples. For a generic variable o, phase-averaged
statistics are related to unconditional counterparts with a phase indicator χ that is zero in
the fluid and unity in the particle phase,

〈o〉 = 〈(1 − χ)of 〉 + 〈χop〉 = (1 − φ)〈of 〉f + φ〈op〉p, (2.8)
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Settling particles in vertical channel flows

Re,Fr−1 β,Lmax Wi ϕ(%) ρr 1/dp Lx × Ly × Lz Nx × Ny × Nz Case

Newtonian 0

0 — — 6 × 2 × 3 96 × 192 × 80 W0
5 1 9 6 × 2 × 3 864 × 288 × 432 W0P5

2800, 5 1.15 9 8 × 2 × 4.5 1152 × 288 × 576 W0P5D
9.81

β = 0.97
15

0 — — 6 × 2 × 3 96 × 192 × 80 W15

Lmax = 70
5 1 9 6 × 2 × 3 864 × 288 × 432 W15P5

5 1.15 9 8 × 2 × 4.5 1152 × 288 × 576 W15P5D

Table 1. Physical and computational parameters of the simulations. Reynolds number Re ≡ hUb/ν and
Weissenberg number Wi ≡ λUb/h are based on the channel half-height h, the bulk velocity Ub, total kinematic
viscosity ν and viscoelastic fluid relaxation time λ. The domain sizes are L{x,y,z} in {x, y, z} directions, and the
numbers of grid cells are N{x,y,z}.

where φ denotes the particle volume fraction. For brevity, the subscripts { f , p} are
hereafter omitted from the averaging symbol. Unless otherwise stated, the averaging
operation is performed in time and in homogeneous x and z directions.

3. Results

An instantaneous field from the Newtonian dense-particle-laden case (W0P5D) is shown
in figure 2 which highlights key features that are exclusive to the dense particle cases.
Collective particle motion is evident from their large-scale velocity structures. Wakes
downstream of individual particles highlight the potential impact on the collective
motion and cluster formation. Particle motion affects the fluid-phase streamwise velocity
structures as shown by contours of uf , both at a microscale due to the finite slip velocities,
and at a global scale due to the collective motion. Since the flow is dominated by particles,
we start by investigating the mechanisms controlling the particles motion. Subsequently,
a discussion on the impact of gravity and particle wakes on the mean stress balance and
fluid fluctuations is provided.

3.1. Particle concentration and mean velocity profiles
Multiple physical mechanisms that distinguish dense particle cases from neutrally buoyant
counterparts are direct consequences of the relative velocity of the particles with respect
to the fluid. As shown in figures 3(a) and 3(d), the particles sustain a negative relative
velocity and as a result a positive drag that counterbalances the buoyancy force exerted
in the negative x direction. Since the buoyancy force is constant at all y locations, the
particle slip velocity 〈up〉 − 〈uf 〉 is nearly constant across the bulk of the flow. The smaller
magnitude of 〈up〉 − 〈uf 〉 in the viscoelastic case W15P5D compared with the Newtonian
fluid W0P5D suggests that particles experience a larger drag coefficient in the former, in
agreement with previous studies (Chhabra 2006).

The concentration profiles of neutrally buoyant and dense particles are reported in
figure 3(b) for Newtonian fluid and in figure 3(e) for the viscoelastic case. In the latter,
neutrally buoyant particles migrate towards the channel centre due to imbalance of elastic
normal stresses (D’Avino & Maffettone 2015). For dense particles, the repulsion away
from the wall is enhanced for y ≤ 0.2, and the absence of mean shear beyond y = 0.2
eliminates particle migration towards the centre. The presence of a local maximum near
y = 0.2 for the dense particle cases, both viscoelastic and Newtonian, is remarkable.
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(a)

wall

wall

(b)

(c)

uf

z

y

x

uf /〈uf〉

up

1.3

0.2

0.8

0.6

1.1

0.8

Figure 2. (a) Instantaneous snapshot of particle positions coloured by their velocity and contours of uf for
case W0P5D. For clarity only particles located at y ≤ 1 are displayed. (b) A subset of the domain is magnified
and reproduced with isosurfaces of uf = 0.7. (c) Contours of uf /〈uf 〉 in the (x, y) plane in the vicinity of one
particle.
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Figure 3. Profiles of average (a,d) particle velocity relative to the fluid, (b,e) particle concentration and (c,f )
fluid velocity. Suspensions: neutrally buoyant (circle – line, black), dense particles (filled circle – line, black);
single-phase condition (—–, blue). The fluid in panels (a–c) is Newtonian and in panels (d–f ) is viscoelastic.
Vertical dashed lines in panels (b,c) and panels (e,f ) mark the locations of the peak particles concentration.
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Settling particles in vertical channel flows

This peak is qualitatively different to the relatively small maximum in φ that is discernible
in the viscoelastic neutrally buoyant case that was previously attributed to the lubrication
forces and the asymmetric interparticle interactions (Esteghamatian & Zaki 2019).
That mechanisms cannot explain the strong local maximum in dense cases, where the
immediate vicinity of the wall (y < dp in the case W15P5D) is almost void of particles.
Similar patterns were typically attributed to the turbophoretic forces (Reeks 1983) for
point particles (Kaftori, Hetsroni & Banerjee 1995; Marchioli & Soldati 2002) and small
particles with size d+

p ≈ 5–10 (Garcia-Villalba et al. 2012). In that regime, lift forces are
also important as noted in theoretical (Young & Leeming 1997) and numerical studies
(Marchioli, Picciotto & Soldati 2007; Wang et al. 2019a). For particles much larger than
the Kolmogorov scale, Kajishima et al. (2001) underscored the influence of lift forces
on particles’ motion in homogeneous turbulence. Another interesting case is vertical
bubble-laden channel flow where the slip velocities are positive, and hence opposite to
the present configuration with dense particles. In that case, wallward lift forces migrate
the bubbles from the channel interior to form a bubble-rich layer near the wall (Lu &
Tryggvason 2013). Here, we will investigate the role of shear- and rotation-induced lift in
clustering of large settling particles (d+ ≈ 30).

The strong repulsion from the wall is due to the Saffman lift force (Saffman 1965), and
can be expressed as FS ≡ −Clρf

√
νd2

p(up − uf )γ̇ /
√|γ̇ |, where γ̇ is the shear rate and Cl is

a constant coefficient. Other forms of the Saffman lift account for finite Reynolds number
and wall effects (Leighton & Acrivos 1985; Mei 1992; Zeng et al. 2009), but they do not
influence the direction of the lift force which is the relevant element here. The negative
sign of 〈up〉 − 〈uf 〉 in W0P5D and W15P5dD gives rise to a Saffman lift force displacing
the particles away from the immediate vicinity of the wall – an effect that is insignificant
in the neutrally buoyant cases due to the inappreciable relative velocity. Nonetheless, the
Saffman lift force alone cannot fully explain the peak in the particle concentration profile.
As will be discussed further in this section, the presence of the peak is related to the
coupling of angular and translational velocities of dense particles.

The fluid velocity profiles are significantly different for dense particles than neutrally
buoyant, and the change is accentuated in the viscoelastic case. Due to the reaction of the
particle drag forces on the fluid field, the flow slows down in the channel core. The mean
velocity is nearly flattened in the bulk, in a stark contrast to the W15P5 where the velocity
tends to the Poiseuille profile. Near the walls (y ≈ {0.1, 0.15} for W0P5D and W15PD),
the fluid speeds up avoiding the resistive forces from the particles in the bulk. As a result, in
both the viscoelastic and Newtonian cases, a local maximum in fluid velocity is observed
between the wall and the peak in the particle concentration.

We now direct our attention on the angular particle velocities, which play an important
role in the global dynamics of the suspension (figure 4). The correlation between particles’
angular velocity and the local fluid vorticity has been previously investigated in linear
shear flows (Ding & Aidun 2000) and turbulent channels (Uhlmann 2008). Neutrally
buoyant particles sustain a negative spanwise angular velocityΩp,z throughout the bottom
half of the channel, similar to the negative mean spanwise vorticity Ωf ,z. In the dense
particle cases, Ωp,z vanishes away from the walls, is positive over a short wall-normal
extent and reaches large negative values in the vicinity of the wall. The region of positive
mean vorticity occurs below the peak in the particle concentration profile, for instance
over 0.12 ≤ y ≤ 0.15 when the peak of φ is at y = 0.16 in W0P5D. That positive vorticity
is thus associated with the shear layer generated at the edge of the high concentration
of particles moving much slower than the mean flow. The particles naturally experience
positive angular velocity at this location. Interestingly, they preserve this positive velocity
closer to the wall where vorticity becomes negative (see the inset of figures 4b and 4d).
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Figure 4. Profiles of average spanwise (a,c) fluid vorticity and (b,d) particle angular velocity. Suspensions:
neutrally buoyant (circle – line, black), dense particles (filled circle – line, black); single-phase condition (—–,
blue). The fluid in the panels (a,b) is Newtonian and in panels (c,d) is viscoelastic. The marked area is magnified
in the inset, and shaded area in the inset of panels (b,d) indicates the y locations where 〈Ωf ,z〉 > 0.

This observation highlights that the positive angular velocity of the dense particles near
the wall cannot only be explained by the local positive fluid vorticity; other physical
mechanisms are at play.

To further investigate this matter, conditional statistics of particles with positive and
negative spanwise angular velocities are shown in figure 5. The conditioned wall-normal
particle flux demonstrates a clear dependence on its angular velocity (figures 5a and 5c):
particles which rotate in the positive z direction experience wallward velocities and vice
versa. As a result, mostly particles with a positive angular velocity can penetrate into
the region y ≤ 0.2 and, therefore, the unconditional average particle angular velocity is
positive in that region (figures 4b and 4d). Confirming this trend, figures 5(b) and 5(d)
show that the volume fraction of particles with Ωp,z > 0 is significantly larger near the
wall. The coupling of angular and translational velocities also provides an explanation for
the unconditional particle concentration profile: away from the walls, particles efficiently
mix in the wall-normal direction due to the equal positive and negative fluxes 〈vp〉φ
associated with positive and negative rotation. As a result, profiles of φ are flat for y ≥ 0.3
in both W0P5D and W15P5D cases. Near the wall, a strong peak in φ is observed, which
is established primarily by particles with Ωp,z > 0 and vp < 0. The wallward flux of
these particles is halted by the near-wall repulsive lift forces, and as a result the peak
concentration is established.

The coupling of angular and translational velocities hints to the relevance of
rotation-induced lift forces (Magnus 1853). Nonetheless, due to the additive nature
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Figure 5. Profiles of conditionally averaged (a,c) wall-normal particle flux and (b,d) particle concentration.
Here Ωp,z > 0 (—–, red); Ωp,z < 0 (- - - - -, blue); unconditional statistics (– – –, black). The fluid in panels
(a,b) is Newtonian and in panels (c,d) is viscoelastic.

of hydrodynamic forces, isolating individual contributions is not a trivial task. In
the following section, ensemble averages along particle trajectories are investigated to
elucidate the hydrodynamic effects that control the motion of particles.

3.2. Ensemble averages along particle trajectories
Hydrodynamic forces acting perpendicular to the primary direction of motion of a sphere
are broadly divided into shear- and rotation-induced contributions. In the limit of small and
high particle Reynolds numbers, the shear-induced lift is the first-order contribution and
the influence of rotation-induced lift is deemed to be negligible. For an intermediate range
of the particle Reynolds numbers, approximately from 5 to 100, particle’s free rotation has
a measurable impact on its motion (Bagchi & Balachandar 2002). In our dense particle
cases, the average particle Reynolds number is Rep ≈ {130, 95} in the Newtonian and
viscoelastic conditions and, therefore, the rotation-induced lift force is expected to be
important.

We exploit the absence of mean shear in the span to highlight the effect of
rotation-induced lift force, by investigating the particle trajectories projected onto the xz
plane (figure 6). Particles with positive and negative Ωp,y are tracked for approximately
10 time units in the Newtonian cases. Evidently, the sign of Ωp,y is a predictor of
dense particles’ direction of motion in the span, while the neutrally buoyant particles
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Figure 6. Sample particle trajectories projected onto the xz plane for particles with a positive (—–, red) or
negative (—–, blue) wall-normal angular velocity Ωp,y; (a) W0P5 (b) W0P5D. Particles velocity relative to
the fluid is in the negative x direction and the positive y axis points into the page. All particles are located at
approximately the same z location at the beginning of the observation time window, during which Ωp,y does
not change sign.

disperse randomly regardless of their angular velocity. Similar trends in the trajectories
are observed in the viscoelastic cases (not shown for brevity).

Ensemble-averaged properties along the trajectories are denoted 〈·〉tr, and are plotted for
W0P5D and W15P5D cases (figure 7). The averaging is conditioned on the sign of Ωp,y
at t0, where t0 denotes the time at which the condition is satisfied, and the statistics are
plotted versus t′ ≡ t − t0. In an inviscid laminar flow, the Magnus lift force is expressed
as F Mag = Clmd2

pρf Ωp × (up − uf ) (Auton, Hunt & Prud’Homme 1988). Therefore, for
the present conditions where particles are moving slower than the mean flow in the
streamwise direction, when Ωp is aligned with the positive y axis the Magnus lift force
is in the positive z direction. In both Newtonian and viscoelastic conditions, figure 7
shows that the spanwise translational velocity is positively correlated with the wall-normal
angular velocity, which confirms the relevance of the Magnus lift forces. Interestingly, the
peak in the hydrodynamic force, which is induced by the Magnus effect, precedes the
particles’ maximum angular and translational velocities. In fact, 〈Fh,z〉tr sharply decreases
and changes sign approximately between −1 ≤ t′ ≤ 1. When a particle begins to gain
momentum in the z direction due to the Magnus force, the surrounding fluid resists the
particle’s motion, and the particle experiences a drag force counteracting the Magnus lift.
Finally, while the importance of the Magnus lift force in particles’ motion is evident in
both Newtonian and viscoelastic conditions, in the latter case has smaller magnitudes of
both the translational and angular velocities and of the hydrodynamic force.

We now turn to the xy plane, where sample particle trajectories are plotted in figure 8
for W0P5D; this time the trajectories are conditioned on the spanwise angular velocity of
the particles. As noted earlier in § 3.1, a shear-induced lift force repels the particles away
from the wall. Similar to their spanwise motion, the wall-normal motion of dense particles
is also correlated to their angular velocity. Particles with Ωp,z < 0 migrate towards the
centre of the channel while particles with positive rotation penetrate towards the wall.
Nonetheless, due to the strong shear-induced lift force away from the wall, it is very
unlikely that the particles directly interact with the wall.

For particles located within y ≤ 0.4, ensemble averages along particle trajectories are
shown in figure 9. It should be noted that due to the rotation-induced lift force, the
likelihood of presence of particles with Ωp,z < 0 in the region y ≤ 0.4 is low and, as
a result, Ωp,z is on average positive within y ≤ 0.4 (see figures 4b and 4d). Thus, even
for those particles with Ωp,z < 0, it is more likely that their spanwise angular velocity
has changed sign shortly before t′ = 0 (the top row of figure 9). After t′ > 0, however,
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Figure 7. Ensemble-averaged properties along the trajectories 〈·〉tr for particles with a positive (—–, red) or
negative (- - - - -, blue) wall-normal angular velocityΩp,y at t0, where t0 denotes the time at which the condition
is satisfied; (a) W0P5D (b) W15P5D. The shifted time is denoted t′ ≡ t − t0, and the particle properties from
top to bottom are wall-normal angular velocity, spanwise translational velocity and spanwise hydrodynamic
force exerted on the particle and normalized by the particle buoyancy force Fb ≡ (ρp − ρf )Vp|g|. Particles are
located within 0.4 ≤ y ≤ 1 at t′ = 0.
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Figure 8. Sample particle trajectories projected onto the xy plane for particles with a positive (—–, red) or
negative (—–, blue) spanwise angular velocity Ωp,z in W0P5D. Particles velocity relative to the fluid is in the
negative x direction and the positive z axis points out of the page. All particles are located at approximately the
same y location at the beginning of the observation time window, during whichΩp,z does not change sign. The
solid grey line marks the geometric limit for particles centre in y direction.

particles have already reached the vicinity of the wall, and the strong negative fluid
vorticity drives their angular velocities to negative values. Similarly, particles experience
negative wall-normal velocity before t′ = 0 and positive values after (the middle row
of figure 9). At t′ = 0, the effect of the Magnus effect is more evident: particles with
positive spanwise angular velocity experience negative wall-normal velocity, and vice
versa. Investigating the ensemble-averaged hydrodynamic forces is complex, as one should
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Figure 9. Ensemble-averaged properties along the trajectories 〈·〉tr for particles with a positive (—–, red) or
negative (- - - - -, blue) spanwise angular velocity Ωp,z at t0, where t0 denotes the time at which the condition
is satisfied; (a) W0P5D (b) W15P5D. The shifted time is denoted t′ ≡ t − t0, and the particle properties from
top to bottom are spanwise angular velocity, wall-normal translational velocity and wall-normal hydrodynamic
force exerted on the particle and normalized by the particle buoyancy force Fb ≡ (ρp − ρf )Vp|g|. Particles are
located within y ≤ 0.4 at t′ = 0.

account for simultaneous effects of shear- and rotation-induced lift forces, as well as
the resistive drag force opposing any incurred motion (the bottom row of figure 9). For
particles with Ωp,z < 0, the shear- and rotation-induced forces are both in the positive y
direction and, therefore, the particles experience a strong force towards the channel centre
when t′ < 0. Their motion away from the wall is resisted by drag, resulting in vanishing net
force when t′ > 0. For particles with Ωp,z > 0, the shear- and rotation-induced lift forces
are in opposite directions, and the net effect is a force in positive y direction with a weaker
peak compared with the particles with Ωp,z < 0.

3.3. Clustering, microstructure and particle wake
We have seen that the presence of gravity gives rise to sustained slip velocities, lift forces
and significant changes in the mean profiles. The statistical averaging, however, masks the
impact of gravity on the spatial distribution, or clustering, of particles in the wall-parallel
planes. In this section, we examine the particles’ collective motion and potential clustering
effects, and relate these macroscale observations to the microscale dynamics, e.g. lift
forces, microstructure and particle wake.

The Voronoï diagram (Okabe et al. 2000) has previously been used to examine
clustering in particle-laden turbulent flows (Monchaux, Bourgoin & Cartellier 2010;
Garcia-Villalba et al. 2012), and will be adopted herein for cluster analysis. The domain,
either a plane or a volume, is partitioned into n cells marking the neighbouring region of
n particles, i.e. the ith particle centre is the closest particle centre to all of the points that
belong to the ith cell. Two examples of Voronoï tessellations are shown in figure 10: the
first is in a plane based on particles’ centres near the wall, and the second is in a volume
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Figure 10. Voronoï tessellation of (a) the xz plane located at y = 3dp/4 and (b) the volume 0.8 ≤ y ≤ 1.2
corresponding to one snapshot of particle centres in W0P5D. In panel (b) only a subset of the domain is
visualized for the sake of clarity.

for particles near the channel centre. Isolated particles are located in larger cells, while
smaller cells indicate high particle concentrations. For the near-wall particles clustering is
visually discernible in this particular instance of the flow.

A quantitative assessment of clustering is provided by evaluating the probability density
function (p.d.f.) of normalized surface areas of Voronoï cells (figure 11). The position of
particles located in a wall-parallel bin are projected onto the xz plane. The extent of the bin
in the wall-normal direction is dp/2, while in the x and z directions it spans the full domain.
The bin is placed at the closest location to the wall with a statistically significant number
of particles, y = 5dp/4 in W15P5D and y = 3dp/4 in all other cases, and we denote this
volume as the ‘wall region’. In all cases, the local particle volume fraction within the
wall region is approximately 25 % of the bulk value. The width of the p.d.f. highlights the
heterogeneity of the particles distribution, and its tails indicate the likelihood of finding
clustered and isolated particles. For example, for a uniformly structured layout of particles
the area of Voronoï cells are all equal and, therefore, the p.d.f. becomes a Dirac function.
For each case, the results for a random distribution of non-overlapping particles with a
matching particle volume fraction is also presented as a reference. For neutrally buoyant
particles the differences between the p.d.f.s of normalized Voronoï areas for the present
data and a random distribution are statistically insignificant. In the case of dense particles
in both Newtonian and viscoelastic fluids, however, the p.d.f.s (a) have thicker tails and
(b) their peaks are shifted towards smaller values of A/〈A〉 in comparison with a random
distribution. The former observation highlights the high probability of finding significantly
clustered and isolated particles, and the latter point indicates that the particles are more
likely to be in close proximity of one another. Both conclusions are in agreement with the
aggregating patters visually seen in the sample snapshot (figure 10a).

Clustering in turbulent flows is often due to the preferential accumulation of particles in
coherent turbulent structures (Kaftori et al. 1995). Nevertheless, clustering by turbulence is
only observed for small particles (d+ < 10) (Hetsroni & Rozenblit 1994) and is, therefore,
not relevant in our cases where d+ ≈ {28, 32} for W0P5D and W15P5D. In a non-uniform
distribution of particles, and in fact even in a homogeneous random distribution, some
particles reside in more aggregated regions while others are relatively isolated. The same
applies to the non-uniform particle distribution in the subvolume dp < y ≤ 2dp, which
is adjacent to the wall region. We argue that the observed clustering in the xz plane is
due to the preferential transport of aggregated particles from dp < y ≤ 2dp towards the
wall region, i.e. 0.5dp ≤ y ≤ dp. In other words, the wallward transport is less likely for
isolated particles and, therefore, the wall region consists mostly of aggregated ones. In
§ 3.1 we showed that the particles experience positive spanwise angular velocities when
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Figure 11. The p.d.f. of normalized Voronoï cell areas for particles in the wall region, i.e. dp ≤ y ≤ 1.5dp in
W15P5D and 0.5dp ≤ y ≤ dp in all other cases; (a) W0P5, (b) W0P5D, (c) W15P5, (d) W15P5D. For each
case, p.d.f. of the same quantity is also plotted for a random distribution of non-overlapping particles with a
matching particle volume fraction (grey dashed lines (- - -)).
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Figure 12. (a) Schematic of the rotation-induced lift forces acting on the aggregated and isolated particles
within dp < y ≤ 2dp, and the preferential transport of aggregated particles towards the wall. (b) The p.d.f. of
normalized Voronoï cell areas A/〈A〉 for case W0P5D and particles located at y ≤ dp. The data are conditioned
based on Δt ≡ t − te, where te denotes the time at which a particle entered y ≤ dp and t is the time of data
collection. The red dashed line (- - -) is the unconditional p.d.f. and the grey dashed line (- - -) shows the p.d.f.
for a random distribution of non-overlapping particles. Note that the average Voronoï cell area 〈A〉 is not
conditioned. The shaded area shows the range of A/〈A〉 for which the particles are clustered.

located within y ≤ 0.2 (figures 4b and 4d) and, therefore, are pushed towards the wall
by a rotation-induced lift force. Why this effect favours aggregated particles is shown
schematically in figure 12(a). The slip velocity of the particles results in shear layers, with
positive and negative vorticities on either side, and the same effect applies to the aggregate.
For isolated particles, the net effect is a weak rotation-induced lift force towards the
wall. On the other hand, for particles within the aggregate, the effect is most substantial:
particles in the wall-facing edge of the aggregate experience strong positive vorticity due
to the near-wall accelerated fluid, while being shielded from the negative vorticity by
neighbouring particles. As a result, they attain a large positive angular velocity and, in
turn, experience a strong rotation-induced lift force towards the wall.
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Figure 13. Joint probability density functions (j.p.d.f.) of normalized Voronoï areas log10(A/〈A〉) and mean
particle relative velocity (up − 〈uf 〉)/〈up〉 for particles at y ≤ 0.2; (a) W0P5, (b) W0P5D, (c) W15P5,
(d) W15P5D.

It is important to highlight another mechanism that contributes to the preferential
transport of aggregated particles towards the wall. As will be discussed shortly, aggregated
particles experience enhanced slip velocities and, therefore, a more substantial wake,
compared with the isolated ones. The intensified wake of aggregated particles enhances
the lift forces, leading to higher likelihood of penetrating towards the wall and, as a result,
strong clustering effect is observed in that region.

For further evidence of the preferential wallward migration of aggregated particles, we
revisit the p.d.f. of A/〈A〉 for particles within y ≤ dp (figure 12b). This time, however,
we condition the data with respect to Δt ≡ t − te, where te denotes the time at which
the particle enters y ≤ dp region and t is the time of data collection. Results are shown
only for W0P5D and similar trends are also observed in W15P5D. Two additional curves
are plotted (dashed curves), the unconditional p.d.f. for the present data and of a random
distribution of non-overlapping particles, and the first intersection of these two curves is a
measure that identifies clustering (Monchaux et al. 2010). The p.d.f. for Δt = 0 represents
the particles that entered y ≤ dp region from the adjacent subvolume, i.e. dp < y ≤ 2dp,
at the time of data collection. For those particles, the probability of being in a cluster is
higher than the rest of the particles. As Δt increases, the p.d.f.s of conditional data tends to
that of the unconditional curve, except in the extremely clustered range of the distribution
(A/〈A〉 ≤ 0.1). Interestingly, in that range the conditional p.d.f.s move away from that of
the unconditional data with increasing Δt, implying that only the particles which recently
penetrated the wall region can experience extreme clustering. Overall, it is concluded that
the clusters are transported from the adjacent subvolume dp < y ≤ 2dp rather than being
formed in the wall region itself.

The increase in local particle concentration has been tied to enhanced particle settling
velocity in homogeneous isotropic turbulence (Aliseda et al. 2002). In our vertical channel
configuration, figure 13 demonstrates the impact of clustering on the particles streamwise
velocities. A correlation is observed between up − 〈up〉 and log10(A/〈A〉) for the dense
particles only. Particles in clusters have smaller streamwise velocities compared with
the isolated ones and, as a result, larger slip velocities. In all dense particle cases the
slip velocity is inversely proportional to the drag coefficient, since the particle’s drag is
balanced by the buoyancy force which is constant across the channel. Therefore, larger
slip velocities in clusters imply that the aggregated particles experience a reduced drag
coefficient due to the sheltering effect of neighbouring particles. This phenomenon is
observed in both Newtonian and viscoelastic conditions, while in the latter the magnitudes
of velocity fluctuations are smaller.
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Figure 14. Particle conditioned mean flow field normalized by the unconditional fluid velocity 〈uf 〉pc/〈uf 〉 and
plotted in the particle coordinates (x̃ = x − Pref ); (a,c) W0P5D, (b,d) W15P5D. In panels (c,d) particles are
further conditioned to have Ωp,y > 0. The conditional averages are performed for particles located at y ≤ 0.4.

We now direct our attention to the influence of gravity and rotation-induced lift force
on the microscale features of the flow. Figure 14 shows particle-conditioned mean flow
fields normalized by the unconditional fluid velocity 〈uf 〉pc/〈uf 〉. The conditional average
is only performed for particles within y ≤ 0.4; the average wake is qualitatively similar for
particles away from the wall. The flow decelerates downstream of the particle due to the
negative slip velocity and, as a result, a strong shear layer is formed (figures 14a and 14b).
Viscoelasticity appreciably changes the wake structure, in particular leading to higher
momentum in the core region of the wake. Similar qualitative changes have previously
been observed downstream of particles and bubbles in both experiments (Kemiha et al.
2006) and numerical simulations (Esteghamatian & Zaki 2019), and are attributed to the
competition between elastic and viscous stresses (Frank & Li 2006). As a result of this
increase in momentum in the core of the wake, the velocity profile recovers over a shorter
distance downstream in the viscoelastic condition. To examine the impact of particles’
rotation on the local flow field, averaging is further conditioned on the particles having
a positive wall-normal angular velocity Ωp,y > 0 (figures 14c and 14d). As anticipated,
particles’ rotation results in flow asymmetry: the fluid velocity increases on one side and
decreases on the other. The net effect is a rotation-induced lift force in the positive z̃, and
the incurred motion gives rise to a tilt in the downstream wake.

Figure 15 shows the particle-pair distribution function, q(r, ψ, θ), which depends on the
pair separation r, the polar angle ψ relative to the positive z axis, and the azimuthal angle
θ measured anticlockwise from the positive x axis,

q(r, ψ, θ) = 〈dN(r, ψ, θ)〉/〈dN(r, ψ, θ)R〉, (3.1)

dN(r, ψ, θ) =
Np∑

m=1

δ(r − |rm|)δ(ψ − ψm)δ(θ − θm), (3.2)

rm = Pm − Pref , (3.3)

ψm = cos−1
(

rm · ez

|rm|
)

; θm = arctan
(

rm · ey

rm · ex

)
, (3.4a,b)
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Figure 15. Particle-pair distribution function q(r, ψ, θ) defined in (3.1), averaged in the range
−π/8 ≤ ψ − π/2 ≤ π/8. Reference particle is located at y ≤ 0.4.

where dN denotes the number of neighbouring particles within each bin and P is the
particle position vector. To avoid the bias due to the non-homogeneity in the wall-normal
direction, q is normalized by dNR which corresponds to a random distribution of particles
with a non-overlapping condition and the case-specific wall-normal profile of the mean
particle volume fraction (Esteghamatian & Zaki 2019). The reference particle is located
within y ≤ 0.4 (microstructure and clustering of particles away from the wall are reported
in the Appendix). For neutrally buoyant particles (figure 15a,b), q is maximum at a
separation distance of approximately one particle diameter due to collision forces. As
discussed in earlier work (Esteghamatian & Zaki 2019), the microstructure for neutrally
buoyant particles is dominated by the mean shear, with regions of particle accumulation
in the second and forth quadrants. For dense particles, microstructure is dominated by
the particle wake. In W0P5D and W15P5D, particle pairs are preferentially aligned in
the cross-stream direction (figure 15c,d), in agreement with previous observations in
sedimenting suspensions (Yin & Koch 2007) and fluidization (Fortes et al. 1987). This
preferential arrangement is a consequence of the wake interactions, in particular the
drafting–kissing–tumbling mechanism. One particle is trapped in the wake of another
particle due to the reduced drag (drafting); it approaches the leading particle (kissing);
rotates due to the lift force induced by the shear-layer near the edge of the wake (cf.
figure 14a), and forms a cross-stream alignment (tumbling) (Fortes et al. 1987). The deficit
of q in the streamwise direction, however, is stronger in W15P5D, which is attributed to
the viscoelastic wake structure. The enhanced momentum in the core region of the wake,
as seen in figure 14(b), inhibits the kissing phase, while the shear-layer near the edge
of the wake promotes the tumbling phase. Both of these effects reduce the formation of
streamwise alignments and yield a stronger deficit of q in the streamwise direction.

With an understanding of the particles’ wake and microstructure at a local scale, we now
focus on the large-scale particle-velocity structures that are visually seen in instantaneous
snapshots (cf. figure 2). We revisit the particle-pair distribution, this time in a wall-parallel
bin and in Cartesian coordinates, qc, and also compute the streamwise particle-velocity
correlations Ru′

pu′
p
,

qc(Δx,Δz) = 〈dN(Δx,Δz)〉/〈dN(Δx,Δz)R〉, (3.5)

Ru′
pu′

p
(Δx,Δz) = 〈u′

p(x, z, t)u′
p(x + Δx, z + Δz, t)〉

〈u′
p(x, z, t)u′

p(x, z, t)〉 . (3.6)

918 A33-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.304


A. Esteghamatian and T.A. Zaki

15

10

5

0

15

10

5

0 5 10 15 20 25 30

15

10

5

0 5 10 15 20 25 30

5 10 15

15

10

5

0 5 10 15

W0P5D

W15P5D

0.96 1.04
qc(�x, �z)

Ru′
pu′

p
(�x, �z)

0 1
�

z/
d p

�
z/

d p

�x/dp �x/dp

(a) (b)

(c) (d )

Figure 16. (a,c) Particle-pair distribution function q(Δx,Δz) defined in (3.5), and (d,e) two-point correlation
of u′

p defined in (3.6); (a,b) W0P5D, (c,d) W15P5D. Dashed lines mark equidistant locations from the reference
particle which is located at y ≤ 0.4.

Both quantities are defined as a function of streamwise Δx and spanwise Δz spacing, and
are computed for particle pairs located in y ≤ 0.4 with a maximum wall-normal spacing of
dp/2. In the Newtonian condition, while a short-range (Δx/dp ≈ 1) streamwise alignment
is inhibited by the tumbling effect, long-range elongated structures extend up to 10–15
particle diameters in the streamwise direction (figure 16a). In viscoelastic conditions,
short-range streamwise alignment is further inhibited, while inclined and cross-stream
alignments are promoted (figure 16c). Both of these viscoelastic effects are consistent
with previous observations (Joseph et al. 1994; Goyal & Derksen 2012), and give rise to a
long-range particle structures that are shorter in the streamwise direction and slightly wider
in the span. It is noteworthy that despite the differences between figures 16(a) and 16(c),
the intensity of clustering is similar in W0P5D and W15P5D cases, as shown previously
with the p.d.f. of normalized Voronoï areas (cf. figures 11b and 11d).

Similar to the particle-pair distributions, the particle-velocity structures are elongated
in the streamwise direction; however, they remain correlated at much longer separation
distances (figure 16a,b). Similar patterns of columnar long-range velocity structures were
reported for relatively smaller particles (d+

p = 11.25) in a Newtonian vertical channel
(Garcia-Villalba et al. 2012). It should be noted that, although Ru′

pu′
p

structures are
perfectly aligned in the streamwise direction, transient particle structures often form more
complicated shapes such as spiral or oblique columns (cf. figure 2). In the viscoelastic
condition, particle velocity structures are shorter and wider compared with the Newtonian
counterpart, yet still the streamwise extent of correlated velocities is much longer than
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Figure 17. (a) Contribution of different stress components to the wall drag, integrated between 0 ≤ y ≤ 1.
Wall-normal profiles of the stresses defined in (3.7) for cases (b) W0P5D and (c) W15P5D: viscous stress τμ
(—–, black); turbulent Reynolds stress τRe (· · · · ·, black); polymer stress τβ (–·–·, black); particle stress τφ (�);
gravity stress τg (�); right-hand side of (3.7) (—–, blue); case designations are listed in table 1.

that of qc structures (figure 16(c,d). An explanation is that particle aggregates induce
substantial perturbations in the fluid velocity field, which can propagate downstream and
affect the particle velocities at much larger separation distances. This effect is also visible
in the fluid velocity correlation as will be discussed in § 3.4.

3.4. Mean stress balance and velocity fluctuations
A derivation of the stress balance equation for neutrally buoyant particles in a viscoelastic
channel flow was previously provided (see appendix A of Esteghamatian & Zaki (2019))
and is herein adapted to the ρr /= 0 condition following a similar derivation by Uhlmann
(2008). The various contributions to the wall stress τw at every y position are given by

τμ︷ ︸︸ ︷
β

Re
(1 − φ)

d〈uf 〉
dy

τRe︷ ︸︸ ︷
−[(1 − φ)〈u′

f v
′
f 〉 + ρrφ〈u′

pv
′
p〉]

+ (1 − β)

Re
(1 − φ)〈Txy〉︸ ︷︷ ︸
τβ

+φ〈σp,xy〉︸ ︷︷ ︸
τφ

−gx(ρr − 1)
∫ y

0
(ϕ − φ)dy︸ ︷︷ ︸

τg

= 〈τw〉(1 − y). (3.7)

From left to right, the components are the viscous stress τμ, the turbulent Reynolds stress
τRe, the polymer stress τβ , the particle stress τφ and the stress due to gravity τg. When
integrated over 0 ≤ y ≤ 1, the left-hand side of (3.7) expresses different contributions to
the mean drag at the wall. In figure 17(a), the components of the stress are normalized
by 0.5〈τw〉W0 from the single-phase Newtonian case as a reference. In dense cases, the
wall drag is significantly increased due to an increase in τg. This extra stress arises due
to the wall-normal non-uniformity of the reaction forces of the particle drag on the fluid,
which is larger when the particles accumulate away from the wall and vanishes when they
are homogeneously distributed. In viscoelastic cases, the particles are displaced farther
away from the wall due to the imbalance of elastic normal stresses (D’Avino & Maffettone
2015), which increases the contribution of τg. Interestingly, although the turbulent stress
τRe vanishes in W15P5D, the larger contribution of τg in W15P5D compared with W0P5D
results in an overall drag increase. The increase in polymer stress due to the presence
of particles is less pronounced for the dense particles (W15P5D) than neutrally buoyant
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Figure 18. Mean profiles of (a,d) turbulent kinetic energy of the unconditional velocity field. Suspensions:
neutrally buoyant (circle–line, black), dense particles (filled circle–line, black); single-phase condition (—–,
blue). (b,e) Mean squared streamwise velocity fluctuations and its constituents as defined in (3.8), 〈u′u′〉 (—–,
black), Cp (· · · · ·, red), Cf (–·–·, blue), Ci(- - -, green). (c,f ) Fluid fluctuations (—–, black) further conditioned
to near-particle (filled square–solid line, black) and far-field regions (square–solid line, black). The fluid in
panels (a–c) is Newtonian and in panels (d–f ) is viscoelastic.

ones (W15P5). As discussed by Esteghamatian & Zaki (2019), particles in shear flow result
in stretching of polymers in their vicinity and can dramatically increase the polymer shear
stresses. However, due to the flattening of the mean profile in the dense-particle condition,
regions of high shear rates are limited to the vicinity of the wall where the particles are
scarce. Therefore, the increase in polymer stress by dense particles is smaller than that by
neutrally buoyant ones.

Different constituents of the drag in the dense cases are further examined in figures 17(b)
and 17(c). Except for y < 0.5dp, which is void of particles, τg is the dominant stress
component across the channel. The viscous and polymer contributions are a function of
the mean shear rate 〈γ̇ 〉 and follow similar trends to one another across the channel. Thus,
τμ and τβ are positive in the immediate vicinity of the wall, are slightly negative near
y ≈ 0.2 and vanish away from the wall (compare with profiles of 〈Ωf ,z〉 = −γ̇ in figures 4a
and 4c).

Although the turbulent shear stress is hindered in dense particle conditions, the turbulent
kinetic energy of the unconditional velocity field increases (figures 18a and 18d). We
investigate the origins of this increase by conditional sampling, placing our focus on
the streamwise velocity fluctuations which are the dominant contributors to the turbulent
kinetic energy. Unconditional velocity fluctuations include contributions from both the
fluid and particle phases, as well as from the difference between the mean velocity of each
phase (You & Zaki 2019). In the streamwise direction this relation is given by

〈u′u′〉 = φ〈u′
pu′

p〉︸ ︷︷ ︸
Cp

+ (1 − φ)〈u′
f u′

f 〉︸ ︷︷ ︸
Cf

+φ(1 − φ)〈up − uf 〉2︸ ︷︷ ︸
Ci

, (3.8)
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Figure 19. (a) Isosurfaces of streamwise fluid velocity fluctuations u′
f and particle positions located at y = 2dp.

(b) Two-point correlation of u′
f defined in (3.9) as a function of (top) streamwise Δx and (bottom) spanwise

Δz spacing for cases W0P5D (—–, black) and W15P5D(– – –, black). Here Ru′
f u′

f
is evaluated at y = 2dp. Case

designations are listed in table 1.

where fluctuations in each phase are defined with respect to the phase-specific mean,
i.e. u′

{ f ,p} ≡ u{ f ,p} − 〈u{ f ,p}〉. The three terms on the right-hand side correspond to
contributions from the particle phase Cp, fluid phase Cf and the difference of the means
Ci. Figures 18(b) and 18(e) show the profiles of each term in Newtonian and viscoelastic
conditions. While 〈u′u′〉 is dominated by the fluid-phase fluctuations, the contribution of Ci
is not negligible in both Newtonian and viscoelastic conditions; while the particle phase
contribution is relatively insignificant. In viscoelastic conditions, particle slip velocities
are smaller due to the larger drag coefficient and, therefore, the Ci is smaller compared with
the Newtonian counterpart. The contribution of fluid-phase fluctuations is also smaller in
viscoelastic conditions.

We elaborate on Cf by further conditioning the fluid phase to near-particle and far-field
regions (figure 18c and 18f ). Based on the particle wake visualizations (figure 14), the
near-particle region is defined as the fluid points inside spheres that are concentric with
the particles and have a diameter of 2dp. The fluctuations in near-particle regions are larger
than those in the far field, implying that the particle wakes are an important contributor
to 〈u′

f u′
f 〉. Since the particles wakes are weakened by viscoelasticity (compare figures 14a

and 14b), the resulting 〈u′
f u′

f 〉 is smaller in W15P5D compared with W0P5D.
Finally we examine the interaction between dense particles and the streamwise flow

structures (figure 19). Elongated flow structures are discernible in both the W0P5D and
W15P5D cases. The flow decelerates near the particles, and low-speed velocity regions are
formed in the vicinity of particle aggregates. In contrast, the flow accelerates in interstitial
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regions void of particles. These observations suggest that u′
f structures are generated by

particles’ collective motion rather than the classical lift-up mechanisms of wall turbulence.
The u′

f structures are visually wider in W15P5D, and more elongated along the streamwise
direction in W0P5D. In figure 19(b) the extent of these structures are quantified by two
point correlation of u′

f as a function of streamwise Δx and spanwise Δz spacing,

Ru′
f u′

f
( y,Δx,Δz) =

〈u′
f ( y, x, z, t)u′

f ( y, x + Δx, z + Δz, t)〉
〈u′

f ( y, x, z, t)u′
f ( y, x, z, t)〉 . (3.9)

In both directions a sudden drop in Ru′
f u′

f
at {Δx,Δz} = {dp, 2dp} is induced by particles’

wakes, and is more pronounced in W0P5D in which these wakes are stronger. Beyond
this drop, Ru′

f u′
f

gradually decreases in both directions. In the streamwise direction, u′
f

structures decorrelate at almost half of the domain in Newtonian conditions, while in
the viscoelastic case Ru′

f u′
f

becomes negative at Δx ≈ 2. In the spanwise direction, u′
f

structures decorrelate at Δx ≈ 1 in W0P5D, while they remain correlated across the span
in W15P5D. Both observations are consistent with the particle velocity structures seen
in section § 3.3 (cf. figures 16b and 16d). The lateral attraction of particles gives rise to
spanwise particle alignments, which in turn widen u′

f structures in the spanwise direction.

4. Conclusions

The streamwise settling effect of spherical particles was examined in Newtonian and
viscoelastic vertical channel flows. Direct numerical simulations that resolve the flow at the
scale of particles were performed with an immersed boundary method. Viscoelastic effects
were incorporated by solving the evolution equations of polymer conformation tensor with
a FENE-P fluid model. The vertical channel was laden with 5 % concentration of dense
particles, and the gravity force was directed in the opposite direction of the flow. The
results were contrasted to additional reference simulations of neutrally buoyant particles
and single-phase flows.

In the dense cases, particles move slower than the background fluid, and experience a
sustained slip velocity and a drag force which counterbalances their negative buoyancy.
The sustained slip was shown to have various implications in the dynamics of particles
and fluid, from changes in mean quantities at a global scale to particle clustering and
lateral forces acting on individual particles. A primary consequence of sustained slip is the
generation of lift forces that modify particle concentration profile and as a result the mean
velocity. While shear-induced lift forces repel the particles from the immediate vicinity
of the walls, rotation-induced lift forces push the particles with positive angular rotation
towards the wall – a competition that results in a remarkable peak in particle volume
fraction. The same effect persists in the viscoelastic case where the elastic stress promotes
migration away from the wall. Due to the non-uniform distribution of particles, the mean
flow accelerates near the walls and is flattened in the bulk region.

The lift forces were shown to dramatically alter the particles motion, and were further
investigated by tracking the particle properties along their trajectories. The effect of
rotation-induced lift was isolated by first examining the particle dynamics in the spanwise
direction. The ensemble averages along particle trajectories show that the particles’
wall-normal angular velocity determines the direction of their spanwise translation. In
the wall-normal direction, ensemble averages confirmed that only particles with a positive
angular velocity can penetrate the immediate vicinity of the wall, where they are eventually
repelled by an intensive shear-induced lift force.
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Lift forces in a vertical channel have been previously investigated for point particles
with smaller diameters d+ < 1 and a wide range of Stokes numbers (Marchioli et al.
2007; Wang et al. 2019a), highlighting the importance of the shear-induced lift force for
a quantitative prediction of particle concentration profile. In the present study we showed
that for particles with d+ ≈ 30 and St+ ≈ 25, an account for the shear-induced lift force
is not sufficient, and the rotation-induced lift force also has a significant influence on the
particles’ motion. Unlike the shear-induced lift, the significance of the rotation-induced
lift is not limited to the wall region, and has important implications in particle mixing
and clustering throughout the channel. From a modelling perspective, the Magnus lift
force is often neglected or obtained by simplified closure models that do not account
for the functional dependence of lift forces on particle volume fraction and the effect of
proximity to the wall. The present particle-resolved simulations highlight that the relative
contribution of Saffman and Magnus forces must be accurately captured for prediction of
particles distribution, clustering and their impact on the flow features.

Another consequence of sustained slip velocities is the formation of clusters in the wall
region, which was quantified using a Voronoï analysis. This phenomenon, which is absent
away from the wall, is also a result of rotation-induced lift forces which preferentially
transport aggregated particles towards the wall. The particle conditioned average flow field
shows the striking differences in the wakes for Newtonian and viscoelastic conditions.
These differences in turn affect the particles microstructures as shown by two particle
correlations.

Despite the drag reducing effects of viscoelasticity in the single-phase and neutrally
buoyant particle suspensions, a drag increase by viscoelasticity was observed for dense
particle suspensions of the same volume fraction. We showed that the drag at the wall
increases due to the non-uniformity of particles distribution. Since the particle migration is
increased by elasticity, the stress induced by gravity is larger in viscoelastic conditions and
gives rise to a drag increase, thus entirely negating the favourable impact of viscoelasticity
on turbulence suppression.

The present study showed that settling due to even a slight density mismatch can result in
substantial changes in the global dynamics of the flow. These qualitative changes originate
from the particles’ sustained slip velocities: particle wakes increase the local velocity
fluctuations; the balance of lift forces establishes the particle distribution; and aggregation
at an offset from the wall significantly alters the velocity profile. The implications of
viscoelasticity were also understood through the lens of particle dynamics, rather than the
commonly anticipated viscoelastic turbulence suppression. Viscoelasticity weakens the
particles’ wakes and, therefore, suppresses the wake-induced fluctuations, while enhancing
the non-uniformity of particle concentration by migration and thus increasing the overall
drag.
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Figure 20. (a–d) The p.d.f.s of normalized Voronoï cell volumes V/〈V〉 for particles in the bulk of the flow
0.8 ≤ y ≤ 1.2; (a) W0P5, (b) W0P5D, (c) W15P5, (d) W15P5D. For each case, p.d.f. of the same quantity is
also plotted for a random distribution of non-overlapping particles with a matching particle volume fraction
profile (grey dashed lines (- - -)). (e–h) Particle-pair distribution function q(r, ψ, θ) defined in (3.1), averaged
in the range −π/8 ≤ ψ–π/2 ≤ π/8. Reference particle is located in 0.8 ≤ y ≤ 1.2.

Appendix. Clustering and microstructure away from the walls

A clustering analysis is performed for particles in the bulk of the flow with a Voronoï
tessellation of the subvolume 0.8 ≤ y ≤ 1.2. Since the selected subvolume is away from
the boundaries in the wall-normal direction, a three-dimensional Voronoï analysis is
possible.

Figure 20 shows the p.d.f.s of normalized Voronoï cell volumes V/〈V〉. In the
Newtonian cases (both dense and neutrally buoyant) the p.d.f.s of V/〈V〉 are very similar
to a random distribution with a matching particle volume fraction profile. This observation
confirms that the clustering effect seen in the wall region of W0P5D is not directly
attributed to the wake interactions, since it is not observed away from the walls. With
viscoelasticity, particles tend to weakly cluster in the neutrally buoyant conditions while
dense particles are less aggregated than a random distribution; these effects are, however,
inappreciable compared with the near-wall clustering discussed in the main text (cf.
figure 11). Viscoelasticity promotes the formation of particle pairs in the cross-stream
direction while suppresses a streamwise alignment. The net effect is a more homogeneous
distribution compared with a random one (figure 20d).
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