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This paper is concerned with the existence, non-existence and qualitative properties
of cylindrically symmetric travelling fronts for time-periodic reaction–diffusion
equations with bistable nonlinearity in R

m with m � 2. It should be mentioned that
the existence and stability of two-dimensional time-periodic V-shaped travelling
fronts and three-dimensional time-periodic pyramidal travelling fronts have been
studied previously. In this paper we consider two cases: the first is that the wave
speed of a one-dimensional travelling front is positive and the second is that the
one-dimensional wave speed is zero. For both cases we establish the existence,
non-existence and qualitative properties of cylindrically symmetric travelling fronts.
In particular, for the first case we furthermore show the asymptotic behaviours of
level sets of the cylindrically symmetric travelling fronts.
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1. Introduction

This paper is concerned with the following time-periodic reaction–diffusion equa-
tion:

∂

∂t
u(x, t) = ∆u(x, t) + f(u(x, t), t), x ∈ Rm, t > 0, (1.1)

where m � 2. Throughout this paper, we assume that f ∈ C2,1(R2, R) satisfies the
following hypotheses.

(H1) There exists T > 0 such that f(u, t) = f(u, t + T ) for all (u, t) ∈ R2.

(H2) The period map P (α) := w(α, T ) has exactly three fixed points α−, α0 and
α+ satisfying α− < α0 < α+, where w(α, t) is the solution of

wt = f(w, t), t ∈ R, w(α, 0) = α ∈ R.

Furthermore, they are non-degenerate and the α± are stable, i.e.

d
dα

P (α±) < 1 <
d
dα

P (α0).

1053
c© 2015 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210515000268 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000268


1054 Z.-C. Wang

(H3) There exists ν0 > 0 such that ν+ + ν− + fu(W±(t), t) > ν0 for any t ∈ [0, T ],
where

ν± := − 1
T

∫ T

0
fu(W±(λ), λ)dλ, W±(t) := w(α±, t)

and

W 0(t) := w(α0, t).

(H4) There exist constants r0 > 0 and ε ∈ (0, mint∈[0,T ](W 0(t) − W−(t))) such
that

f̄(u, t) � r0u(ε − u) for any u ∈ (0, ε) and t ∈ [0, T ],

where f̄(u, t) := f(W 0(t), t) − f(W 0(t) − u, t).

It is known from [1] (see also [34, 35]) that if f(u, t) ∈ C2,1(R × R) satisfies
hypotheses (H1) and (H2), then there exists a unique solution pair (c, U) to (1.1)
in one-dimensional space satisfying

Ut = Uηη − cUη + f(U, t), (η, t) ∈ R2,

U(±∞, t) = lim
η→±∞

U(η, t) = W±(t), t ∈ R,

U(·, · + T ) = U(·, ·), U(0, 0) = α0,

⎫⎪⎪⎬
⎪⎪⎭ (1.2)

where the function U(·, ·) : R × R → R is the wave profile and the constant c ∈ R is
the wave speed. In addition, (c, U) has the following properties.

(i) U(·, t) is increasing with respect to the moving coordinate for each t. Namely,
Uη(·, ·) > 0 in R × R.

(ii) There exist positive constants C1 and β1 satisfying

|U(±η, t) − W±(t)| + |Uη(±η, t)| + |Uηη(±η, t)| � C1e−β1η, η � 0, t ∈ R.
(1.3)

That is, U exponentially approaches its limits as η → ±∞.

A typical example of f satisfying (H1)–(H3) is the cubic potential f(u, t) :=
(1−u2)(2u−ρ(t)), where ρ(t) ∈ (−2, 2) is T -periodic. In this case, W±(t) = ±1 and
−1 < W 0(t) < 1 for any t ∈ [0, T ]. In addition, if we restrict maxt∈[0,T ] |ρ(t)| < 2

5

√
5,

then f(u, t) := (1 − u2)(2u − ρ(t)) satisfies assumption (H4). Here we give a simple
proof. For any t ∈ R, we have

f(W 0(t), t) − f(W 0(t) − u, t)

= 2u(1 − u2) − 6W 0(t)u(W 0(t) − u) + (2W 0(t) − u)ρ(t)u

= u[2(1 − u2) − 6W 0(t)(W 0(t) − u) + (2W 0(t) − u)ρ(t)].

Let g(u, t) := 2(1 − u2) − 6W 0(t)(W 0(t) − u) + (2W 0(t) − u)ρ(t). It follows that

g(0, t) = 2[1 − 3(W 0(t))2 + W 0(t)ρ(t)].
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Let t1, t2 ∈ [0, T ] satisfy

W 0(t1) = min
t∈[0,T ]

W 0(t) and W 0(t2) = max
t∈[0,T ]

W 0(t).

Since (d/dt)W 0(t) = (1 − (W 0(t))2)(2W 0(t) − ρ(t)), we have that W 0(t1) = 1
2ρ(t1)

and W 0(t2) = 1
2ρ(t2). Therefore, maxt∈[0,T ] |W 0(t)| � 1

2 maxt∈[0,T ] |ρ(t)|. Conse-
quently, we have

g(0, t) � 2
(
1 − 5

4
max

t∈[0,T ]
|ρ(t)|2

)
> 0

if maxt∈[0,T ] |ρ(t)| < 2
5

√
5. Thus, we have that (H4) holds.

In fact, f(u, t) := (1 − u2)(2u − ρ(t)) is a particular case of the following more
general example (see [1])

f(u, t) = p(u)(−p′(u) − ρ(t)),

where ρ ∈ C1 and p ∈ C3 satisfy ρ(·+T ) = ρ(·), and p(±1) = 0, p(·) > 0 in (−1, 1).
In this case, the wave speed c can be directly calculated from

c =
1
T

∫ T

0
ρ(t) dt.

Recently, Wang and Wu [43] and Sheng et al . [37] studied two-dimensional V-
shaped travelling fronts and high-dimensional pyramidal travelling fronts of (1.1)
under assumptions (H1)–(H3) and established the existence, uniqueness and sta-
bility of the travelling fronts. We note that the results established by [37, 43] for
the non-autonomous equation (1.1) can be regarded as an extension of the results
established by [22,31,32,39,40] for the autonomous Allen–Cahn equation. Besides V-
form travelling fronts and pyramidal travelling fronts, here we would like to mention
that there have been many studies concerned with cylindrically symmetric travelling
fronts in the autonomous Allen–Cahn equation (see [3,4,12,14,16–18,41]). Moreover,
we refer the reader to [7, 11, 13, 15, 19, 20, 26, 30, 38, 42] for more results on multi-
dimensional travelling wave solutions. For the non-autonomous reaction–diffusion
equation, we would like to mention more results on one-dimensional travelling wave-
fronts; see [8, 34–36] for bistable nonlinearity and [21, 23, 24, 28, 29] for monostable
nonlinearity. However, there is no contribution on cylindrically symmetric travel-
ling fronts of time-heterogeneous equations in multi-dimensional space, even for the
time-periodic case. Resolving this issue is the main purpose of our current study.

The study of this paper contains two parts: the first part is concerned with the
case in which c > 0 and the second part is concerned with the case in which c = 0.
Assume that c � 0. For any s > c, a cylindrically symmetric travelling front of (1.1)
means a classical solution u(x, t) = v(x′, xm + st, t) such that

∂

∂t
v = ∆v − s

∂

∂xm
v + f(v, t), x = (x′, xm) = (x1, . . . , xm) ∈ Rm, t ∈ R,

v(x′
1, xm, t) = v(x′

2, xm, t) ∀x′
1,x

′
2 ∈ Rm−1 with |x′

1| = |x′
2|, xm ∈ R, t ∈ R,

v(x, t + T ) = v(x, t) ∀x ∈ Rm, t ∈ R,

lim
xm→±∞

v(x′, xm, t) = W±(t) ∀x′ ∈ Rm−1, t ∈ R.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.4)
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In the following we give the main results of this paper. The first part is concerned
with the case in which c > 0.

Theorem 1.1. Assume that (H1)–(H4) hold. Suppose that c > 0. Then for any
s > c there exists a function W (x, t) satisfying (1.4). In addition, one has:

(i) W (x′, xm, t) = W (x′′, xm, t) for t ∈ R, xm ∈ R and x′,x′′ ∈ Rm−1 with
|x′| = |x′′|;

(ii) for any (x′
0, x

′
m) ∈ Rm with x′

m � m∗|x′
0|,

W (x′ + x′
0, xm, t) � W (x′, xm + x′

m, t) ∀(x′, xm) ∈ Rm, t ∈ R,

where m∗ =
√

s2 − c2/c;

(iii)
∂

∂xm
W (x, t) > 0 for any x ∈ Rm and t ∈ R;

(iv)
∂

∂xi
W (x, t) > 0 on xi ∈ (0,∞), i = 1, 2, . . . , m − 1;

(v) we have

lim
xm→∞

‖W (·, xm, t) − W+(t)‖C(Rm−1) = 0

and

lim
xm→−∞

‖W (·, xm, t) − W−(t)‖Cloc(Rm−1) = 0

uniformly on t ∈ R;

(vi)
∂

∂ν
W (x, t) > 0 for any x ∈ Rm and t ∈ R, where

ν =
1√

1 +
∑m−1

j=1 ν2
j

(ν1, ν2, . . . , νm−1, 1)

satisfies √
ν2
1 + ν2

2 + · · · + ν2
m−1 � 1

m∗
.

Define
Ψ(ρ, z, t) = Ψ(|x′|, xm, t) := W (x, t) (1.5)

for any (x′, xm) ∈ Rm and t ∈ R, where ρ = |x′| and z = xm. Define a function
φ(ρ) by

Ψ(ρ, φ(ρ), 0) = θ0,

where θ0 ∈ (α−, α0) is a given constant. By a shift, let U(0, 0) = θ0. We then have
the following theorem.
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Theorem 1.2. Assume that (H1)–(H4) hold. Assume that c > 0. Let Ψ(ρ, z, t) be
defined by (1.5). Then Ψ(ρ, z, t) satisfies

∂

∂t
Ψ =

∂2

∂ρ2 Ψ +
∂2

∂z2 Ψ +
m − 2

ρ

∂

∂ρ
Ψ −s

∂

∂z
Ψ +f(Ψ(ρ, z, t), t) ∀ρ > 0, z ∈ R, t ∈ R.

Moreover, one has

∂

∂ρ
Ψ(ρ, z, t) > 0 ∀ρ > 0, z ∈ R, t ∈ R,

∂

∂z
Ψ(ρ, z, t) > 0 ∀ρ � 0, z ∈ R,

lim
z→−∞

‖Ψ(·, z, t) − W−(t)‖C([0,ω]) = 0 uniformly in t ∈ R for any ω > 0,

lim
z→+∞

‖Ψ(·, z, t) − W+(t)‖C([0,+∞)) = 0 uniformly in t ∈ R,

∂

∂ν
Ψ(ρ, z, t) > 0 ∀ρ > 0, z > 0, t ∈ R,

lim
ρ→∞

φ′(ρ) = −m∗,

lim
ρ→∞

Ψρ(ρ, φ(ρ), 0) =
cm∗
s

Uη(0, 0),

lim
ρ→∞

Ψz(ρ, φ(ρ), 0) =
c

s
Uη(0, 0)

and

lim
ρ→∞

∥∥∥∥Ψ(ρ + x, φ(ρ) + z, t) − U

(
s

c
(z + m∗x), t

)∥∥∥∥
C2,1

loc (R2×R)
= 0,

where ν =
1√

1 + (ν′)2

(
ν′

1

)
is a given constant vector with ν′ � − 1

m∗
.

Theorem 1.3. Assume that (H1)–(H4) hold. Assume that c > 0. Let s > c > 0
and denote W (x, t) defined in theorem 1.1 by W s(x, t). Let W s(0, 0) = U(0, 0).
Then one has

lim
s→c

‖W s(x, t) − U(xm, t)‖C2
loc(Rm) = 0

uniformly in t ∈ R.

Theorem 1.4. Assume that (H1)–(H4) hold. Assume that c > 0. For s > c > 0
there is no function W (x, t) satisfying

∂

∂t
W = ∆W − s

∂

∂xm
W + f(W, t)

for any (x, t) ∈ Rm × R, W (x, t + T ) = W (x, t) for any (x, t) ∈ Rm × R,
limxm→±∞ W (0, xm, t) = W±(t) uniformly in t ∈ R, and

∂

∂xm
W (x, t) � 0,

∂2

∂x2
i

W (x, t)
∣∣∣∣
x′=0

� 0, i = 1, 2, . . . , m − 1.
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Theorem 1.5. Assume that (H1)–(H4) hold. Assume that c > 0. For s < c there
is no function W (x, t) satisfying

∂

∂t
W = ∆W − s

∂

∂xm
W + f(W, t)

for any (x, t) ∈ Rm × R, W (x, t + T ) = W (x, t) for any (x, t) ∈ Rm × R,
limxm→±∞ W (0, xm, t) = W±(t) uniformly in t ∈ R, and

∂

∂xm
W (x, t) � 0,

∂2

∂x2
i

W (x, t)
∣∣∣∣
x′=0

� 0, i = 1, 2, . . . , m − 1.

In the following we consider the case in which c = 0. In this case, we furthermore
assume that the following condition holds.

(H5) There exists a sequence of T -periodic functions {fn(u, t)} ⊂ C2,1(R2, R) such
that the following hold.

(1) For each n ∈ N, fn satisfies (H1)–(H4). In particular, for each n ∈ N the
periodic map Pn(α) := wn(α, T ) has exactly three fixed points α−

n , α0
n,

α+
n with α−

n < α0
n < α+

n , where wn(α, t) is the solution of

wt = fn(w, t), t ∈ R, w(α, 0) = α ∈ R.

Furthermore, they are non-degenerate and the α±
n are stable, i.e.

d
dα

Pn(α±
n ) < 1 <

d
dα

Pn(α0
n).

(2) There hold limn→∞ ‖fn(·, ·) − f(·, ·)‖C1([−M,M ]×[0,T ]) = 0 and α−
n → α−,

α0
n → α0 and α+

n → α+ as n → ∞, where

M = max
n∈N

{
max

t∈[0,T ]
|wn(α−

n , t)|, max
t∈[0,T ]

|wn(α+
n , t)|

}
. (1.6)

Consequently, W±
n (t) → W±(t) and W 0

n(t) → W 0(t) uniformly in t ∈ R
as n → ∞, where W±

n (t) = wn(α±
n , t) and W 0

n(t) = wn(α0
n, t).

(3) Let (cn, Un) be the unique travelling wave solution defined by (1.2) with
fn(u, t), which connects two periodic solutions W±

n (t). Suppose that cn >
0 and that cn → 0 as n → ∞.

We note that f(u, t) = (1−u2)(u−ρ(t)) with
∫ T

0 ρ(t) dt = 0 satisfies (H5), where
ρ(t) ∈ (−2, 2) is T -periodic. Let fn(u, t) = (1−u2)(2u−(ε/n+ρ(t))) for some small
ε > 0. Let cn = (1/T )

∫ T

0 (ε/n + ρ(t)) dt = ε/n > 0. Clearly, cn → 0 as n → ∞. By
the previous argument, we have |W 0

n(t)| < ε/n + maxt∈[0,T ] |ρ(t)| for any t ∈ [0, T ].
Up to the extraction of a subsequence, let

W 0
n(t) → W 0

∗ (t) uniformly in t ∈ [0, T ] as n → ∞.

Then (d/dt)W 0
∗ (t) = f(W 0

∗ (t), t). It is clear that −1 < W 0
∗ (t) < 1. Therefore, we

have W 0
∗ (0) = α0 and W 0

∗ (t) ≡ W 0(t).
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Theorem 1.6. Assume that (H1), (H2), (H4) and (H5) hold. Suppose that c = 0.
Then for any s > c = 0 there exists a function W0(x, t) satisfying (1.4). In addition,
one has:

(i) W0(x′, xm, t) = W0(x′′, xm, t) for t ∈ R, xm ∈ R and x′,x′′ ∈ Rm−1 with
|x′| = |x′′|;

(ii)
∂

∂xm
W0(x, t) > 0 for any x ∈ Rm and t ∈ R;

(iii)
∂

∂xi
W0(x, t) > 0 on xi ∈ (0,∞), i = 1, 2, . . . , m − 1;

(iv) we have

lim
xm→∞

‖W0(·, xm, t) − W+(t)‖C(Rm−1) = 0

and

lim
xm→−∞

‖W0(·, xm, t) − W−(t)‖Cloc(Rm−1) = 0

uniformly on t ∈ R;

(v) the conclusions of theorems 1.3–1.5 remain valid for W0(x, t).

This paper is organized as follows. In § 2 we list some preliminaries on two-
dimensional V-shaped travelling fronts and three-dimensional pyramidal travelling
fronts of (1.1), which are needed for the proof of theorem 1.1. In § 3, we prove the-
orems 1.1–1.5. To get the expected cylindrically symmetric travelling front, we use
the results of Sheng et al . [37] to construct a sequence of pyramidal travelling fronts
of (1.1), and then take a limit for the sequence of pyramidal travelling fronts. Thus,
the limit function is just the expected solution. Consequently, we show qualitative
properties of the cylindrically symmetric travelling front by a series of arguments
with contradictions. In § 4 we prove theorem 1.6. In § 5 we give a discussion to end
the paper.

2. Preliminaries

In this section we state the existence results on two-dimensional V-shaped travelling
fronts and three-dimensional pyramidal travelling fronts of (1.1) when c > 0, which
were established by Wang and Wu [43] and Sheng et al . [37], respectively. Moreover,
we show some properties of the pyramidal travelling fronts that are very important
when establishing the cylindrically symmetric travelling fronts in next section. Let
(c, U) be defined by (1.2). Assume that c > 0.

2.1. Two-dimensional V-shaped travelling fronts

Let ṽ(ξ, η, t; ṽ0) be the solution of the following Cauchy problem:

ṽt = ṽξξ + ṽηη + f(ṽ, t) ∀(ξ, η) ∈ R2, t > 0,

ṽ(ξ, η, 0) = ṽ0(ξ, η) ∀(ξ, η) ∈ R2.

}
(2.1)
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The following theorem and lemma were established by Wang and Wu [43, theo-
rem 1.1, lemma 3.4].

Theorem 2.1. Assume that (H1)–(H3) holds. For any s̃ > c there exists a unique
Ṽ (ξ, η, t; s̃) satisfying

Ṽt = Ṽξξ + Ṽηη − s̃Ṽη + f(Ṽ , t) ∀(ξ, η) ∈ R2, t ∈ R,

Ṽ (ξ, η, t + T ; s̃) = Ṽ (ξ, η, t; s̃) ∀(ξ, η) ∈ R2, t ∈ R,

U

(
c

s̃

(
η +

√
s̃2 − c2

c
|ξ|

)
, t

)
< Ṽ (ξ, η, t) ∀(ξ, η) ∈ R2, t ∈ R

and

lim
R→∞

sup
ξ2+η2>R2

∣∣∣∣Ṽ (ξ, η, t; s̃)−U

(
c

s̃

(
η+

√
s̃2 − c2

c
|ξ|

)
, t

)∣∣∣∣ = 0 uniformly in t ∈ R.

Furthermore, for any initial function ṽ0(ξ, η) ∈ C(R2) with

lim
R→∞

sup
ξ2+η2>R2

|ṽ0(ξ, η) − Ṽ (ξ, η, 0; s̃)| = 0,

we have

lim
t→∞

‖ṽ(·, ·, t; ṽ0) − Ṽ (·, · + s̃t, t; s̃)‖C(R2) = 0.

Lemma 2.2. There exists a positive constant δ∗ > 0, a positive constant ρ suffi-
ciently large and a positive constant β small enough such that, for any δ ∈ (0, δ∗],
w+ and w− defined by

ṽ+(ξ, η, t) = Ṽ (ξ, η + s̃t ± ρδ(1 − e−βt), t) ± δa(t)

are a supersolution and a subsolution of (2.1), respectively, where

a(t) = exp
{(

ν+ + ν− − ν0

4

)
t +

∫ t

0
fu(W+(τ), τ) dτ +

∫ t

0
fu(W−(τ), τ) dτ

}

and the constants ν0, ν+ and ν− are defined in (H3).

Remark 2.3. Following Wang and Wu [43], we have that the positive constant δ∗
depends only on the nonlinearity f . In addition, we have that Ṽ (ξ, η, t; s̃) further-
more satisfies

Ṽ (ξ, η, t) = Ṽ (−ξ, η, t) ∀(ξ, η, t) ∈ R3,

Ṽξ(ξ, η, t) > 0 ∀(ξ, η, t) ∈ (0, +∞) × R2,

Ṽη(ξ, η, t) > 0 ∀(ξ, η, t) ∈ R3

and

Ṽ (ξ + ξ0, η, t) � Ṽ (ξ, η + η0, t) ∀(ξ, η, t) ∈ R3, ξ0, η0 ∈ R with η0 �
√

s̃2 − c2

c
|ξ0|.
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2.2. Three-dimensional pyramidal travelling fronts

Fix s > c > 0. Assume that the solutions travel towards the −x3 direction
without loss of generality. Take

u(x, t) = v(x′, x3 + st, t), x′ = (x1, x2), x = (x′, x3) = (x1, x2, x3).

We then have the initial-value problem

∂

∂t
v(x, t) = ∆v(x, t) − s

∂

∂x3
v(x, t) + f(v(x, t), t),

v(x, 0) = v0(x),

⎫⎬
⎭ (2.2)

where x ∈ R3, t > 0.
Let n � 3 be a given integer and let

m∗ =
√

s2 − c2/c.

Let {Aj = (Aj , Bj)}n
j=1 be a set of unit vectors in R2 such that

AjBj+1 − Aj+1Bj > 0, j = 1, 2, . . . , n − 1, AnB1 − A1Bn > 0.

It is obvious that (m∗Aj , 1) ∈ R3 is the normal vector of {x ∈ R3 | −x3 =
m∗(Aj ,x

′)}. Let

hj(x′) = m∗(Aj ,x
′) and h(x′) = max

1�j�n
hj(x′) = m∗ max

1�j�n
(Aj ,x

′)

for x′ ∈ R2. We call {x = (x′, x3) ∈ R3 | −x3 = h(x′)} a three-dimensional pyramid
in R3. Letting

Ωj = {x′ ∈ R2 | h(x′) = hj(x′)}

for j = 1, . . . , n, we have R2 =
⋃n

j=1 Ωj . Denote the boundary of Ωj by ∂Ωj . Let

E =
n⋃

j=1

∂Ωj .

Set
Sj = {x ∈ R3 | −x3 = hj(x′) for x′ ∈ Ωj}

for j = 1, . . . , n, and call
⋃n

j=1 Sj ⊂ R3 the lateral faces of the pyramid. Let

Γj = Sj ∩ Sj+1, Γn = Sn ∩ S1, j = 1, . . . , n − 1.

Then Γ :=
⋃n

j=1Γj represents the set of all edges of a pyramid. Define

v−(x, t) = U

(
c

s
(x3 + h(x′)), t

)
= max

1�j�n
U

(
c

s
(x3 + hj(x′)), t

)
.

Define

D(γ) =
{

x ∈ R3
∣∣∣∣ dist

(
x,

n⋃
j=1

Γj

)
> γ

}
for γ > 0.
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Let v(x, t; v−) be the solution of (2.2) with v0 = v−. There then exists a function
V (x, t) ∈ C2,1(R3 × R) such that

V (x, t) = lim
k→∞

v(x, t + kT ; v−).

The following theorem comes from Sheng et al . [37, theorem 1.1].

Theorem 2.4. Assume that s > c > 0 holds. Then, under assumptions (H1)–(H3),
there exists a function V (x, t) such that V (x, t + T ) = V (x, t) for any (x, t) ∈ R4,
U((c/s)(x3 + h(x′)), t) < V (x, t) < W+(t) for any (x, t) ∈ R4, (∂/∂x3)V (x, t) > 0
for all (x, t) ∈ R4 and

lim
γ→+∞

sup
x∈D(γ), t∈R

∣∣∣∣V (x, t) − U

(
c

s
(x3 + h(x′)), t

)∣∣∣∣ = 0, (2.3)

∂

∂t
V (x, t) = ∆V (x, t) − s

∂

∂x3
V (x, t) + f(V (x, t), t) ∀(x, t) ∈ R4.

If we furthermore assume that

lim
γ→+∞

sup
x∈D(γ)

∣∣∣∣v0(x) − U

(
c

s
(x3 + h(x′)), 0

)∣∣∣∣ = 0 (2.4)

holds, then the solution v(x, t; v0) to (2.2) satisfies

lim
t→+∞

‖v(·, t) − V (·, t)‖C(R3) = 0,

or equivalently

lim
k→+∞

‖v(·, · + kT ) − V (·, ·)‖C(R3×R) = 0.

Using (1.2), (2.3) and U((c/s)(x3 + h(x′)), t) < V (x, t) < W+(t) for (x, t) ∈ R4,
we furthermore obtain

lim
x3→∞

‖V (·, x3, t)−W+(t)‖C(R2) = 0 and lim
x3→−∞

‖V (·, x3, t)−W−(t)‖Cloc(R2) = 0

(2.5)
uniformly on t ∈ R. The next two lemmas show the monotonicity of the pyramidal
travelling front V . The proofs are very similar to those of Taniguchi [41, lemmas 2.5
and 3.4] and we omit them.

Lemma 2.5. For any (x0, y0, z0) ∈ R3 with z0 � h(x0, y0), one has

V (x1+x0, x2+y0, x3, t) � V (x1, x2, x3+z0, t) for any (x1, x2, x3) ∈ R3 and t ∈ R.

Lemma 2.6. Let

ν =
1√

1 + ν2
1 + ν2

2

⎛
⎝ν1

ν2

1

⎞
⎠

be a given constant vector with
√

ν2
1 + ν2

2 � 1/m∗. Then one has

∂

∂ν
V (x, t) > 0 ∀x ∈ R3, t ∈ R.
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Let w(t; M) be the solution of the following equation:

w′(t) = f(w(t), t), t > 0,

w(0) = M ∈ R.

Since the Poincaré map P (α) is monotonic and has only three fixed points with α±

being stable, P (α) > α for all α < α−, and P (α) < α for all α > α+ (see also [1]).
Then for any M+, M− ∈ R with M− � α− < α+ � M+, we have

lim
k→∞

w(t + kT ; M±) = W±(t) uniformly for t ∈ [0, T ].

By the comparison principle (see [5, theorem 25.6]), we have

w(t; M−) � v(x, t) � w(t; M+),

and hence

W−(t) � lim inf
k→∞

inf
x∈R3

v(x, t + kT )

� lim sup
k→∞

sup
x∈R3

v(x, t + kT )

� W+(t)

provided that M− � v0(x) � M+ for any x ∈ R3.
In the following lemma we show that if the initial value v0 is even on x1, then

the solution v(x, t; v0) is also even on x1. Furthermore, if v0 is non-decreasing in
x1 � 0, then the solution v(x, t; v0) is also non-decreasing in x1 � 0. The proof is
completely similar to that of [45, lemma 2.5].

Lemma 2.7. Assume that v0(x) ∈ C(R3, R) is even on x1, uniformly continuous
and bounded in x ∈ R3, and non-decreasing in x1 ∈ [0,∞). There then exists a
unique solution v(x, t) ∈ C(R3 × [0,∞), R)∩C2,1(R3 × (0,∞), R) of (2.2) such that
v(x, t) is even on x1 and non-decreasing in x1 ∈ [0,∞).

Corollary 2.8. Suppose that v−(x) is even on x1 ∈ R and x2 ∈ R, respectively.
Then the pyramidal travelling front V (x, t) defined by theorem 2.4 satisfies

V (x1, x2, x3, t) = V (−x1, x2, x3, t) ∀x ∈ R3, t ∈ R,

V (x1, x2, x3, t) = V (x1,−x2, x3, t) ∀x ∈ R3, t ∈ R,

∂

∂x1
V (x, t) > 0 ∀x ∈ (0, +∞) × R2, t ∈ R,

∂

∂x2
V (x, t) > 0 ∀x ∈ R × (0, +∞) × R, t ∈ R.

3. Cylindrically symmetric travelling fronts when c > 0

In this section we prove theorems 1.1–1.5. We first give the details of the proof in
R3, then generalize the result to Rm with m � 4 and m = 2.
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3.1. Proof of theorem 1.1 in R3

In this section we prove theorem 1.1, namely, we establish the existence of time-
periodic cylindrically symmetric travelling fronts of (1.1) in R3. The method is
to take the limit of a sequence of pyramidal travelling fronts. Subsequently, we
show some important qualitative properties of the cylindrically symmetric travelling
fronts.

Let

hk(x1, x2) = m∗ max
1�i�2k

{
x1 cos

2(i − 1)π
2k

+ x2 sin
2(i − 1)π

2k

}
, k = 1, 2, . . . .

It is not difficult to show that the plane

x3 = m∗

(
x1 cos

2(i − 1)π
2k

+ x2 sin
2(i − 1)π

2k

)

is tangent to the rotating surface

x3 = m∗
√

x2
1 + x2

2

for any k ∈ N and 1 � i � 2k. Replacing h(x′) by hk(x′) in theorem 2.4, we obtain
a sequence of time-periodic pyramidal travelling fronts of (1.1), namely,

V 1, V 2, . . . , V k, . . . ,

where

V k(x, t) = lim
t→∞

v(x, t + kT ; vk,−
0 ), vk,−

0 (x) = U

(
c

s
(x3 + hk(x′)), 0

)
.

Denote the edge of the pyramid x3 = hk(x′) by Γ k and

Dk(γ) =
{

x ∈ R3
∣∣∣∣ dist

(
x,

2k⋃
j=1

Γ k
j

)
> γ

}
for γ > 0.

Since v−,k
0 (x, 0) is non-decreasing in x1 ∈ (0,∞) and in x2 ∈ (0,∞), and is even on

x1 ∈ R and on x2 ∈ R, by theorem 2.4, lemma 2.6 and corollary 2.8, we obtain

V 1 � V 2 � · · · � V k � · · · ∀x ∈ R3, t ∈ R,

∂

∂x1
V k(x, t) > 0 ∀x ∈ (0,∞) × R2, t ∈ R,

∂

∂x2
V k(x, t) > 0 ∀x ∈ R × (0,∞) × R, t ∈ R,

∂

∂ν
V k(x, t) > 0 ∀x ∈ R3, t ∈ R,

where

ν =
1√

1 + ν2
1 + ν2

2

(ν1, ν2, 1) satisfies
√

ν2
1 + ν2

2 � 1
m∗

.
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Since

hk(x1, x2) = hk

(
x1 cos

π

2k−1 + x2 sin
π

2k−1 ,−x1 sin
π

2k−1 + x2 cos
π

2k−1

)
,

we have

V k(x, t) = V k(x′, x3, t) = V k(Bkx′, x3, t) ∀x ∈ R3, t ∈ R,

where

Bk =

⎛
⎝ cos

π

2k−1 sin
π

2k−1

− sin
π

2k−1 cos
π

2k−1

⎞
⎠ .

Take xk
3 ∈ R such that xk

3 � xk+1
3 and V k(0, 0, xk

3 , 0) = θ0, where θ0 ∈ (α−, α0)
is a given constant. Let

Ṽ k(x, t) = V k(x′, x3 + xk
3 , t) ∀x ∈ R3, t ∈ R.

By (2.5), lemmas 2.5 and 2.6, and corollary 2.8 we have that Ṽ k(x, t) satisfies the
following.

(a) Ṽ k(0, 0) = θ0.

(b) (∂/∂ν)Ṽ k(x, t) > 0 for any x ∈ R3, t ∈ R, where k ∈ N and

ν =
1√

1 + ν2
1 + ν2

2

(ν1, ν2, 1) satisfies
√

ν2
1 + ν2

2 � 1
m∗

.

(c) For any (x0, y0, z0) ∈ R3 with z0 � hk(x0, y0), there holds

Ṽ k(x1 + x0, x2 + y0, x3, t) � Ṽ k(x1, x2, x3 + z0, t) ∀(x1, x2, x3) ∈ R3, t ∈ R.

(d) Ṽ k(x′, x3, t) = Ṽ k(Bkx′, x3, t) for all x ∈ R3, t ∈ R.

(e) There hold (∂/∂x1)Ṽ k(x, t) > 0 in x1 ∈ (0,∞) and (∂/∂x2)Ṽ k(x, t) > 0 in
x2 ∈ (0,∞), where k ∈ N.

(f) Ṽ k(x, t) = Ṽ k(x, t + T ) for all x ∈ R3, t ∈ R.

(g) We have

lim
x3→∞

‖Ṽ k(·, x3, t) − W+(t)‖C(R2) = 0

and

lim
x3→−∞

‖Ṽ k(·, x3, t) − W−(t)‖Cloc(R2) = 0

uniformly on t ∈ R.
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Since Ṽ k satisfies W−(t) < Ṽ k(x, t) < W+(t) and

∂

∂t
Ṽ k(x, t) = ∆Ṽ k(x, t) − s

∂

∂x3
Ṽ k(x, t) + f(Ṽ k(x, t), t)

for any x ∈ R3 and t ∈ R, using an argument similar to that of Wang et al . [44,
proposition 4.3] we have that there exists a positive constant K1 such that

‖Ṽ k(·, t)‖C1(R3) � K1 ∀k ∈ N, t ∈ [T, 2T ].

By the periodicity of Ṽ k(x, t) in t ∈ R, we have

‖Ṽ k(·, t)‖C1(R3) � K1 ∀k ∈ N, t ∈ R.

Applying [27, theorems 5.1.3 and 5.1.4] we have that there exists a positive constant
K such that

‖Ṽ k(·, ·)‖C2+α,1+α/2(R3×R) � K ∀k ∈ N (3.1)

for some α ∈ (0, 1). There then exists a function W (x, t) ∈ C2,1(R3 ×R) (up to the
extraction of some subsequence) satisfying

Ṽ k(x, t) → W (x, t) in ‖ · ‖C2,1
loc (R3×R) as k → ∞.

Furthermore, we have the following theorem for the function W (x, t) ∈ C2,1(R3 ×
R).

Theorem 3.1. Assume that (H1)–(H4) hold. Suppose that c > 0. Then for any
s > c > 0 there exists a function W (x, t) ∈ C2,1(R3 × R) satisfying W (x, t + T ) =
W (x, t) and

∂

∂t
W (x, t) = ∆W (x, t) − s

∂

∂x3
W (x, t) + f(W (x, t), t) (3.2)

for any x ∈ R3 and t ∈ R. In addition, one has:

(i) W (0, 0) = θ0;

(ii) W (x′
1, x3, t) = W (x′

2, x3, t) for all x′
1,x

′
2 ∈ R2 with |x′

1| = |x′
2|, x3 ∈ R,

t ∈ R;

(iii) for any (x0, y0, z0) ∈ R3 with z0 � m∗
√

x2
0 + y2

0, there holds

W (x1 + x0, x2 + y0, x3, t) � W (x1, x2, x3 + z0, t) ∀(x1, x2, x3) ∈ R3;

(iv)
∂

∂x3
W (x, t) > 0 for any x ∈ R3 and t ∈ R;

(v)
∂

∂xi
W (x, t) > 0 for xi ∈ (0,∞), xj ∈ R, x3 ∈ R and t ∈ R, i, j = 1, 2, i 
= j;

(vi) we have

lim
x3→∞

‖W (·, x3, t) − W+(t)‖C(R2) = 0
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and

lim
x3→−∞

‖W (·, x3, t) − W−(t)‖Cloc(R2) = 0

uniformly on t ∈ R;

(vii)
∂

∂ν
W (x, t) > 0 for any x ∈ R3 and t ∈ R, where

ν =
1√

1 + ν2
1 + ν2

2

(ν1, ν2, 1) with
√

ν2
1 + ν2

2 � 1
m∗

.

It is easy to show that W (x, t) satisfies (3.2) and theorem 3.1(i). In view of
hk(x1, x2) � m∗

√
x2

1 + x2
2 for any (x1, x2) ∈ R2 and hk(x1, x2) → m∗

√
x2

1 + x2
2 in

Cloc(R2) as k → +∞, we can easily prove theorem 3.1(ii) and (iii). In the following
we prove theorem 3.1(iv)–(vii) by a sequence of lemmas. Following from properties
(a)–(g) of Ṽ k(x, t), we have:

(I)
∂

∂x3
W (x, t) � 0 for x ∈ R3 and t ∈ R;

(II) we have that

∂

∂x1
W (0, x2, x3, t) = 0 for (x2, x3) ∈ R2 and t ∈ R,

and
∂

∂x2
W (x1, 0, x3, t) = 0 for (x1, x3) ∈ R2 and t ∈ R;

(III) (∂/∂x1)W (x, t) � 0 for x ∈ (0, +∞) × R2 and t ∈ R and (∂/∂x2)W (x, t) � 0
for x ∈ R × (0, +∞) × R and t ∈ R.

Lemma 3.2. W (·, 0) 
≡ θ0.

Proof. On the contrary, we assume that W (·, 0) ≡ θ0. Since W (x, t) satisfies (3.2)
and W (x, t + T ) = W (x, t), we have that W (x, t) is independent of x ∈ R3 and
W (t) ≡ W (x, t) is a solution of the following equation:

wt = f(w, t).

In particular, we have W (T ) = W (0) = θ0, which implies that the period map
P (α) := w(α, T ) has a fixed point θ0 that is different from α−, α0 and α+. This is
a contradiction.

Thus, we complete the proof.

Lemma 3.3. (∂/∂x1)W (x, t) > 0 for any x ∈ (0, +∞) × R2 and t ∈ R, and
(∂/∂x2)W (x, t) > 0 for any x ∈ R × (0, +∞) × R and t ∈ R.

Proof. We note that there hold (∂/∂x1)W (x, t) � 0 for any x ∈ (0, +∞) × R2

and t ∈ R, and (∂/∂x2)W (x, t) � 0 for any x ∈ R × (0, +∞) × R and t ∈ R. We
first show that (∂/∂x1)W (x, t) > 0 for any x1 ∈ (0, +∞) × R2 and t ∈ R. For a
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contradiction, we assume that there exists some (x0, t0) ∈ R4 with x0
1 > 0 such

that
∂

∂x1
W (x0, t0) = 0.

Due to the parabolic strong maximum principle (see [33, ch. 3, theorem 5]) we have

∂

∂x1
W (x, t0) ≡ 0 for t < t0 and x ∈ R3 with x1 > 0.

Since W (x1, x2, x3, t) = W (−x1, x2, x3, t) for any x ∈ R3 and t ∈ R, we have

∂

∂x1
W (x, t) ≡ 0 for t < t0 and x ∈ R3.

By theorem 3.1(ii), we also have

∂

∂x2
W (x, t) ≡ 0 for t < t0 and x ∈ R3.

It follows from the T -periodicity of W (x, ·) that

∂

∂xi
W (x, t) ≡ 0 for (x, t) ∈ R4 and i = 1, 2,

which implies that W (x, t) only depends on x3 ∈ R and t ∈ R. We rewrite W (x, t)
as W (x3, t) and denote W (x3, t) by W (z, t) with z = x3. By lemma 3.2, we have
W (z, 0) 
≡ θ0 and W (0, 0) = θ0, which implies that (∂/∂z)W (z, t) � 0 on (z, t) ∈ R2.
It follows from the parabolic maximum principle (see [33]) that (d/dz)W (z, t) > 0
for any (z, t) ∈ R2.

Let

W (−∞, t) = ω−(t), W (+∞, t) = ω+(t),

W−(t) � ω−(t) < ω+(t) � W+(t)

for all t ∈ R. In particular, we have ω−(0) < θ0. In this case we rewrite (3.2) as

∂

∂t
W (z, t) =

∂2

∂z2 W (z, t) − s
∂

∂z
W (z, t) + f(W (z, t), t).

Obviously, ω−(t) and ω+(t) are two solutions of the following ordinary differential
equation:

wt = f(w(t), t).

In particular, we have α− � ω−(T ) = ω−(0) < θ0 < ω+(0) = ω+(T ) � α+. There-
fore, we have either ω−(t) ≡ W−(t) and ω+(t) ≡ W+(t), or ω−(t) ≡ W−(t) and
ω+(t) ≡ W 0(t) for any t ∈ R. We first show that it is impossible that ω−(t) ≡ W−(t)
and ω+(t) ≡ W+(t). Otherwise, (1.1) admits a one-dimensional periodic travelling
front W (z+st, t) with wave speed s > c connecting two stable equilibria W−(t) and
W+(t), which contradicts the uniqueness of the one-dimensional periodic travelling
front (U, c) of (1.1).
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It remains to show that the case in which ω−(t) ≡ W−(t) and ω+(t) = W 0(t) is
also impossible. Suppose on the contrary that ω−(t) ≡ W−(t) and ω+(t) = W 0(t)
for all t ∈ R. Let ψ(z, t) = W 0(t) − W (−z, t). Then we have

∂

∂t
ψ(z, t) =

∂2

∂z2 ψ(z, t) + s
∂

∂z
ψ(z, t) − f(W 0(t) − ψ(z, t), t) + f(W 0(t), t) (3.3)

and
ψ(−∞, t) = 0, ψ(+∞, t) = W 0(t) − W−(t).

Equation (3.3) implies that the reaction–diffusion equation

∂

∂t
u(x, t) =

∂2

∂x2 u(x, t) − f(W 0(t) − u(x, t), t) + f(W 0(t), t) (3.4)

admits a time-periodic travelling wavefront ψ(x − st, t) connecting 0 and W 0(t) −
W−(t). In particular, we have (∂/∂z)ψ(z, t) > 0 for any z ∈ R and t ∈ R.

Let Qt denote the solution semi-flow of (3.4) and let QT denote the corresponding
Poincaré map. Let β = W 0(0)−W−(0) and Cβ = {u(·) ∈ C(R) : 0 � u(x) � β ∀x ∈
R}. It follows from assumptions (H1) and (H2) that the Poincaré map QT : Cβ → Cβ

satisfies assumptions (A1)–(A5) of [24]. Thus, it follows from [24, theorem 2.1] that
there exists a positive number ν∗, which is called the asymptotic speed of spread
of the Poincaré map QT , such that for any ν ∈ (0, ν∗/T ) and σ ∈ (0, β) there is a
positive number rσ such that if u ∈ Cβ and u(x) > σ for x ∈ [−rσ, rσ], then

lim
t→∞

inf
|x|�νt

(Qt[u](x) − (W 0(t) − W−(t))) = 0.

Now we specially take σ0 = β/2. Let u0(·) ∈ C2β/3 satisfy u0(x) > σ0 in x ∈
[−rσ0 , rσ0 ] and suppu0(·) is compact. We then have

u(0, t; u0) → W 0(t) − W−(t) as t → +∞, (3.5)

where u(x, t; u0) = Qt[u0](x). On the other hand, there exists an x0 > 0 such
that ψ(x + x0, 0) � u0(x) for any x ∈ R. By the comparison principle (see [5,
theorem 25.6]), we have u(x, t; u0) = Qt[u0](x) � ψ(x + x0 − st, t) for any x ∈ R
and t > 0, which implies that

u(0, t; u0) � ψ(x0 − st, t) → 0 as t → +∞.

This contradicts (3.5), which implies that the case in which ω−(t) ≡ W−(t) and
ω+(t) = W 0(t) is impossible.

Finally, we conclude that (∂/∂x1)W (x, t) > 0 for any x ∈ (0, +∞) × R2 and
(∂/∂x2)W (x, t) > 0 for any x ∈ R × (0, +∞) × R. The proof is complete.

Following lemma 3.3, we have W (x1, x2, 0, t) > W (0, 0, 0, t) for any x1 > 0,
x2 > 0 and t ∈ R. By theorem 3.1(iii), we have that

W (0, 0, x3, t) � W (x1, x2, 0, t) > W (0, 0, 0, t) for any x3 > m∗
√

x2
1 + x2

2 > 0,

which implies that (∂/∂x3)W (x, t) � 0 and (∂/∂x3)W (x, t) 
≡ 0 on x ∈ R3. Fur-
thermore, the parabolic maximum principle (see [33]) yields that (∂/∂x3)W (x, t) >
0 for x ∈ R3 and t ∈ R. Thus, we have proved theorem 3.1(iv) and (v).
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Lemma 3.4. One has

lim
x3→−∞

‖W (·, ·, x3, t) − W−(t)‖Cloc(R2) = 0 uniformly in t ∈ R

and

lim
x3→+∞

‖W (·, ·, x3, t) − W+(t)‖C(R2) = 0 uniformly in t ∈ R.

Proof. Since

W−(t) � W (x, t) � W+(t) and W (x, t + T ) = W (x, t) for any (x, t) ∈ R4,

using an argument similar to that of [44, proposition 4.3], we have that there exists
a positive constant K2 such that

‖W (·, t)‖C1(R3) � K2 ∀t ∈ R.

Applying [27, theorems 5.1.3 and 5.1.4], we have that there exists a positive constant
K > 0 such that

‖W (·, ·)‖C2+α,1+α/2(R3×R) � K (3.6)

for some α ∈ (0, 1). By theorem 3.1(iii)–(v), we have that

W (0, 0, x3, t) � W (x1, x2, x3, t) � W (0, 0, x3 + m∗
√

x2
1 + x2

2, t) (3.7)

for any (x1, x2, x3) ∈ R3 and t ∈ R. In view of (∂/∂x3)W (x, t) > 0 for any (x, t) ∈
R4, we take

W̃−(t) := lim
x3→−∞

W (0, 0, x3, t), W̃+(t) := lim
x3→+∞

W (0, 0, x3, t) ∀t ∈ R.

It follows from (3.6), (3.7) and the periodicity of W (x, t) in t ∈ R that

lim
x3→−∞

‖W (·, ·, x3, t) − W̃−(t)‖Cloc(R2) = 0 uniformly in t ∈ R

and

lim
x3→+∞

‖W (·, ·, x3, t) − W̃+(t)‖C(R2) = 0 uniformly in t ∈ R.

It follows that there exist two sequences {z+
n } and {z−

n } with z+
n → +∞ and

z−
n → −∞ as n → ∞ such that

lim
n→+∞

‖W (x1, x2, x3 + z−
n , t) − W̃−(t)‖C2,1

loc (R3×R) = 0

and

lim
n→+∞

‖W (x1, x2, x3 + z+
n , t) − W̃+(t)‖C2,1

loc (R3×R) = 0.
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For any φ(x1, x2, x3) ∈ C∞
0 (R3, R), we have∫

R3
[W (x1, x2, x3 + z−

n , t + ∆t) − W (x1, x2, x3 + z−
n , t)]φ(x1, x2, x3) dx1 dx2 dx3

=
∫ t+∆t

t

∫
R3

∂

∂r
W (x1, x2, x3 + z−

n , r)φ(x1, x2, x3) dx1 dx2 dx3 dr

=
∫ t+∆t

t

∫
R3

[( 3∑
i=1

∂2

∂x2
i

− s
∂

∂x3

)
W (x1, x2, x3 + z−

n , r)
]

× φ(x1, x2, x3) dx1 dx2 dx3 dr

+
∫ t+∆t

t

∫
R3

f(W (x1, x2, x3 + z+
n , r), r)φ(x1, x2, x3) dx1 dx2 dx3 dr

=
∫ t+∆t

t

∫
R3

[( 3∑
i=1

∂2

∂x2
i

+ s
∂

∂x3

)
φ(x1, x2, x3)

]

× W (x1, x2, x3 + z−
n , r) dx1 dx2 dx3 dr

+
∫ t+∆t

t

∫
R3

f(W (x1, x2, x3 + z+
n , r), r)φ(x1, x2, x3) dx1 dx2 dx3 dr.

Letting n → ∞, we obtain∫
R3

[W̃−(t + ∆t) − W̃−(t)]φ(x1, x2, x3) dx1 dx2 dx3

=
∫ t+∆t

t

∫
R3

[( 3∑
i=1

∂2

∂x2
i

+ s
∂

∂x3

)
φ(x1, x2, x3)

]
W̃−(r) dx1 dx2 dx3 dr

+
∫ t+∆t

t

∫
R3

f(W̃−(r), r)φ(x1, x2, x3) dx1 dx2 dx3 dr,

which implies that the function W̃−(t) satisfies

W̃−(t + ∆t) − W̃−(t) =
∫ t+∆t

t

f(W̃−(r), r) dr ∀t ∈ R, ∆t ∈ R.

Then W̃−(t) satisfies W̃−(t) = W̃−(t + T ) and

d
dt

W̃−(t) = f(W̃−(t), t) ∀t ∈ R.

Similarly, W̃+(t) satisfies W̃+(t) = W̃+(t + T ) and

d
dt

W̃+(t) = f(W̃+(t), t) ∀t ∈ R.

Since α− < W (0, 0) = θ0 < α0, we have α− � W̃−(0) < θ0 < α0 and θ0 <
W̃+(0) � α+. It follows from (H2) that either W̃−(0) = α− and W̃+(0) = α+,
or W̃−(0) = α− and W̃+(0) = α0. If the former holds, then the lemma has been
proved. In the following we show that the latter is impossible.
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Assume to the contrary that W̃−(0) = α− and W̃+(0) = α0. We then have
W̃−(t) = W−(t) and W̃+(t) = W 0(t). Therefore,

W−(t) � W (x, t) � W 0(t) ∀(x, t) ∈ R4.

Let

W̄ (x1, x2, x3, t) := W 0(t) − W (x1, x2,−x3, t) ∀(x1, x2, x3, t) ∈ R4.

Then W̄ (x1, x2, x3, t) satisfies

∂

∂t
W̄ (x, t) = ∆W̄ (x, t) + s

∂

∂x3
W̄ (x, t) + f̄(W̄ (x, t), t),

where f̄(u, t) = f(W 0(t), t)−f(W 0(t)−u, t), which implies that W̄ (x1, x2, x3−st, t)
is a time-periodic travelling wavefront of the following equation:

∂

∂t
ū(x, t) = ∆ū(x, t) + f̄(ū(x, t), t). (3.8)

It is obvious that

∂

∂x1
W̄ (x1, x2, x3, t) < 0 for x1 > 0 and (x2, x3, t) ∈ R3,

∂

∂x2
W̄ (x1, x2, x3, t) < 0 for x2 > 0 and (x1, x3, t) ∈ R3,

∂

∂x3
W̄ (x1, x2, x3, t) > 0 for (x1, x2, x3, t) ∈ R4,

W̄ (−x1, x2, x3, t) = W̄ (x1, x2, x3, t) for (x1, x2, x3, t) ∈ R4,

W̄ (x1,−x2, x3, t) = W̄ (x1, x2, x3, t) for (x1, x2, x3, t) ∈ R4,

W̄ (0, 0, 0, 0) = α0 − θ0.

Let

Ŵ (x1, x2, x3, t) = min{W̄ (x1, x2, x3 − st, t), W̄ (x1, x2,−x3 − st, t)}
= W̄ (x1, x2,−|x3| − st, t)

for any (x1, x2, x3, t) ∈ R4. Then Ŵ (x1, x2, x3, t) is a supersolution of (3.8). In
particular, we have

lim
t→+∞

Ŵ (x1, x2, x3, t) = 0 uniformly in (x1, x2, x3) ∈ R3. (3.9)

Let u0(x) ∈ C0(R3) satisfy 0 � u0(x) � Ŵ (x, 0) for x ∈ R3, where C0(R3) denotes
the set of all continuous functions in R3 with compact supports. By the comparison
principle (see [5, theorem 25.6]), we have that

0 � ū(x, t; u0(·)) � Ŵ (x, t) for any x ∈ R3, t > 0.

Due to (3.9), we have

lim
t→+∞

ū(x, t; u0(·)) = 0 uniformly in x ∈ R3. (3.10)
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Therefore, there exists a k0 ∈ N large enough such that

0 � ū(x, t + k0T ; u0(·)) � ε ∀x ∈ R3, t > 0,

where ε > 0 is defined in assumption (H4). In addition, it follows from (H4) that

∂

∂t
ū(x, t + k0T ) = ∆ū + f̄(ū(x, t + k0T ), t + k0T )

= ∆ū + f̄(ū(x, t + k0T ), t)

� ∆ū + r0ū(x, t + k0T )(ε − ū(x, t + k0T )),

which implies that û(x, t) = ū(x, t + k0T ; u0(·)) is a supersolution of the following
equation:

∂

∂t
v(x, t) = ∆v + r0v(x, t)(ε − v(x, t)). (3.11)

It is due to (3.10) that

lim
t→+∞

û(x, t) = 0 uniformly in x ∈ R3. (3.12)

Let v0(x) ∈ C0(R3) satisfy 0 � v0(x) � û(x, 0) � ε. The comparison principle
(see [5, theorem 25.6]) yields that

0 � v(x, t; v0(·)) � û(x, t) for any x ∈ R3 and t > 0,

where v(x, t; v0(·)) denotes the solution of (3.11) with initial value v0(x) ∈ C0(R3).
Using (3.12) yields

lim
t→+∞

v(x, t; v0(·)) = 0 uniformly in x ∈ R3. (3.13)

However, using the result of Aronson and Weinberger [2, corollary 1], for any 0 <
ν < ν∗ := 2

√
r0ε, we have

lim
t→+∞

inf
|x|�νt

v(x, t; v0(·)) = ε,

which implies that

lim
t→+∞

v(x, t; v0(·)) = ε locally uniformly in x ∈ R3.

This contradicts (3.13). This contradiction implies that

W̃+(t) ≡ W+(t) for t ∈ R.

The proof is complete.

The proof of theorem 3.1(vii) directly follows from property (b) of V k, the fact
that (∂/∂ν)W (x, t) 
≡ 0 and the parabolic strong maximum principle, where

ν =
1√

1 + ν2
1 + ν2

2

(ν1, ν2, 1) with
√

ν2
1 + ν2

2 � 1
m∗

.

Here we omit the details of the proof. The following theorem gives a proof of
theorem 1.3 in R3.

https://doi.org/10.1017/S0308210515000268 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000268


1074 Z.-C. Wang

Theorem 3.5. Let s > c > 0 and denote the cylindrically symmetric travelling
front W (x, t) defined in theorem 3.1 by W s(x, t). Let U(0, 0) = W s(0, 0) = θ0 ∈
(α−, α0). Then one has

lim
s→c+0

‖W s(x, t) − U(x3, t)‖C2,1
loc (R4) = 0.

Proof. Observing estimate (3.6) for W (x, t), we note that there exists K > 0 such
that

‖W s(·, ·)‖C2+α,1+α/2(R3×R) < K

for any s ∈ (c, c+1), where α ∈ (0, 1] is a constant. Let {sn} satisfy sn < sn+1 < c+1
and let sn → c as n → ∞. There then exists a function Û(·, ·) ∈ C2,1(R2) such that

W sn(0, 0, ·, ·) → Û(·, ·) under the norm ‖ · ‖C2,1
loc (R2) as n → ∞.

By theorem 3.1(iii), we have

W sn(0, 0, x3, t) � W sn(x1, x2, x3, t) � W sn(0, 0, x3 + mn
∗
√

x2
1 + x2

2, t)

for all (x1, x2, x3) ∈ R3 and t ∈ R, where mn
∗ =

√
(s2

n − c2)/c. Since mn
∗ → 0

as n → ∞, we have that W sn(x1, x2, x3, t) converges to Û(x3, t) uniformly in any
compact subset of R4 as n → ∞. Consequently, we have that W sn(x1, x2, x3, t)
converges to Û(x3, t) in the sense of ‖ · ‖C2,1

loc (R3×R) as n → ∞. Thus, we have that
Û(·, ·) ∈ C2,1(R2) satisfies

∂

∂t
Û(x, t) =

∂2

∂x2 Û(x, t) − c
∂

∂x
Û(x, t) + f(t, Û(x, t)) ∀x ∈ R, t ∈ R.

In view of Û(0, 0) = θ0 and (∂/∂x)Û(x, t) � 0 for any (x, t) ∈ R2, similar to the
proof of theorem 3.1, we can show that Û(+∞, t) = W+(t), Û(−∞, t) = W−(t)
and (∂/∂x)Û(x, t) > 0 for any (x, t) ∈ R2. It then follows from the uniqueness of
one-dimensional time-periodic travelling fronts of (1.1) connecting two T -periodic
solutions W−(t) and W+(t) that Û(x, t) ≡ U(x, t) in (x, t) ∈ R2. This completes
the proof.

3.2. Proof of theorem 1.2 in R3

By theorem 3.1(ii), we define

Ψ(ρ, z, t) = Ψ(|x′|, x3, t) := W (x, t) (3.14)

for any (x′, x3) ∈ R3 and t ∈ R, where ρ = |x′| and z = x3.

Theorem 3.6. Let Ψ(ρ, z, t) be defined by (3.14). Then Ψ(ρ, z, t) satisfies

∂

∂t
Ψ =

∂2

∂ρ2 Ψ +
∂2

∂z2 Ψ +
1
ρ

∂

∂ρ
Ψ − s

∂

∂z
Ψ + f(Ψ(ρ, z, t), t) ∀ρ > 0, z ∈ R, t ∈ R.

(3.15)
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Moreover, one has

∂

∂ρ
Ψ(ρ, z, t) > 0 ∀ρ > 0, z ∈ R, t ∈ R,

∂

∂z
Ψ(ρ, z, t) > 0 ∀ρ � 0, z ∈ R,

lim
z→−∞

‖Ψ(·, z, t) − W−(t)‖C([0,ω]) = 0 uniformly in t ∈ R for any ω > 0,

lim
z→+∞

‖Ψ(·, z, t) − W+(t)‖C([0,+∞)) = 0 uniformly in t ∈ R

and
∂

∂ν
Ψ(ρ, z, t) > 0 ∀ρ > 0, z > 0, t ∈ R,

where ν =
1√

1 + (ν′)2

(
ν′

1

)
is a given constant vector with ν′ � − 1

m∗
.

Theorem 3.6 directly follows from theorem 3.1, we omit the details of the proof.
Now we give an estimate for Ψ(ρ, z, t). Applying an argument similar to that of
[44, proposition 4.3], we have that there exists a positive constant K ′

1 such that
‖W (·, t)‖C(R3) � K ′

1 for all t ∈ R. Since (∂/∂z)Ψ(ρ, z, t) = (∂/∂x3)W (x, t) and
|(∂/∂ρ)Ψ(ρ, z, t)| � |(∂/∂x1)W (x, t)| + |(∂/∂x2)W (x, t)|, applying the interior Lp

estimate of parabolic differential equations (see [25, proposition 7.18]) we have that
there exists a positive constant K ′

2 such that

‖Ψ(·, ·)‖W 2,1
p (Q((ρ0,z0,4(1+T )),2

√
1+T )) � K ′

2

for any (ρ0, z0) ∈ (1 + 2
√

1 + T , +∞) × R, where p > 1 is a constant, and

Q((ρ0, z0, t0), R)

:= {(ρ, z, t) ∈ R3 :
√

(ρ − ρ0)2 + (z − z0)2 < R, |t − t0|1/2 < R, t < t0}.

Differentiating (3.15) twice, once with respect to ρ and once with respect to z, and
applying the above argument to the equations for (∂/∂ρ)Ψ and (∂/∂z)Ψ , respec-
tively, we have that there exists a positive constant K ′

3 such that

‖ Di Ψ(·, ·)‖W 2,1
p (Q(ρ0,z0))

� K ′
3

for any (ρ0, z0) ∈ (1 + 2
√

1 + T , +∞) × R, i = 1, 2, where p > 1 is a constant,
D1 := ∂/∂ρ, D2 := ∂/∂z, and

Q(ρ0,z0) := Q((ρ0, z0, 4(1 + T )),
√

1 + T ).

Fix p > 4. Using the embedding theorem (see [46, theorem 1.4.1]), we have that
there exists a constant K ′

4 > 0 such that

‖Ψ(·, ·)‖C1+α,(1+α)/2(Q(ρ0,z0)) � K ′
4 and ‖ Di Ψ(·, ·)‖C1+α,(1+α)/2(Q(ρ0,z0)) � K ′

4

for any (ρ0, z0) ∈ (1 + 2
√

1 + T , +∞) × R and i = 1, 2, where 1 + α = 2 − 4/p is a
constant. In view of the arbitrariness of (ρ0, z0) ∈ (1 + 2

√
1 + T , +∞) × R and the
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periodicity of Ψ(ρ, z, t) in t ∈ R, applying [27, theorem 5.1.20] to (3.15) we have
that there exists a positive constant K ′ such that

‖Ψ(·, ·)‖C2+α,1+α/2([1+2
√

1+T ,∞)×R×R) � K ′. (3.16)

We now list a very useful lemma on the Harnack inequalities of cooperative
parabolic systems, which was given in [9] and is needed in what follows.

Lemma 3.7 (Földes and Poláčik [9] and Zhao and Ruan [47]). Let the differential
operators

Lk :=
n∑

i,j=1

ak
i,j(t, x)

∂2

∂xi
∂xj

+
n∑

i=1

bk
i

∂

∂xi

− ∂

∂t
, k = 1, 2, . . . , l,

be uniformly parabolic in an open domain (τ, M) × Ω of (t, x) ∈ R × Rn, that is,
there is α0 > 0 such that ak

i,j(t, x)ξiξj � α0
∑n

i=1 ξ2
i for any n-tuples of real numbers

(ξ1, ξ2, . . . , ξn), where −∞ < τ < M � +∞ and Ω is open and bounded. Suppose
that ak

i,j , b
k
i ∈ C((τ, M) × Ω, R) and

max
(t,x)∈(τ,M)×Ω

|bk
i (t, x)| + |ak

i,j(t, x)| � β0

for some β0 > 0. Assume that

w = (w1, w2, . . . , wl) ∈ C((τ, M) × Ω̄, Rl) ∩ C1,2((τ, M) × Ω, Rl)

satisfies

l∑
s=1

ck,s(t, x)ws + Lk wk � 0, (t, x) ∈ (τ, M) × Ω, k = 1, 2, . . . , l, (3.17)

where ck,s ∈ C((τ, M) × Ω, R) and ck,s � 0 if k 
= s, and

max
(t,x)∈(τ,M)×Ω

|ck,s(t, x)| � γ0

(k, s = 1, 2, . . . , l) for some γ0 > 0. Let D and U be domains in Ω such that
D ⊂⊂ U , dist(D̄, ∂U) > �, and |D| > ε for certain positive constants � and ε. Let
θ be a positive constant with τ + 4θ < M . There then exist positive constants p, ω1
and ω2 determined only by α0, β0, γ0, �, ε, n, diam Ω and θ, such that

inf
(τ+3θ,τ+4θ)×D

wk � ω1‖(wk)+‖Lp((τ+θ,τ+2θ)×D) − ω2 max
j=1,...,k

sup
∂P ((τ,τ+4θ)×U)

(wj)−.

Here (wk)+ = max{wk, 0}, (wk)− = max{−wk, 0} and ∂P ((τ, τ + 4θ) × U) = τ ×
U ∪ [τ, τ +4θ]×∂U . Moreover, if all inequalities in (3.17) are replaced by equalities,
then the conclusion holds with p = ∞ and with ω1, ω2 independent of ε.

We now prove the remainder of theorem 1.2. Define a function φ ∈ C2([0,∞), R)
by Ψ(ρ, φ(ρ), 0) = θ0 for any ρ ∈ [0,∞), where θ0 ∈ (α−, α0) is a constant and
satisfies θ0 < α− + δ∗, where δ∗ > 0 is defined in lemma 2.2. We then have

−m∗ � φ′(ρ) < 0 ∀ρ ∈ (0,∞),
φ(0) = θ0, φ′(0) = 0,
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and

φ′(ρ) = − (∂/∂ρ)Ψ(ρ, φ(ρ), 0)
(∂/∂z)Ψ(ρ, φ(ρ), 0)

∀ρ ∈ [0,∞).

In the following we show the asymptotic behaviour of the level set φ(ρ) as ρ → ∞.
Here we use a strategy similar to that in [41].

Lemma 3.8. One has

lim sup
ρ→∞

φ′(ρ) < 0.

Proof. We prove the lemma by way of a contradiction argument. We assume that
there exists a sequence ρi ∈ (0,∞) such that limi→∞ ρi = +∞ and limi→∞ φ′(ρi) =
0. Consequently, we have limi→∞ Ψρ(ρi, φ(ρi), 0) = 0. For any given r > 1 we take
N ∈ N so that ρi > r + 1 when i > N . Direct calculation yields(

∂

∂t
− ∂2

∂ρ2 − ∂2

∂z2 − 1
ρ

∂

∂ρ
+ s

∂

∂z

)
Ψρ =

(
fu(Ψ, t) − 1

ρ2

)
Ψρ

for any (ρ, z, t) ∈ (0,∞) × R × R. Note that Ψρ(ρ, z, t) > 0 for any (ρ, z, t) ∈
(0,∞) × R × R. Applying lemma 3.7 to the last equation with θ = T and τ = −T ,
we obtain

0 < sup
B((ρi,φ(ρi));r)×(0,T )

Ψρ(ρ, z, t) � C0 inf
B((ρi,φ(ρi));r)×(2T,3T )

Ψρ(ρ, z, t)

= C0 min
B((ρi,φ(ρi));r)×[2T,3T ]

Ψρ(ρ, z, t)

� C0Ψρ(ρi, φ(ρi), 0),

where C0 > 0 is a constant independent of i and

B((x0, z0); r) = {(x, z) ∈ R2 |
√

(x − x0)2 + (z − z0)2 < r}.

Note that Ψ(ρ, z, t+T ) = Ψ(ρ, z, t) and Ψρ(ρ, z, t+T ) = Ψρ(ρ, z, t) for any (ρ, z, t) ∈
(0,∞)× R × R. Letting i → ∞ (up to extraction of a subsequence if necessary), we
have that there exists a function Φ(ρ, z, t) that is C2 both in ρ > 0 and z ∈ R, is
C1 in t ∈ R and satisfies

Ψ(ρ + ρi, z + φ(ρi), t) → Φ(ρ, z, t) locally uniform in C2,1((0,∞) × R × R, R)

as i → ∞. Since

0 < sup
B((ρi,φ(ρi));r)×(0,T )

Ψρ(ρ, z, t) � C0Ψρ(ρi, φ(ρi), 0) → 0

as i → ∞, we have that the limit function Φ is independent of ρ � 0. Therefore, we
denote Φ(ρ, z, t) by Φ(z, t). In addition, we have

Φ(0, 0) = θ0, Φz(z, t) � 0, Φ(z, t + T ) = Φ(z, t) ∀(z, t) ∈ R2.
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For any ϕ(ρ, z) ∈ C∞
0 ((0,∞) × R, R), we have∫

(0,∞)×R

∂

∂t
Ψ(ρ + ρi, z + φ(ρi), t)ϕ(ρ, z) dρ dz

=
∫

(0,∞)×R

(
∂2

∂ρ2 +
∂2

∂z2 +
1

ρ + ρi

∂

∂ρ
− s

∂

∂z

)
Ψ(ρ + ρi, z + φ(ρi), t)ϕ(ρ, z) dρ dz

+
∫

(0,∞)×R

f(Ψ(ρ + ρi, z + φ(ρi), t), t)ϕ(ρ, z) dρ dz

=
∫

(0,∞)×R

(
∂2

∂ρ2 +
∂2

∂z2 − 1
ρ + ρi

∂

∂ρ
+ s

∂

∂z
+

1
(ρ + ρi)2

)
ϕ(ρ, z)

× Ψ(ρ + ρi, z + φ(ρi), t) dρ dz

+
∫

(0,∞)×R

f(Ψ(ρ + ρi, z + φ(ρi), t), t)ϕ(ρ, z) dρ dz.

Letting i → ∞, we obtain∫
(0,∞)×R

∂

∂t
Φ(z, t)ϕ(ρ, z) dρ dz =

∫
(0,∞)×R

(
∂2

∂ρ2 +
∂2

∂z2 + s
∂

∂z

)
ϕ(ρ, z)Φ(z, t) dρ dz

+
∫

(0,∞)×R

f(Φ(z, t), t)ϕ(ρ, z) dρ dz,

which implies that the function Φ(z, t) satisfies

∂

∂t
Φ(z, t) =

∂2

∂z2 Φ(z, t) − s
∂

∂z
Φ(z, t) + f(Φ(z, t), t) ∀(z, t) ∈ R2.

Due to Φ(0, 0) = θ0 and Φz(z, t) � 0 for any z ∈ R and t ∈ R, we have that Φ(z, t)
is a travelling wave solution of (1.1) either connecting two periodic solutions W−(t)
and W 0(t) with wave speed s > 0 or connecting two periodic solutions W−(t) and
W+(t) with wave speed s > 0. Similar to the proof of lemma 3.3, we conclude that
both cases are impossible. Hence, we have

lim sup
ρ→∞

φ′(ρ) < 0.

This completes the proof.

Lemma 3.9. One has lim inf
ρ→∞

φ(ρ)
ρ

= −m∗.

Proof. Note that

0 � φ(ρ)
ρ

=
1
ρ

∫ ρ

0
φ′(ρ) dρ � −m∗.

We prove the lemma by way of a contradiction argument. Assume on the contrary
that

−m∗ < −τ := lim inf
ρ→∞

φ(ρ)
ρ

< 0.
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There then exists a positive and increasing sequence {ρi} satisfying φ(ρi)/ρi → −τ
and ρi → +∞ as i → +∞. Set s∗ ∈ (c, s) such that√

s2
∗ − c2/c = τ.

Define

Ψ̃(x, z, t; ρi) := Ψ(ρi + x, φ(ρi) + z, t) ∀(x, z, t) ∈ (−ρi, +∞) × R × R.

It is obvious that there holds

∂

∂t
Ψ̃ =

∂2

∂x2 Ψ̃ +
∂2

∂z2 Ψ̃ +
1

ρi + x

∂

∂x
Ψ̃ − s

∂

∂z
Ψ̃ + f(Ψ̃(x, z, t; ρi), t),

Ψ̃(0, 0, 0) = θ0,

for any (x, z, t) ∈ (−ρi, +∞)×R×R. Then there exists a function Ψ̃0 ∈ C2,1(R2×R)
such that

Ψ̃(x, z, t; ρi) → Ψ̃0(x, z, t) in C2,1
loc (R2 × R, R)

as i → ∞ (up to extraction of a subsequence if necessary). In particular, Ψ̃0(x, z, t)
satisfies

∂

∂t
Ψ̃0 =

∂2

∂x2 Ψ̃0 +
∂2

∂z2 Ψ̃0 − s
∂

∂z
Ψ̃0 + f(Ψ̃0(x, z, t), t),

Ψ̃0(0, 0, 0) = θ0,

for any (x, z, t) ∈ R3. Since (∂/∂x)Ψ̃(x, z, t; ρi) > 0 and (∂/∂z)Ψ̃(x, z, t; ρi) > 0 for
any (x, z, t) ∈ (−ρi, +∞) × R2, we have

∂

∂x
Ψ̃0(x, z, t) � 0 and

∂

∂z
Ψ̃0(x, z, t) � 0 ∀(x, z, t) ∈ R3.

In the following we show that

∂

∂x
Ψ̃0(x, z, t) > 0 and

∂

∂z
Ψ̃0(x, z, t) > 0 ∀(x, z, t) ∈ R3.

Firstly, due to Ψ̃0(0, 0, 0) = θ0 and Ψ̃0(x, z, t) = Ψ̃0(x, z, t+T ) for all (x, z, t) ∈ R3, we
have that it is impossible that both (∂/∂x)Ψ̃0(x, z, t) ≡ 0 and (∂/∂z)Ψ̃0(x, z, t) ≡ 0
on (x, z, t) ∈ R3. We consider the other two cases:

(1)
∂

∂x
Ψ̃0(x, z, t) 
≡ 0 and

∂

∂z
Ψ̃0(x, z, t) ≡ 0 on (x, z, t) ∈ R3,

(2)
∂

∂x
Ψ̃0(x, z, t) ≡ 0 and

∂

∂z
Ψ̃0(x, z, t) 
≡ 0 on (x, z, t) ∈ R3.

Assume that (∂/∂x)Ψ̃0(x, z, t) 
≡ 0 and (∂/∂z)Ψ̃0(x, z, t) ≡ 0 on (x, z, t) ∈ R3.
Then we have (∂/∂x)Ψ̃0(x, z, t) > 0 on (x, z, t) ∈ R3 due to the parabolic maximum
principle (see [33]). Denote Ψ̃0(x, z, t) by Ψ̃0(x, t). Then we have

∂

∂t
Ψ̃0(x, t) =

∂2

∂x2 Ψ̃0(x, t) + f(Ψ̃0(x, t), t),

Ψ̃0(0, 0) = θ0,
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for any (x, t) ∈ R2. Since (∂/∂x)Ψ̃0(x, t) > 0 on (x, t) ∈ R2, there exist two
T -periodic functions W̃±(t) ∈ C1(R, R) such that

W̃±(t) = lim
x→±∞

Ψ̃0(x, t), t ∈ R,

d
dt

W̃±(t) = f(W̃±(t), t), t ∈ R,

and
W̃−(0) < θ0 < W̃+(0).

Following assumption (H1), we have either W̃−(t) = W−(t) and W̃+(t) = W+(t),
or W̃−(t) = W−(t) and W̃+(t) = W 0(t), which implies that Ψ̃0(x, t) is a time-
periodic travelling wave solution of (1.1) with wave speed c = 0 either connect-
ing two periodic solutions W−(t) and W+(t) or connecting two periodic solutions
W−(t) and W 0(t). As discussed in lemma 3.3, they are all impossible. Therefore,
we can rule out the case that (∂/∂x)Ψ̃0(x, z, t) 
≡ 0 and (∂/∂z)Ψ̃0(x, z, t) ≡ 0 on
(x, z, t) ∈ R3.

Assume that (∂/∂x)Ψ̃0(x, z, t) ≡ 0 and (∂/∂z)Ψ̃0(x, z, t) 
≡ 0 on (x, z, t) ∈ R3. We
have (∂/∂z)Ψ̃0(x, z, t) > 0 on (x, z, t) ∈ R3 due to the parabolic maximum principle
(see [33]). Denote Ψ̃0(x, z, t) by Ψ̃0(z, t). We then have

∂

∂t
Ψ̃0(z, t) =

∂2

∂z2 Ψ̃0(z, t) − s
∂

∂z
Ψ̃0(z, t) + f(Ψ̃0(z, t), t),

Ψ̃0(0, 0) = θ0,

for any (z, t) ∈ R2. Since (∂/∂z)Ψ̃0(z, t) > 0 on (z, t) ∈ R2, there exist two
T -periodic functions Ŵ±(t) ∈ C1(R, R) such that

Ŵ±(t) = lim
z→±∞

Ψ̂0(z, t), t ∈ R,

d
dt

W̃±(t) = f(W̃±(t), t), t ∈ R,

and
W̃−(0) < θ0 < W̃+(0).

Following assumption (H1), we have either W̃−(t) = W−(t) and W̃+(t) = W+(t)
or W̃−(t) = W−(t) and W̃+(t) = W 0(t), which implies that Ψ̃0(z, t) is a periodic
travelling wave solution of (1.1) with wave speed s > c > 0 either connecting two
periodic solutions W−(t) and W+(t) or connecting two periodic solutions W−(t)
and W 0(t). As discussed in lemma 3.3, they are impossible. Therefore, we can rule
out the case that (∂/∂x)Ψ̃0(x, z, t) ≡ 0 and (∂/∂z)Ψ̃0(x, z, t) 
≡ 0 on (x, z, t) ∈ R3.

Consequently, we have

∂

∂x
Ψ̃0(x, z, t) 
≡ 0 and

∂

∂z
Ψ̃0(x, z, t) 
≡ 0

on (x, z, t) ∈ R3. Using the parabolic maximum principle (see [33]) yields

∂

∂x
Ψ̃0(x, z, t) > 0 and

∂

∂z
Ψ̃0(x, z, t) > 0 ∀(x, z, t) ∈ R3.
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Let
lim

z→−∞
Ψ̃0(x, z, t) = Ψ̃−

0 (x, t) for any fixed (x, t) ∈ R2.

We then have
∂

∂t
Ψ̃−

0 (x, t) =
∂2

∂x2 Ψ̃−
0 (x, t) + f(Ψ̃−

0 (x, t), t)

and

Ψ̃−
0 (0, 0) < θ0,

∂

∂x
Ψ̃−

0 (x, t) � 0.

Similar to the argument above, we have that

Ψ̃−
0 (x, t) ≡ W−(t) for any fixed (x, t) ∈ R2.

Define a function �(x) on x ∈ R by Ψ̃0(x, �(x), 0) = θ0. Due to the strict mono-
tonicity of Ψ̃0(x, z, 0) on x and z, the function �(x) is strictly decreasing. In partic-
ular, �(0) = 0. Since

lim inf
ρ→∞

φ(ρ)
ρ

= −τ and lim
i→∞

φ(ρi)
ρi

= −τ,

it follows from the definition of the function Ψ̃0(x, z, t) that limi→∞(φ(x + ρi) −
φ(ρi)) = �(x) for any x ∈ R and �(x) � −τx for any x � 0 (see [41, p. 1035]). Take
z∗ > 0 large enough so that U((c/s)z∗, 0) + δ∗ � α+. Consequently, we obtain

Ψ̃0(x, z, 0) � U

(
c

s∗
(z + z∗ + τ |x|), 0

)
+ δ∗ � Ṽ (x, z + z∗, 0; s∗) + δ∗ ∀(x, z) ∈ R2,

where Ṽ (x, z, t; s∗) is the two-dimensional V-shaped travelling front defined by the-
orem 2.1 with s̃ = s∗. Using lemma 2.2, we have

Ψ̃0(x, z+st, t) � Ṽ (x, z+z∗+s∗t+σδ∗(1−e−βt), t; s∗)+δ∗a(t) ∀(x, z) ∈ R2, t > 0,

where the positive constants ρ and β, and the function a(t) are defined in lemma 2.2.
Keeping z + skT = 0 and x = 0 and letting t = kT → +∞, we have Ψ̃0(0, 0, 0) =
W−(0) = α−, which contradicts the fact Ψ̃0(0, 0, 0) = θ0 > α−. This completes the
proof.

Following the above discussion, we have 0 � φ′(ρ) � −m∗ for any ρ > 0 and

lim inf
ρ→∞

∫ ρ

0
φ′(r) dr = −m∗.

Following from [41, p. 1036, (32)], we have that there exists an increasing sequence
{ρi} ⊂ (0, +∞) such that

lim
i→∞

ρi = ∞, lim
i→∞

φ′(ρi) = −m∗, sup
i∈N

|ρi+1 − ρi| < ∞.

Let

ν0 :=
1√

1 + m2
∗

(
−1
m∗

)
.
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We then have

lim
i→∞

∂

∂ν0
Ψ(ρ, z, 0)

∣∣∣∣
(ρ,z)=(ρi,φ(ρi))

= 0.

Following from theorem 3.6, we have

∂

∂ν0
Ψ(ρ, z, 0) > 0 for all ρ � 0 and z ∈ R.

Direct calculations yield(
∂

∂t
− ∂2

∂ρ2 − ∂2

∂z2 − 1
ρ

∂

∂ρ
+ s

∂

∂z
− fu(Ψ, t)

)
∂

∂ν0
Ψ =

1
ρ2 Ψρ > 0 (3.18)

for any ρ > 0, z ∈ R and t ∈ R. Applying lemma 3.7 to (3.18), we have that for
any given r > 1 there exist positive constants p > 0 and C ′ > 0 such that∥∥∥∥ ∂

∂ν0
Ψ

∥∥∥∥
Lp(B((ρi,φ(ρi));r)×(0,T ))

� C ′ inf
B((ρi,φ(ρi));r)×(2T,3T )

∂

∂ν0
Ψ(ρ, z, t)

� C ′ ∂

∂ν0
Ψ(ρi, φ(ρi), 0)

→ 0 as i → ∞.

Due to the fact that supi∈N |ρi+1 − ρi| < ∞, taking r > 1 large enough we obtain

lim
ρ→∞

∥∥∥∥ ∂

∂ν0
Ψ

∥∥∥∥
Lp(B((ρ,φ(ρ));r)×(0,T ))

= 0 (3.19)

for any r > 1 with some p > 0.

Lemma 3.10. One has

lim
ρ→∞

φ′(ρ) = −m∗,

lim
ρ→∞

Ψρ(ρ, φ(ρ), 0) =
cm∗
s

Uη(0, 0),

lim
ρ→∞

Ψz(ρ, φ(ρ), 0) =
c

s
Uη(0, 0)

and

lim
ρ→∞

Ψ(ρ + x, φ(ρ) + z, t) = U

(
s

c
(z + m∗x), t

)
in C2,1

loc (R2 × R).

Proof. For ρ > 0 we define (ξ, η) ∈ R2 by

(
x − ρ

z − φ(ρ)

)
= ξ

⎛
⎜⎜⎝

−1√
1 + m2

∗
m∗√

1 + m2
∗

⎞
⎟⎟⎠ + η

⎛
⎜⎜⎝

m∗√
1 + m2

∗
1√

1 + m2
∗

⎞
⎟⎟⎠ .

In view of (3.16), for any increasing positive sequence {σi} with σi → ∞ as i → ∞
there exists a subsequence (still denoted by {σi}, without loss of generality) such
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that there exists a function Ũ(ξ, η, t) ∈ C2,1(R2 × R) satisfying

lim
i→∞

∥∥∥∥Ũ(ξ, η, t) − Ψ

(
σi +

−ξ + m∗η√
1 + m2

∗
, φ(σi) +

m∗ξ + η√
1 + m2

∗
, t

)∥∥∥∥
C2,1

loc (R2×R)
= 0.

We then have

∂

∂t
Ũ =

∂2

∂ξ2 Ũ +
∂2

∂η2 Ũ − c
∂

∂η
Ũ + f(Ũ(ξ, η, t), t) ∀(ξ, η, t) ∈ R3.

Here we claim that (∂/∂ξ)Ũ(ξ, η, t) ≡ 0 in R3. Otherwise, suppose that

∂

∂ξ
Ũ(ξ, η, t) � 0 and

∂

∂ξ
Ũ(ξ, η, t) 
≡ 0 in R3.

Using the parabolic maximum principle (see [33]) yields that (∂/∂ξ)Ũ(ξ, η, t) > 0
for all (ξ, η, t) ∈ R3. We then have∥∥∥∥ ∂

∂ξ
Ũ

∥∥∥∥
Lp(B((0,0);1)×(0,T ))

> ς,

where ς > 0 is a constant and p is given in (3.19). Since

lim
i→∞

∥∥∥∥ ∂

∂ξ
Ũ(ξ, η, t) − ∂

∂ν0
Ψ

(
σi +

−ξ + m∗η√
1 + m2

∗
, φ(σi) +

m∗ξ + η√
1 + m2

∗
, t

)∥∥∥∥
Cloc(R2×R)

= 0,

there exists I ∈ N such that∥∥∥∥ ∂

∂ν0
Ψ

(
σi +

−ξ + m∗η√
1 + m2

∗
, φ(σi) +

m∗ξ + η√
1 + m2

∗
, t

)∥∥∥∥
Lp(B((0,0);1)×(0,T ))

> 1
2 ς > 0

for any i > I. However, this contradicts (3.19). This implies that Ũ is independent
of ξ and that (∂/∂ξ)Ũ(ξ, η, t) ≡ 0 in R3.

Still denote Ũ(ξ, η, t) by Ũ(η, t). Consequently, we have

∂

∂t
Ũ =

∂2

∂η2 Ũ − c
∂

∂η
Ũ + f(Ũ(η, t), t) ∀(η, t) ∈ R2

and
Ũ(0, 0) = θ0 ∈ (α−, α0),

∂

∂η
Ũ(η, t) � 0 for any (η, t) ∈ R2.

Similar to the arguments in § 3.1, we have that (∂/∂η)Ũ(η, t) > 0 for all (η, t) ∈ R2

and limη→± Ũ(η, t) = W±(t). In particular, we have Ũ(·, · + T ) = Ũ(·, ·). Then the
uniqueness of the one-dimensional travelling front gives Ũ(·, ·) ≡ U(·, ·). Following
the arbitrariness of the sequence of σi, we conclude that

lim
ρ→∞

∥∥∥∥U(η, t) − Ψ

(
ρ +

−ξ + m∗η√
1 + m2

∗
, φ(ρ) +

m∗ξ + η√
1 + m2

∗
, t

)∥∥∥∥
C2,1

loc (R2×R)
= 0. (3.20)

This furthermore implies that

lim
ρ→∞

Ψ(ρ + x, φ(ρ) + z, t) = U

(
s

c
(z + m∗x), t

)
in C2,1

loc (R2 × R).
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Finally, we show that limρ→∞ φ′(ρ) = −m∗. Following from (3.20), we have that

lim
ρ→∞

(−Ψρ(ρ, φ(ρ), 0) + m∗Ψz(ρ, φ(ρ), 0)) = 0

and

lim
ρ→∞

(m∗Ψρ(ρ, φ(ρ), 0) + Ψz(ρ, φ(ρ), 0)) =
s

c
Uη(0, 0) > 0.

Hence, we obtain that

lim
ρ→∞

Ψρ(ρ, φ(ρ), 0) =
cm∗
s

Uη(0, 0),

lim
ρ→∞

Ψz(ρ, φ(ρ), 0) =
c

s
Uη(0, 0)

and

lim
ρ→∞

φ′(ρ) = − lim
ρ→∞

Ψρ(ρ, φ(ρ), 0)
Ψz(ρ, φ(ρ), 0)

= −m∗.

This completes the proof.

3.3. Non-existence of cylindrically symmetric travelling fronts

In this section we prove theorems 1.4 and 1.5, which imply the non-existence of
cylindrically symmetric travelling fronts. Here we give only the proof of theorem 1.4.
Theorem 1.5 can be proved similarly. In addition, we only consider the case in which
m = 3.

Proof of theorem 1.4. . We prove it by way of a contradiction argument. Contrary
to the statement of theorem 1.4, we assume that for s > c > 0 there exists a
cylindrically symmetric travelling front W (x, t) satisfying

∂

∂t
W = ∆W − s

∂

∂x3
W + f(W, t) ∀(x, t) ∈ R3 × R,

W (x, t + T ) = W (x, t) ∀(x, t) ∈ R3 × R,

lim
x3→±∞

W (0, x3, t) = W±(t) uniformly in t ∈ R

and

∂

∂x3
W (x, t) � 0,

∂2

∂x2
i

W (x, t)
∣∣∣∣
x′=0

� 0, i = 1, 2.

Let Ũ(x3, t) = W (0, 0, x3, t) for any (x3, t) ∈ R2. Then we have

∂

∂t
Ũ(x3, t) − ∂2

∂x2
3
Ũ(x3, t) + s

∂

∂x3
Ũ(x3, t) − f(Ũ(x3, t), t)

=
∂2

∂x2
1
W (x, t)

∣∣∣∣
x1=x2=0

+
∂2

∂x2
2
W (x, t)

∣∣∣∣
x1=x2=0

� 0,

which implies that u−(x, t) = Ũ(x+st, t) is a subsolution of the following equation:

∂

∂t
u(x, t) =

∂2

∂x2 u(x, t) + f(u(x, t), t), x ∈ R, t > 0. (3.21)
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On the other hand, following [43, lemma 4.2] (see also [34,35]), we obtain that the
function

u+(x, t) = U(x + ct + ξ+ + σδ(1 − e−βt), t) + δa(t)

is a supersolution of (3.21), where σ, δ, β are appropriate positive constants, a(t)
is defined in lemma 2.2 and ξ+ ∈ R is an arbitrary number. In view of

u+(x, 0) = U(x + ξ+, 0) + δ, u−(−∞, 0) = α− and u−(+∞, 0) = α+,

there exists a sufficiently large ξ+ > 0 such that

u−(x, 0) � u+(x, 0) ∀x ∈ R.

Applying the comparison principle (see [5, theorem 25.6]), we have

Ũ(x + st, t) = u−(x, t) � u+(x, t) ∀x ∈ R, t > 0.

Note that s > c. It follows that

α− < Ũ(0, 0) = u−(−skT, kT )

� u+(−skT, kT )

= U((c − s)kT + ξ+ + ρδ(1 − e−βkT ), kT ) + δa(kT )

→ α− as k → +∞,

which is a contradiction. This completes the proof of theorem 1.4.

Remark 3.11. Due to theorems 3.1, 3.5 and 3.6, lemma 3.10 and the proof of
theorem 1.4, we have proved theorems 1.1–1.5 for the case in which m = 3. In this
remark we consider the case in which x ∈ Rm (m � 4). Let

hk
i1,i2,...,im−1

(x1, x2, . . . , xm−1)

= m∗

(
x1 cos

(i1 − 1)π
2k−1 + x2 sin

(i1 − 1)π
2k−1 cos

(i2 − 1)π
2k−1

+ x3 sin
(i1 − 1)π

2k−1 sin
(i2 − 1)π

2k−1 cos
(i3 − 1)π

2k−1 + · · ·

+ xm−2 sin
(i1 − 1)π

2k−1 sin
(i2 − 1)π

2k−1 · · · sin (im−3 − 1)π
2k−1 cos

2(im−2 − 1)π
2k

+ xm−1 sin
(i1 − 1)π

2k−1 sin
(i2 − 1)π

2k−1 · · · sin (im−3 − 1)π
2k−1 sin

2(im−2 − 1)π
2k

)

and let

hk(x1, x2, . . . , xm−1) = max
1�i1,...,im−3�2k−1,

1�im−2�2k

hk
i1,i2,...,im−1

(x1, x2, . . . , xm−1),

where k ∈ N. The hyperplane

xm = hk
i1,i2,...,im−1

(x1, x2, . . . , xm−1)

is tangent to the rotating surface

xm = m∗
√

x2
1 + x2

2 + · · · + x2
m−1
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for any k ∈ N, 1 � i1, . . . , im−3 � 2k−1 and 1 � im−2 � 2k. Following from [37,
theorem 5.2], we know that there exists a sequence of periodic pyramidal travelling
fronts of (1.1), namely,

V 1, V 2, . . . , V k, . . . ,

where

V k(x, t) = lim
k→∞

v(x, t + kT ; vk,−), vk,−(x, t) = U

(
c

s
(xm + hk(x′)), t

)
.

In particular, V k(x, t) is even on xi (1 � i � m − 1), increasing in xi ∈ (0, +∞)
(1 � i � m − 1) and increasing in xm ∈ R. In particular, (∂/∂ν)V k(x, t) > 0 for
x ∈ Rm, where

ν =
1√

1 + ν2
1 + ν2

2 + · · · + ν2
m−1

(ν1, ν2, . . . , νm−1, 1)

satisfies
√

ν2
1 + ν2

2 + · · · + ν2
m−1 � 1/m∗. Using arguments similar to those in the

R3 case, we can easily show that theorems 1.1–1.5 hold in x ∈ Rm (m � 4).
For the case in which m = 2, combining the proof of [43] and the previous

arguments for the case in which m = 3, we have that theorems 1.1–1.5 remain valid
for two-dimensional V-shaped travelling fronts Ṽ defined in theorem 2.1 in R2.

4. Cylindrically symmetric travelling fronts when c = 0

In this section we show the existence of time-periodic cylindrically symmetric trav-
elling fronts of (1.1) in Rm (m � 2) when the planar wave speed c = 0, namely, we
prove theorem 1.6. In the following we only consider the case in which m = 3, the
proofs for m = 2 and m � 4 are similar and we omit them. The main method is to
take the limit of a sequence of cylindrically symmetric travelling fronts with planar
wave speeds cn > 0.

Assume that assumption (H5) holds. Fix s > 0. Consequently, for any δ > 0, due
to cn → 0, we have that there exists N ∈ N such that 0 < cn < s for any n > N .
Without loss of generality, we assume that 0 < cn < s for n ∈ N. By theorem 3.1, we
have that there exists Wn(x, t) ∈ C2,1(R3 × R) satisfying Wn(x, t + T ) = Wn(x, t)
and

∂

∂t
Wn(x, t) = ∆Wn(x, t) − s

∂

∂x3
Wn(x, t) + fn(Wn(x, t), t)

for any (x, t) ∈ R3 × R. In addition, one has:

(i) Wn(0, 0) = θn :=
α−

n + α0
n

2
;

(ii) Wn(x′
1, x3, t) = Wn(x′

2, x3, t) for all x′
1,x

′
2 ∈ R2 with |x′

1| = |x′
2|, x3 ∈ R,

t ∈ R;

(iii)
∂

∂x3
Wn(x, t) > 0 for any x ∈ R3 and t ∈ R;

(iv)
∂

∂xi
Wn(x, t) > 0 for xi ∈ (0,∞), xj ∈ R, x3 ∈ R and t ∈ R, i, j = 1, 2, i 
= j;
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(v) we have that

lim
x3→∞

‖Wn(·, x3, t) − W+
n (t)‖C(R2) = 0

and

lim
x3→−∞

‖Wn(·, x3, t) − W−
n (t)‖Cloc(R2) = 0

uniformly on t ∈ R.

In view of assumption (H5), especially,

lim
n→∞

‖fn(·, ·) − f(·, ·)‖C1([−M,M ]×[0,T ]) = 0,

and the fact that −M � W−
n (t) � Wn(x, t) � W+

n (t) � M for any (x, t) ∈ R3 × R
(see (1.6) for the definition of the constant M), by an argument similar to that of
Wang et al . [44, proposition 4.3], we have that there exists a positive constant K ′′

1
such that

‖Wn(·, t)‖C1(R3) � K ′′
1 ∀n ∈ N, t ∈ [T, 2T ].

Since we have that Wn(x, t + T ) = Wn(x, t) for any (x, t) ∈ R3 × R, we have
‖Wn(·, t)‖C1(R3) � K ′′

1 for any n ∈ N and t ∈ R. Consequently, applying [27, theo-
rems 5.1.3 and 5.1.4] and using the assumption

lim
n→∞

‖fn(·, ·) − f(·, ·)‖C1([−M,M ]×[0,T ]) = 0,

we have that there exists a positive constant K ′′ > 0 such that

‖Wn(·, ·)‖C2+α,1+α/2(R3×R) < K ′′ ∀n ∈ N,

where α ∈ (0, 1) is a constant. It follows that there exists a function W0(x, t) ∈
C2,1(R3 × R) (up to extraction of a subsequence if necessary) satisfying

‖W0(x, t) − Wn(x, t)‖C2,1
loc (R3×R) = 0 as n → ∞.

Following the properties satisfied by Wn(x, t), we conclude that W0(x, t) satisfies
the following.

(I) For any x ∈ R3 and t ∈ R there holds W0(x, t) = W0(x, t + T ) and

∂

∂t
W0(x, t) = ∆W0(x, t) − s

∂

∂x3
W0(x, t) + f(W0(x, t), t).

(II) W0(0, 0) = θ0 :=
α− + α0

2
.

(III) W0(x′
1, x3, t) = W0(x′

2, x3, t) for all x′
1,x

′
2 ∈ R2 with |x′

1| = |x′
2|, x3 ∈ R,

t ∈ R.

(IV)
∂

∂x3
W0(x, t) � 0 for any x ∈ R3 and t ∈ R.

(V)
∂

∂xi
W0(x, t) � 0 for xi ∈ (0,∞), xj ∈ R, x3 ∈ R and t ∈ R, i, j = 1, 2, i 
= j.
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Now using arguments similar to those in § 3, we can prove that the function W0(x, t)
satisfies the conclusions in theorem 1.6 in x ∈ R3. This completes the proof of
theorem 1.6.

5. Discussion

In this paper we have established the existence and non-existence of time-periodic
cylindrically symmetric travelling fronts of (1.1) with time-periodic nonlinearity in
x ∈ Rm (m � 2) for both of the cases c > 0 and c = 0; see theorems 1.1 and 1.3–1.6.
For the case in which c > 0, we have also established the asymptotic behaviour of the
level set of cylindrically symmetric travelling fronts; see theorem 1.2. Furthermore,
it is worth mentioning that when c � 0, the existence of time-periodic cylindrically
symmetric travelling fronts of (1.1) with wave speed s < c in x ∈ Rm (m � 2) can
also be obtained by an argument similar to that in [43, theorem 1.2].

However, the property and shape of level sets of cylindrically symmetric travelling
fronts of (1.1) with time-periodic nonlinearity when c = 0 remain open. As pointed
out in the introduction, the level set and uniqueness of cylindrically symmetric trav-
elling fronts of autonomous scalar equations with balanced nonlinearity (namely,
c = 0 and f(u, t) = f(u) in (1.1)) have been studied by Chen et al . [4] and Gui [10],
respectively, where the variational method was used. However, due to the influence
of time heterogeneity, it seems a difficult problem to study the level set and unique-
ness of time-periodic cylindrically symmetric travelling fronts of (1.1) when c = 0.
In addition, Del Pino et al . [6] have found some new types of multi-dimensional
travelling wave solutions for the Allen–Cahn equation with balanced nonlinearity
(namely, f(u) = u(1 − u2) in (1.1)). Naturally, it is very interesting to find similar
travelling wave solutions for a time heterogeneous (1.1) when c = 0. A simple and
interesting problem is to consider the nonlinearity f(u, t) = (1 − u2)(2u − ρ(t)),
where ρ(t) ∈ (−2, 2) is T -periodic and satisfies

∫ T

0 ρ(t) dt = 0.
Besides the problems mentioned above, the stability of cylindrically symmetric

travelling fronts of (1.1) is also a very important topic and remains open.
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