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Suppose a binary string x = x1 · · · xn is being broadcast repeatedly over a faulty communic-

ation channel. Each time, the channel delivers a fixed number m of the digits (m < n) with

the lost digits chosen uniformly at random and the order of the surviving digits preserved.

How large does m have to be to reconstruct the message?
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1. Introduction

A binary deletion channel is a communication device that accepts a sequence of n binary

digits. Each digit is lost in transmission with probability p. The order of the surviving

digits is preserved, but the output does not indicate the original location of those digits.

The number of digits in the output binary string thus follows the Binomial(n, 1 − p)

distribution.

There are two main questions associated with binary deletion channels; see [3] for a

survey. First, can deletion channels be used to transmit information efficiently using some

encoding scheme? Unlike binary symmetric channels and binary erasure channels, the

exact information carrying capacity of the binary deletion channel is unknown. A lower

bound on the information carrying capacity of the channel is (1 − p)/9 [1].

The other question concerns the reconstructability of the original message when it is

transmitted across the deletion channel a number of times. This question is motivated in

part by the task of sequencing DNA strands. Let x ∈ {0, 1}n denote the message being

transmitted. If x is chosen uniformly at random, and if p is sufficiently small, then x

can be identified with high probability by looking at a polynomial number of samples

from the deletion channel [2]. When p is large, exp(O(
√
n log n)) samples are sufficient for

reconstructing any x.
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To study the situation when p tends to 1, we will consider an alternative definition for

the binary deletion channel. Rather than varying p, we will condition on the number of

digits m in the output. This is equivalent to choosing m digits uniformly at random from

the input digits; the value of p no longer matters. Our alternative definition is inspired

by the difference between the two formulations G(n, m) and G(n, p) of the Erdős–Rényi

random graph: G(n, m) has a fixed number of edges while the number of edges under

G(n, p) has the Binomial(
(
n
2

)
, p) distribution.

By fixing the number of deletions, we remove the option of sending x through the

deletion channel again and again until eventually none of the digits are deleted. It is

therefore no longer clear that x can be reconstructed by studying the deletion channel

output.

2. The (m, n)-deletion channel

Let P (m, x) denote the probability distribution on {0, 1}m generated by picking 1 � i1 <

· · · < im � n uniformly at random and returning the sequence y := xi1 · · · xim .

Definition. Let R(m, n) denote the statement

for x ∈ {0, 1}n: the map x → P (m, x) is one-to-one.

If R(m, n) holds then x can be determined by sampling repeatedly from P (m, x). If not,

there is a pair of length-n binary strings that cannot be distinguished over an (m, n)-deletion

channel, no matter how many times you sample.

Definition. Let Nm := sup{n : R(m, n)} denote the upper bound on the length of messages

an (m, · )-deletion channel can convey.

Remark. The first few terms of the sequence (Nm) are

N1 = 1, N2 = 3, N3 = 6, N4 = 11, N5 = 15, N6 = 29, . . . .

The sequence appears to be growing exponentially. Equivalently, it seems that the elements

of {0, 1}n can be distinguished using a (O(log n), n)-deletion channel. This is perhaps

unsurprising, given the high-dimensional nature of the P (m, x) probability distributions.

Checking that R(m,Nm) holds for m � 6 was achieved by direct calculation. The difficulty

of checking R(m, n) grows very rapidly with m and n. For each x ∈ {0, 1}n, a 2m-dimensional

vector representing P (m, x) has to be calculated. The set of 2n vectors then has to be

searched for duplicates.

To demonstrate that R(m,Nm + 1) is false, we must provide a pair of binary sequences

of length Nm + 1 that produce a P (m, ·) collision. Let ba denote a copies of b, i.e., 02 ≡ 00

and 13 ≡ 111. For m ∈ {1, 2, . . . , 6}, examples of pairs of strings of length Nm + 1 that
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produce a collision are:

01 ≡ 0111 and 1101 ≡ 10,

0110 ≡ 011201 and 110211 ≡ 1001,

01120311 and 11031201,

01120311021201 and 11031101120311,

011205130411 and 110413051201,

0112051304110313051201 and 1104130511011205130411.

We have not managed to find N7 and N8; without some theoretical advance they are

computationally intractable. However, we have established the upper bounds N7 < 54 and

N8 < 106. The bounds follow by checking that

P (7,0112051304110313051201120512011105130411) =

P (7,1104130511011205120112051303110413051201)

and

P (8,01120513041103130512011205120111051304 �

�1103130511011205120112051303110413051201) =

P (8,11041305110112051201120513031104130511 �

�0112051304110313051201120512011105130411).

These binary strings were found by experimentally concatenating long substrings of the

strings that form P (6, 30)-collisions. Extrapolating from a dangerously small amount of

data, these bounds appear to be the right order of magnitude.

We also have an upper bound on the whole sequence (Nm). It is growing no more

quickly than exponentially.

Theorem 2.1. For some constant C , Nm � Cm.

Proof. If x ∈ {0, 1}n, the probability distributions P (m, x) is characterized by the probab-

ility of seeing each of the 2m elements of {0, 1}m. The probability of seeing any particular

element of {0, 1}m is a multiple of 1/
(
n
m

)
. The pigeonhole principle implies that R(m, n)

can only hold if ((
n

m

)
+ 1

)2m

� 2n. (2.1)

Set n = Cm, take logs and use the inequality
(
n
m

)
+ 1 � 2nm. Inequality (2.1) holds only if

2m(1 + m2 log2 C) � Cm.

Clearly R(m,Cm) cannot hold if C is sufficiently large.

Finding good lower bounds for (Nm) seems much more difficult. We will only prove a

linear bound.
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Theorem 2.2. Nm � 2m − 1 for m � 3.

Proof of Theorem 2.2. We will show that x ∈ {0, 1}2m−1 can be identified using P (m, x).

Note that for j � m, we can deduce P (j, x) from P (m, x) using a second deletion channel

which discards m − j of its input digits.

Let k denote the number of ones in x: k is simply 2m − 1 times the probability of 1

under P (1, x). By symmetry we can assume k < m. The string x can be written as k + 1

runs of zeros separated by the k ones. Let i(0), i(1), . . . , i(k) � 0 denote the length of the

runs of zeros, i.e.,

x = 0i(0)110i(1)11 · · · 110i(k).

The i(j) are determined by the probabilities under P (k + 1, x) of the k + 1 strings

containing a single zero and k ones:

the probability of 1j011(k−j) under P (k + 1, x) is
i(j)(
2m−1
k+1

) .

3. Conclusions

We have introduced an alternative model for deletion channels; it has a non-trivial

reconstructability problem. We have explored the space of ‘hardest-to-transmit’ binary

sequences to find Nm for m small. We have also found bounds on Nm for general m.

We conjecture that (Nm) grows exponentially.
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