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Abstract

A forecast of an earthquake should identify the first stages of
earthquake development: nucleation and stick-slip. We show
that a forecast cannot be achieved by seismic measurements
due to their high attenuation, but can be obtained by judicial
filtering of electromagnetic radiation. Results show that elec-
tromagnetic radiation emitted from fractures (FEMR) during
the early stages of an earthquake is less attenuated than seis-
mic measurements due to the high frequencies involved, but
could be cluttered by external noise. Based on our previous
studies, an analysis of FEMR constructed on a profile of in-
dividual pulses can remove part of the clatter.

Keywords: earthquake forecast, seismic emission, electro-
magnetic radiation

1. Introduction

No method of forecasting earthquakes by the commonly
used seismic measurements (SM) has yet been found (Bor-
mann, 2011). The development of an earthquake usually
takes place in three stages (Eftaxias & Potirakis, 2013): nuc-
leation, stick-slip and a final drastic slip movement. At the
nucleation stage, under the increasing stress amplitude, there
appear many tiny fractures in the area around the existing
fault (known as the ‘heterogeneous environment’). Accord-
ing to our model (Rabinovitch, Frid & Bahat, 2007), such
tiny fractures emit high-frequency electromagnetic radiation
(FEMR) pulses (of the order megahertz). Fractures increase
in size progressively (but intermittently) during the stick-slip
stage, when asperities of increasing size and strength are
severed. The increased surface areas liberated give rise to
FEMR pulses of ever-lower frequencies (Rabinovitch, Frid
& Bahat, 2007); the reduction in FEMR frequency from
megahertz to kilohertz may therefore herald the transition
between these stages of the imminent earthquake. During the
following drastic slipping mode of the earthquake, a dilation
gap between the sides of the moving fault is established and
no new surfaces are created (Eftaxias & Potirakis, 2013);
it is expected that hardly any FEMR would be observed at
this stage. The sequence of detected FEMR pulse frequen-
cies during an earthquake follows the pattern: (1) multiple
megahertz pulses related to tiny fractures; (2) multiple kilo-
hertz pulses of decreasing frequencies related to larger and
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larger fractures (asperities breaking); such an FEMR pulse
frequency sequence heralds the forthcoming earthquake; and
(3) no FEMR pulses during the final earthquake stages.

The fractures at the early stages of an earthquake, charac-
terized by frequencies of the order megahertz and kilohertz,
cannot be detected by seismic means.

The attenuation of FEMR and seismic waves is treated
individually; in this article, we only consider attenuation of
plane waves. The energy of waves emanating from a con-
fined source decays with distance r as 1/4πr2 as well as the
attenuation of plane waves.

2. FEMR attenuation

The attenuation of electromagnetic waves in any medium
can be theoretically calculated by Maxwell’s equations ap-
plied to the properties of the actual material which, in our
case, are the lithospheric rocks (Zhang & Li, 2007). We
present here a short derivation of this calculation and use it
to obtain the attenuation of dominant lithospheric rock types.

Maxwell’s equations (in MKSA units) are:

∇ · D = ρ

∇xE = −∂B/∂t

∇ · B = 0

∇xH = j + ∂D/∂t

where D is the electric displacement (C m–2), E is the electric
field intensity (V m–1), B is the magnetic induction (T), H is
the magnetic field intensity (A m–1), ρ is the charge density
(C m–3) and j is the electric current density (A m–2).

For a homogeneous isotropic linear medium devoid of free
currents and charges, we have:

D = εE; B = μH; j = ρ = 0

where ε = ε′ + iε
′′
is the complex electrical permittivity, μ is

the magnetic permeability and σ is the conductivity, all of
them being medium properties.

For the type of media described above, we therefore
have:

∇xE = −μ
∂H
∂t

and ∇xH = σE + ε∂E
∂t

.
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Taking the curl of each of the immediately above equa-
tions and inserting it into the other leads to:

∇2E − μσ
∂E
∂t

− με∂2E/∂t2 = 0

and

∇2H − μσ
∂H
∂t

− με∂2H/∂t2 = 0.

For waves for which E and H are defined E0eiωt and
H0eiωt, respectively, where ω = 2πf is the angular velocity, f
is frequency and t is time, we have:

∇2E0 + k2E0 = 0 and ∇2H 0 + k2H 0 = 0 (1)

where k2 is the complex wave number, defined:

k2 = ω2με′ − i (ωμσ + ε′′) . (2)

For a wave which is linearly polarized in the x direction
and moving in the z direction,

E0 = E0e−γzx̂ and H 0 = H0e−γzŷ

where γ = α + iβ = ik; α is the attenuation constant; β is
the phase constant; and x̂ and ŷ are unit vectors in the x and
y directions.

We assume (Korpisalo, 2014) that the polarization loss is
small and conductivity is not negligible. We also assume that
ωμσ >> ε′ ′, and henceforth substitute ε for ε′.

Using Equations (1) and (2), the attenuation coefficient α
(m–1) is:

α = ω
√

με/2

(√
1 +

( σ

ωε

)2
− 1

)1/2

. (3)

The permittivity, permeability and conductivity of the
rocks where the most abundant earthquakes occur are given
in Table 1 (Telford, Geldart & Sheriff, 1990). Note that
μ = μ0(1+χ), where χ is the dimensionless magnetic sus-
ceptibility and μ0 = 4π×10−7 H m–1 is the permeability of
free space, and ε = ε0εr, where εr is the dimensionless dielec-
tric constant and ε0 = 8.84×10−12 F m–1 is the permittivity
of free space.

Table 1. Typical rock electrical parameters (Telford, Geldart &
Sheriff, 1990)

Magnetic
susceptibility Resistivity Dielectric

χ (×103) (� m) constant εr

Sandstone 0–20 1–(6.4×108) 4.7–12
Granite 0–50 (4.5×103)–(1.3×106) 4.8–18.9
Basalt 0.2–175 10–(1.3×108) 12
Peridotite 90–200 (4.4×103)–(1×1010) 8.6

3. Acoustic emission attenuation

Attenuation of acoustic (seismic) emission (AE) in the
Earth’s crust, a function of distance (r) and frequency (f), is
assumed to be conducted (Johnston, Toksöz & Timur, 1979;
Menke, Levin & Sethi, 1995) under conditions of constant
Q (s) (a rock-dependent property), at least for frequencies
above 1–10 Hz and for dry rock. The amplitude A of the AE
at a distance r from a plane-wave source of amplitude A0 is
defined:

A ( f , r) = A0 exp (−α f r) (4)

where α (m−1) is defined as π/Qv and v (m s–1) is the acoustic
wave velocity (which is approximately a constant for either
P- or S-waves). For a constant Q (s), α is therefore also a
constant.

In the case of a concentrated source this amplitude is also
proportional to 1/r since, as mentioned above, the energy
which is proportional to A2 decays as 1/4πr2.

For liquid-saturated rocks, the use of the ‘wave-induced
fluid flow’(WIFF) theoretical approach (Solazzi et al. 2016)
is usually applied to calculate AE attenuation. These calcula-
tions are also authenticated by experimental measurements.
For such materials, 1/Q is no longer a constant. It changes
as a function of frequency, showing a high peak at a spe-
cific wave frequency and decaying rapidly at both low and
high wave frequencies. Regardless, attenuation for wet rocks
is much higher than that for dry rocks; since it is presently
shown that attenuation is already too great for the detection

Figure 1. Attenuations (scaled amplitudes v. distance in m) of plane waves of FEMR as functions of frequency. Blue: sandstone; red:
granite; green: basalt. Full line: 1 kHz; dashed line: 10 kHz; dot-dashed: 100 kHz; dashed-dot-dot-dashed: 1 MHz; extended dashed:
10 MHz. All attenuations are for averaged rock parameters. Extended attenuation figures for numerous EM parameters are included
in the additional material to this paper (see online Supplementary Figs S2, S3, available at http://journals.cambridge.org/geo).
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of seismic waves of high frequencies at longer distances, we
consider here dry rocks only.

In order to derive physical values for the constant α, we
make use of two different experimental results for two dif-
ferent rocks as follows. (1) Seismic measurements of several
rather low frequencies were detected at specific distances
from the centre of the Ladakh–Karakoram earthquake (Rai,
Padhi & Sarma, 2009). A modified figure 4 of Rai, Padhi &
Sarma (2009) is shown here as online Supplementary Figure
S1 (available at http://journals.cambridge.org/geo). Using
this figure, we obtain α = 3×10–6 m–1. (2) For Navajo Sand-
stone at room temperature (porosity 12.5; Toksöz, John-
ston & Timur, (1979; see Table 1), for plane P-waves we
have v = 4250 m s–1 and Q = 7.3 s; we therefore have
α = 1.02×10–4 m–1 and Equation (4) becomes:

A = A0 exp
(

−π f r
vQ

)
= A0exp

(−1.02x10−4 f r
)
,

where f is the frequency (Hz) and r is the distance (m).

Figure 2. Attenuations (scaled amplitudes v. distance in m) of
plane waves of AE as functions of frequency. Note the different
scale from Figure 1. Red: sandstone; blue: granite. Full line:
1 kHz; dashed: 10 kHz; dot-dashed: 100 kHz; dashed-dot-dot-
dashed: 1 MHz.

The above results show that: (1) although in some rocks
the attenuation of FEMR can be too high and may obscure
the detection of high-frequency pulses at convenient dis-
tances from an EQ source, it was demonstrated (Fig. 1) that
these pulses would generally arrive at the measuring device;
and (2) on the other hand, AE (seismic) waves at frequencies
of the order kilohertz and megahertz (Fig. 2) will not be able
to reach such distances due to their higher attenuation.

4. FEMR noise reduction

The main problem in detecting FEMR is the noise level
of electromagnetic radiation from possibly many different
sources. These obviously clutter the FEMR signal, making
it sometimes impossible to detect. Based on our previous
studies (see Appendix part A for a brief description of the
measuring process), we suggest a method by which FEMR
emitted by fracturing could be discerned from EMR emitted
by other causes. As a result of these studies, we have estab-
lished both experimentally and theoretically (Rabinovitch,
Frid & Bahat, 2007) the structure of an FEMR pulse which
is emitted from an evolving crack. Figure 3 depicts such a
pulse, the amplitude of which first increases exponentially
for a certain time (T – t0, where T and t0 are the times
to the pulse envelope maximum and pulse origin, respect-
ively) and then decays exponentially to zero. The main part

Figure 3. The standard shape of an FEMR pulse. T–t0, time of
amplitude increase; ω, frequency.

is oscillatory with a specific frequency. We have shown that
the increasing-amplitude time depends on the crack length
and the frequency depends on the crack width. It was also
demonstrated (Rabinovitch et al. 2000; Rabinovitch, Bahat
& Frid, 2002) that this shape is invariant to the fracture mode
(tension, compression and shear) and to the loading mode
(quasi-static and dynamic, e.g. drilling and quarry blast-
ing). Fracture-initiated EM radiation is therefore composed
of (multiple) single pulses of a specific shape, while EM ra-
diation from other sources (e.g. radio waves, electronic ma-
chines) are usually continuous in time and/or do not follow
the shape of Figure 3. We therefore suggest that the field-
measured FEMR oscillations should be spread out in time
until individual pulses can clearly be discerned; only if their
emerging shapes resemble that depicted in Figure 3 should
they be considered as originating from fractures and pos-
sibly related to the precursors of an earthquake. A method
of analysing a single pulse to extract its specific paramet-
ers is presented in the Appendix (part B), and applied to an
experimental example. For a case where multiple pulses co-
exist, we refer the interested reader to our papers on FEMR
measured from a quarry explosion (Rabinovitch, Bahat &
Frid, 2002; Goldbaum et al. 2003) in which a mathematical
method was developed to distinguish individual pulses from
overlapping pulses. In addition, experience in FEMR invest-
igations in underground conditions indicates that additional
noise reduction can be obtained by placing antennae in un-
derground tunnels (Frid & Vozoff, 2005; Wang et al. 2012)
or/and in boreholes (Fujinawa & Takahashi, 1998; Tsutsui,
2014). For a description of such measurements see the Ap-
pendix, part C.

5. Discussion

Attenuation alone is not sufficient to determine the output
of a measuring device; the initial amplitude is also crucial.
It is not easy to assess the amplitudes of either seismic
or electromagnetic signals at their source. A recent paper
(McLaskey & Lockner, 2016) deals with this problem in
relation to seismic (acoustic) signals, and points out the
difficulties encountered in their calibration. For an indic-
ation of these amplitudes, we recall that these come from
the precursor stages of the earthquake and not from the
actual earthquake event when, evidently, amplitudes are
much higher. The cracks during these stages are quite small,
and we can therefore compare their amplitudes to those
obtained in laboratory experiments; for example, signals
of amplitudes of up to 15 mV are measured in fractures in
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granite samples (McLaskey & Lockner, 2016). According to
figure 7 of Rabinovitch, Frid & Bahat (2007) the amplitudes
of the electromagnetic signals measured near the cracks
reach up to 1.5 mV. The amplitude ratio is therefore only of
the order 10 in favour of the AE, which is not high enough
to counteract the attenuation ratios.

Noise, or more accurately disturbances, in FEMR arises
from two sources: man-made and natural. In an interesting
paper by Koulouras et al. (2009), the authors successfully
removed man-made disturbances by measuring earthquake
precursors at several distributed locations and at several fre-
quencies. They differentiated FEMR and VHF EMR emitted
by natural causes by utilizing their fractal properties. We pro-
pose a different approach: noise associated with radiation is
generally a continuous phenomenon, while FEMR is com-
posed of singular pulses of the shape depicted in Figure 3.
Since this shape is unique, identifying it and its paramet-
ers (see Appendix, part B) allows the true identification of
FEMR in contrast to other sources.

Supplementary material

To view supplementary material for this article, please visit
https://doi.org/10.1017/S0016756817000954
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Appendices

Appendix A

The detailed description of the equipment used for our stud-
ies can be found in Rabinovitch, Frid & Bahat (2007). Here we
provide only a brief description of equipment. We used a tri-
axial load frame (TerraTeck stiff press model FX-S-33090, axial
pressure up to 450 MPa and confining pressure up to 70 MPa;
stiffness, 5×109 N m–1). The confining pressure is constantly
controlled by a clock-type sensor and kept constant during the
loading process. The axial load is measured with a sensitive
load cell (LC-222M) (maximum capacity, 220 kN). The canti-
lever set consisting of axial and lateral detectors (strain range,
c. 10) enables us to measure sample strains in three orthogonal
directions parallel to the three principal stresses. FEMR was
measured in the frequency range 1 kHz to 50 MHz with 1 mV
sensitivity throughout by a magnetic one-loop antenna of dia-
meter 3 cm (EHFP-30 near-field probe set, Electro-Metrics Pen-
ril Corporation). It is electrically ‘small’ and exhibits negligible
response to external electric fields. This antenna was connec-
ted via a low-noise micro-signal amplifier (Mitek Corporation
Ltd; frequency range 10 kHz to 500 MHz; gain, 60 ± 0.5 dB)
to a Tektronix TDS 420 digital storage oscilloscope and then,
by way of a general-purpose interface bus, to an IBM personal
computer. The data were analysed after test completion.
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Figure A1. (a) The FEMR pulse obtained in glass ceramic frac-
turing experiment (full line) and the calculated fit by the al-
gorithm (dashed). (b) The absolute value of the pulse.

Appendix B

The shape of an individual FEMR signal, initiating at t = t0, was
determined (e.g. Rabinovitch, Frid & Bahat, 2007) as:

A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bsin (ω(t − t0))
[

1 − exp
(

− t − t0

τ

)]
for t ≤ T

B
[
1−exp

(
−T − t0

τ

)]
sin (ω(t − t0)) exp

[
− t − T

τ

]

for t > T

where A is the current pulse amplitude; B is the (unattained)
maximal amplitude of the ascending pulse; ω is the angular fre-
quency; t is time; t0 is time of pulse origin; T–t0 is the time from
pulse origin up to the (attained) pulse envelope maximum; and
1/τ is the decay constant. In order to extract the signal paramet-
ers, a simple procedure can be followed.

1. Use an FFT of the signal to deduce ω.
2. Focusing on the maxima of the absolute value of the signal,

fit (e.g. by least squares) first the decaying signal part (it usually
contains more points than the ascending part) to C exp[–(t–T)/τ]
to obtain C, T and τ.

3. Focusing on the maxima of the absolute value of the signal,
fit next the ascending part to B{1–exp[–(t–t0)/τ]} to obtain B
and t0, where τ is taken to be the same as that in stage (2).

4. To check the validity of the procedure, compare C with
B×{1–exp[–(T–t0)/τ]}.

Evidently, if the cracked medium properties are known, these
parameter values can be used to estimate the actual fracture
properties (length, width, temperature; e.g. Rabinovitch, Frid &
Bahat, 2007).

Figure A2. The calculated fit of (a) descending and (b) ascend-
ing parts of the FEMR pulse envelope.

As an example, Figure A1a depicts an FEMR pulse (full line)
obtained in a glass ceramic fracturing experiment and the cal-
culated fit by the algorithm (dashed). The absolute value of the
FEMR pulse is given in Figure A1b for the envelope analysis
(items 2 and 3 below):

1. Fast Fourier Transform yields f = 74 550 Hz and hence
ω = 468 175 s–1.

2. Fitting the decaying part (Fig. A2a): C = 0.762; T–
t0 = 1.38×10−5 s; τ = 1.39×10−5 s; and R2 = 0.98.

3. Fitting the ascending part (Fig. A2b): B = 1.15; R2 = 0.97;
B×{1–exp[–(T–t0)/τ]} = 0.73; and C = 0.76 (i.e. c. 4 % differ-
ence).

Appendix C

An example of an FEMR recording system for boreholes is de-
scribed by Tsutsui (2014), where measurements were carried
out in a borehole 100 m in depth. The EM antennae consisted
of triaxial magnetic induction coils to detect a triaxial magnetic
field. The coils were wound by a wire of 26 000 turns around
a permalloy core of 8 cm in length and 1.2 cm in diameter.
Each coil was connected to a preamplifier with an amplifica-
tion factor of 808. EM sensors were hung in the borehole with
an electrically non-conductive pipe of 100 m length and 10 cm
diameter. Output signals from the preamplifiers were led to a
16-bit analogue-to-digital converter installed in personal com-
puters on the ground. The resolution of detected magnetic flux
density was 3 pT.
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