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Abstract. Positive logics are {∧,∨,→}-fragments of intermediate logics. It is clear that the pos-
itive fragment of Int is not structurally complete. We give a description of all hereditarily structurally
complete positive logics, while the question whether there is a structurally complete positive logic
which is not hereditarily structurally complete, remains open.

§1. Introduction. The notion of an admissible rule evolved from the notion of an
auxiliary rule: if a formula B can be derived from a set of formulas A1, . . . , An in a given
calculus (deductive system) DS, one can shorten derivations by using a rule A1, . . . , An/B.
The application of such a rule does not extend the set of theorems, i.e., such a rule is admis-
sible (permissible). In (Lorenzen, 1955, p. 19) P. Lorenzen called the rules not extending
the class of the theorems “zulässing,” and the latter term was translated as “admissible,”
the term we are using nowadays.

Independently (see (Novikov, 1977, p. 30)1), in the lectures on mathematical logic,
for a given calculus DS, P. S. Novikov considered the rules A1, . . . ,An/B (where
A1, . . . ,An,B are variable formulas of some type) such that �DS B holds every time
when �DS A1, . . . ,�DS An hold. He also distinguished between two types of such
rules: a rule is strong, if �DS A1 → (A2 → · · · (An → B) · · · ) holds, otherwise it is
weak.

For classical propositional calculus (CPC), the use of admissible rules is merely a matter
of convenience, because every admissible in CPC rule A1, . . . , An/B is derivable, that
is A1, . . . , An �CPC B (see, for instance Belnap, Jr., Leblanc, & Thomason (1963)). It
was observed by R. Harrop in Harrop (1960) that the rule ¬p → (q ∨ r)/(¬p → q) ∨
(¬p → r) is admissible in intuitionistic propositional logic (Int), but is not derivable:
the corresponding formula is not a theorem of Int. Later, in mid 1960s, A. V. Kuznetsov
observed that the rule (¬¬p→ p)→ (p ∨ ¬p)/((¬¬p→ p)→ ¬p) ∨ ((¬¬p→ p)→
¬¬p) is also admissible in Int, but not derivable. Another example of an admissible for
IPC not derivable rule was found in 1971 by G. Mints (see Mints (1976)): the following
rule is admissible but not derivable in Int

(p→ q)→ (p ∨ r)/((p→ q)→ p) ∨ ((p→ q)→ r). (1)
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1 This book was published in 1977, but it is based on the notes of a course that P.S. Novikov taught

in 1950th; A.V. Kuznetsov was recalling that P.S. Novikov considered such rules much earlier, in
this lectures in 1940th.
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Fragment Reference
{→} HSCpl Prucnal (1972b)
{→,⊥} Not HSCpl (the smallest HSCpl fragment exists) Cintula & Metcalfe (2010)
{→,∧} HSCpl Nemitz & Whaley (1973)
{→,∧,⊥} HSCpl Wroński (1986)
{→,∧,∨} Not HSCpl (the smallest HSCpl fragment exists) this article
{→,∧,∨,⊥} Not HSCpl (the smallest HSCpl extension exists) Citkin (1978)

Table 1. Hereditary structural completeness of Fragments of Intermediate Logics

Following Pogorzelski (1974), the logics in which every admissible rule is derivable are
called structurally complete, and if every extension of a structurally complete logic is
structurally complete, such a logic is hereditarily structurally complete (HSCpl for short).
Thus, CPC is structurally complete, while Int is not.2

Very soon (cf. Dzik & Wroński (1973)), it was discovered that the Dummett’s Logic LC
and all its extensions are structurally complete, and in Prucnal (1972a) T. Prucnal proved
that→-fragment of any intermediate logic, is structurally complete, i.e., these fragments
do not have admissible not-derivable rules.

Naturally, the questions about admissibility of rules in Int and about structural com-
pleteness of intermediate logics (the consistent extensions of Int) and their fragments
arose.

In terms of hereditary structural completeness the aforementioned results can be rephrased
as follows: LC and the→-fragment of Int are hereditarily structurally complete. Curiously
enough, implication-negation (or implication-falsity) fragment of Int is not structurally
complete (cf. Wroński (1986)). Cintula and Metcalfe proved that every structurally com-
plete →,¬-fragment of any intermediate logic is hereditarily structurally complete, and
there is the smallest (hereditarily) structurally complete implication-negation fragment of
Int (cf. Cintula & Metcalfe (2010)). All hereditarily structurally complete intermediate
logics were described by author in Citkin (1978). In (Rybakov, 1995, Theorem 4.5) Ry-
bakov obtained a similar description for the extensions of normal modal logic K4, and
as a consequence, he gave an alternative proof of the criterion on hereditary structural
completeness for intermediate logics (cf. (Rybakov, 1995, Theorem 4.7)).

The situation with hereditary structural completeness of fragments of intermediate logics
is summarized in Table 1.

An interesting sufficient condition for positive predicate logic to be hereditarily struc-
turally complete was proved by Dzik (cf. (Dzik, 2004, Theorem 3)).

1.1. Main results. We consider intuitionistic propositional logic Int with connectives
∧,∨,→,⊥. The (propositional) formulas which have no occurrences of ⊥ are called
positive. Clearly, the set Int+ of all positive formulas from Int is closed under application
of rules modus ponens (denoted by MP) and (simultaneous) substitution (denoted by Sb).
By ExtInt+ we denote the set of all extensions of Int+, closed under MP and Sb, and we
refereed to them as positive logics.

To study structural completeness of logics from ExtInt+, we employ the algebraic meth-
ods (and we assume that the reader is familiar with basic notions of universal algebra (cf.
Bergman (2012) or Burris & Sankappanavar (1981))).

2 More information about structural and hereditary structural completeness the reader can find in
Rybakov (1995) or Raftery (2016).

https://doi.org/10.1017/S1755020319000169 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000169


HEREDITARILY STRUCTURALLY COMPLETE POSITIVE LOGICS 485

Fig. 1. Non-projective Algebras.

We recall that algebraic semantics for Int and its extensions are Heyting algebras: an
algebra 〈A; ∧,∨,→, 1, 0〉, where 〈A; ∧,∨〉 is a bounded distributive lattice with greatest
element 1 and smallest element 0, and → is a relative pseudo-complementation
is a Heyting algebra. We assume that the reader is familiar with properties of Heyting
algebras Rasiowa & Sikorski (1970), where Heyting algebras are called pseudo-Boolean
algebras.

Algebraic semantics for positive logics are Brouwerian algebras:3 an algebra 〈A; ∧,
∨,→, 1〉, where 〈A; ∧,∨, 1〉 is a distributive lattice with a greatest element 1, and→ is a
relative pseudo-complementation, is a Brouwerian algebra.

In a regular way we define validness of a formula in a given algebra: a formula A is valid
in a given (Brouwerian) algebra A (in symbols, A |
 A) if v(A) = 1 for every valuation v
in A. With each logic L ∈ ExtInt+ we associate a class V(L) of all algebras in which every
formula from L is valid:

V(L) := {A | A |
 A, for every A ∈ L}.
The class V(L) forms a variety (a.k.a. equational class) and elements of V(L) are being
referred to as models of L.

On the other hand, every variety V of Brouwerian algebras defines a positive logic:

L(V) := {A | A |
 A for every A ∈ V}.
THEOREM 1.1 (Main theorem). A positive logic L is hereditarily structurally complete if
and only if Brouwerian algebras S1 and S2 depicted in Figure 1 are not models of L.

It is known (see, e.g., Olson, Raftery, & van Alten (2008)) that the logic L is HSCpl
if and only if variety V(L) is primitive, that is every subquasivariety of V(L) is a variety.
Thus, the above theorem is equivalent to the following theorem which we prove in §6.

THEOREM 1.2 (Main theorem: Algebraic version). A variety V of Brouwerian algebras is
primitive if and only if S1, S2 /∈ V (see Figure 1).

A proof of the above theorem follows from the following lemmas.

LEMMA 1.3 (A proof can be found in §4). Any variety that contains algebra S1 or S2
is not primitive.

Recall that a variety V is said to be locally finite if any finitely generated algebra from V
is finite. The below lemma gives an easy sufficient condition for local finiteness.

LEMMA 1.4 (A proof can be found in §4). Any variety of Brouwerian algebras not
containing the algebra S1 is locally finite.

3 We follow Galatos, Jipsen, Kowalski, & Ono (2007) and call these algebras Brouwerian. Some
authors are using different names, for instance, implicative lattices Odintsov (2008), lattice with
pseudocomplementation Rasiowa & Sikorski (1970).
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Recall also that an algebra A is weakly projective in a given class of algebras K if for
any algebra B ∈ K, such that A ∈ HB, we have A ∈ SB.

LEMMA 1.5 (A proof can be found in §5). In any variety not containing the algebras
S1, S2 every finite subdirectly irreducible algebra is weakly projective in the class Vfin of
all finite algebras from V .

It is clear that Lemma 1.3 gives just a necessary condition of hereditary structural
completeness, while the sufficient condition follows immediately from Lemmas 1.4 and
1.5 and the below Proposition (see (Gorbunov, 1998, Prop. 5.1.24)).

PROPOSITION 1.6. Let V be a locally finite variety of a finite signature. Then, V is prim-
itive if and only if every finite subdirectly irreducible algebra from V is weakly projective
in Vfin.

We prove also the following corollary (see §7).

COROLLARY 1.7 (Main corollary). The following holds:

(a) There is the smallest HSCpl positive logic and it is finitely axiomatized;
(b) The set of all HSCpl positive logics is countable;
(c) Every HSCpl positive logic is finitely axiomatizable;
(d) There are infinitely many HSCpl intermediate logics whose positive fragment is not

HSCpl .

Note that (c) follows from (a), (b) and the below theorem that holds for any congru-
ence distributive variety of finite signature and it is interesting in its own right (for proof
see §6).

THEOREM 1.8. Let V be a locally finite finitely based congruence distributive variety of
finite signature. Then, every subvariety of V is finitely based if and only if V has at most
countably many subvarieties.

In algebraic terms, Corollary 1.7(a) means that there is the largest primitive variety of
Brouwerian algebras. This variety can be described in the following way (see §5 for a
proof).

THEOREM 1.9. The largest primitive variety of Brouwerian algebras is generated by
Brouwerian reducts of finite projective Heyting algebras.

As it is known from Balbes & Horn (1970), finite projective Heyting algebras are pre-
cisely the subdirectly irreducible coalesced sums of two and four-element Boolean alge-
bras.

§2. Basic information about Brouwerian algebras. First, let us recall the basic facts
about Brouwerian algebras.

2.1. Brouwerian algebras. An algebra 〈A; ∧,∨,→, 1〉, where 〈A; ∧,∨, 1〉 is a dis-
tributive lattice with the greatest element and→ is a pseudocomplementation, is called a
Brouwerian algebra. If a Brouwerian algebra A has the smallest element, we say that A
is bounded. By 2 we denote the two-element Brouwerian algebra, and define 4 := 2 × 2.
We also assume that the reader is familiar with basic properties of Brouwerian algebras

https://doi.org/10.1017/S1755020319000169 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000169


HEREDITARILY STRUCTURALLY COMPLETE POSITIVE LOGICS 487

(e.g., from Rasiowa & Sikorski (1970) where Brouwerian algebras are called lattices with
pseudocomplementation).

From now on by “algebra” we mean Brouwerian algebra, unless otherwise indicated.
Let A be a (Brouwerian) algebra and a ∈ A be an element. Then, set [a) := {b ∈ A | a ≤

b} forms a filter and a subalgebra of A denoted by A[a), that is, A[a) = 〈[a); ∧,∨,→, 1〉.
A set (a] := {b ∈ A | a ≥ b}, as a lattice, is isomorphic to A/[a) and we abbreviate it to
A(a].

It is easy to see that every bounded Brouwerian algebra forms a Heyting algebra. If A =
(A; ∧,∨,→, 1) is a bounded Brouwerian algebra, by A◦ we denote Heyting algebra A =
(A; ∧,∨,→, 1, 0). On the other hand, if B = (B; ∧,∨,→, 1, 0) is a Heyting algebra, by
B+ we denote its Brouwerian reduct (B; ∧,∨,→, 1).

PROPOSITION 2.1. Every finitely generated Brouwerian algebra is bounded.

Proof. By a simple induction on number of generators one can prove that meet of all
generators of algebra A is indeed the smallest element of A. �

2.2. Nodes. Let A be an algebra. An element a ∈ A is said to be a node if a is
comparable with every element of A. Clearly, 1 is always a node. If A is bounded, the
smallest element is also a node. The greatest and smallest (if exists) elements are trivial
nodes. We say that a nontrivial algebra is nodeless just in case it does not contain nontrivial
nodes.

PROPOSITION 2.2. Let a0, a1 be nodes of algebra A and a0 ≤ a1. Then, a set of
elements A′ := (a0] ∪ [a1) forms a subalgebra.

Proof. First, it is not hard to see that A′ is closed under ∧ and ∨ and contains 1. Thus,
we need only to verify that A′ is closed under→.

Indeed, let a, b ∈ A′. If b ∈ [a1), we have

a1 ≤ b ≤ a→ b.

Hence, a→ b ∈ [a1) ⊆ A′.
Now, assume that b ∈ (a0] and b /∈ [a1), that is, b < a1. Consider two remaining

possibilities:

(a) a ∈ [a1);

(b) a ∈ (a0].

Case (a). Suppose that a ∈ [a1), that is, a1 ≤ a. Recall that a1 is a node. Hence,
(a→ b) ≥ a1 or (a→ b) < a1.

Observe that the former case is impossible. Indeed, if

a1 ≤ a and a1 ≤ (a→ b), then a1 ≤ a ∧ (a→ b) ≤ b,

and this contradicts the assumption that b < a1.
Now, suppose that a1 ≤ a and a→ b < a1. Hence, a→ b < a1 ≤ a, and therefore,

a ∧ (a→ b) = a→ b. (2)

On the other hand, because b ∈ (a0], we have

a ∧ (a→ b) ≤ b ≤ a0. (3)
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and from (2) and (3) we get

a→ b = a ∧ (a→ b) ≤ b ≤ a0, (4)

that is, a→ b ∈ [a0) ⊆ A′.
Case (b). Suppose that a, b ∈ (a0]. Hence, a ≤ a0 and b < a0. Consider element

a→ b. Because a0 is a node, a→ b ≤ a0 (and we have nothing to prove), or a→ b > a0.
Suppose that a, b ≤ a0 and a0 < a→ b. Then, a ≤ a0 < a→ b, and hence,

a = a ∧ (a→ b) ≤ b.

Therefore, a→ b = 1 ∈ A′. �

COROLLARY 2.3. If A is an algebra with a nontrivial node a, then (a] ∪ {1} forms a
subalgebra.

COROLLARY 2.4. Let A be an algebra generated by a set of elements G, and let a <
b < c be nodes. Then, there is a generator g ∈ G such that a < g < c.

Proof. Indeed, by Proposition 2.2, (a] ∪ [c) forms a subalgebra and b /∈ (a] ∪ [c)
means that (a] ∪ [c) is a proper subalgebra. Hence, there is a generator g ∈ G such that
g /∈ (a] ∪ [c), and because a and c are nodes, we have a < g < c. �

COROLLARY 2.5. Any finitely generated Brouwerian algebra contains finitely many
nodes.

The following corollary gives more precise bound for the number of nodes.

COROLLARY 2.6. Any n-generated Brouwerian algebra A has at most 2n+ 2 nodes.

Proof. Let A be an algebra generated by elements g0, . . . , gn−1. By Corollary 2.5,
algebra A has just a finite set of nodes. Assume that for contradiction that A contains more
then 2n+ 2 nodes. Let

a0 < a1 < · · · < a2n < a2n+1 < a2n+2

be nodes. Then, by Corollary 2.4, for every j ≤ n + 1, there is a generator gs such that
a2j < gs < a2j+2, which is impossible. �

To simplify notation, we use the following abbreviations: if a, g0, . . . , gn−1 are elements
of algebra A, we abbreviate g0, . . . , nn−1 by g, and we abbreviate g0∨a, . . . , gn−1∨a by
g ∨ a.

The following proposition is an extension of Kuznetsov’s Theorem (cf. Kuznetsov (1973))
to Brouwerian algebras and nodes. The idea of the proof is borrowed from (Citkin, 1986,
Lemma 3) (it was also used in (Bezhanishvili & Grigolia, 2005, Lemma 2.2)).

PROPOSITION 2.7. Let A be an n-generated algebra with a nontrivial node a ∈ A.
Then, algebra A[a) is also n-generated.

Proof. Suppose that elements g0, . . . , gn−1 generate algebra A. We will prove that
elements g0 ∨ a, . . . , gn−1 ∨ a generate [a).

To prove the proposition we will show that for each term t such that a ≤ t(g), there is a
term t′ such that t(g) = t′(g ∨ a). We prove this claim by induction on length of term t.

If t is a variable, that is for some i < n, t(g) = gi, we have gi = gi ∨ a, because by our
assumption t(g) ≥ a.
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Suppose that for every term t of length less than m, if t(g) ≥ a, there is a term t′ such
that t(g) = t′(g ∨ a).

Let t be a term of length m and t(g) ≥ a. First, let us note that, because b := g0 ∧ · · · ∧
gn−1 is the smallest element of A, and hence, b ≤ a, by distributivity, we have

(g0 ∨ a) ∧ · · · ∧ (gn−1 ∨ a) = (g0 ∧ · · · ∧ gn−1) ∨ a = b ∨ a = a. (5)

Thus, if t(g) = a, we can take t′ := x0 ∧ · · · ∧ xn−1.
Now, assume that t(g) > a and we have the following cases:

(a) t = t0 ∧ t1;

(b) t = t0 ∨ t1;

(c) t = t0 → t1,

where t0, t1 are terms of length < m.
Case (a). Because a ≤ t(g) = t0(g) ∧ t0(g), for every i < 2 we have a ≤ ti(g), and we

can simply apply the induction assumption.
Case (b). Suppose that a < t(g) = t0(g)∨ t1(g). Let us consider the following possibil-

ities.

(i) t0(g) /∈ [a) and t1(g) /∈ [a);

(ii) t0(g) ∈ [a) and t1(g) /∈ [a) (or t0(g) /∈ [a) and t1(g) ∈ [a));

(iii) t0(g) ∈ [a) and t1(g) ∈ [a).

(i) Suppose t0(g) /∈ [a) and t0(g) /∈ [a). Then, because a is a node, t0(g) ≤ a and
t1(g) ≤ a. Hence, t(g) = t0(g) ∨ t1(g) ≤ a, and this contradicts the assumption that
t(g) > a. Thus, this case is impossible.

(ii) Suppose that t0(g) ∈ [a) and t1(g) /∈ [a). Then, because a is a node, we have

t1(g) < a ≤ t0(g), hence, t(g) = t0(g) ∨ t1(g) = t0(g),

and we can apply the induction assumption.
(iii) In this case, a ≤ t0(g) and a ≤ t1(g) and we can apply the induction assumption to

t1 and t2.
Case (c). Suppose that a < t(g) = t0(g)→ t1(g). First, let us observe that t1(a) ∈ [a).
Let us consider the following possibilities.

(i) t0(g) /∈ [a) and t1(g) /∈ [a);

(ii) t0(g) ∈ [a) and t1(g) /∈ [a);

(iii) t0(g) /∈ [a) and t1(g) ∈ [a);

(iv) t0(g) ∈ [a) and t1(g) ∈ [a).

(i) If t0(g) /∈ [a) and t1(g) /∈ [a), then by Corollary 2.3,

t(g) = t0(g)→ t1(g) ∈ (a] or t(g) = t0(g)→ t1(g) = 1.

The case where t(g) = t0(g) → t1(g) ∈ (a] is impossible, because by the assumption,
t(g) > a. Hence, t(g) = 1 and we can take t′ := 1.

(ii) Suppose that t0(g) ∈ [a) and t1(g) /∈ [a). Then, because a is a node, we have

t1(g) ≤ a ≤ t0(g), and hence, t(g) = t0(g)→ t1(g) ≤ a→ t1(g). (6)

By Corollary 2.3, a → t1(g) ≤ a or a → t1(g) = 1. The former case is impossible,
because we would have t(g) ≤ a→ t1(g) ≤ a, while, by our assumption, a < t(g).
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(iii) Suppose that t0(g) /∈ [a) and t1(g) ∈ [a). Then, because a is a node, we have

t0(g) ≤ a ≤ t1(g), and hence, t(g) = t0(g)→ t1(g) = 1.

(iv) If t0(g) ∈ [a) and t1(g) ∈ [a), we can simply apply the induction assumption and
complete the proof. �

2.3. Coalesced ordinal sums. A notion of coalesced sum is very useful for the study
of finitely generated algebras. The notion of the sum of Heyting algebras was introduced
in Troelstra (1965) and it is known under different names: ordinal coalesced sum Galatos
et al., (2007), Troelstra sum Skura (1991), sequential sum Kuznetsov & Gerčiu (1970),
star sum Balbes & Horn (1970), horizontal sum Day (1973), and vertical sum Bezhanishvili
(2006). Coalesced ordinal sums where extensively used in all these and many other articles.
In this section we use them for Brouwerian algebras.

Let A = 〈A; ∧,∨,→, 1〉 and B = 〈B; ∧,∨,→, 1〉 be bounded algebras. A coalesced
ordinal sum of algebras A and B (a sum for short) is algebra A + B that consists of
sublattices A′ and B′ isomorphic respectfully to 〈A; ∧,∨, 1〉 and 〈B; ∧,∨, 1〉 and such
that A′ ∩ B′ contains a single element: the greatest in A′ and the smallest in B′.

Roughly speaking, a Hasse diagram of A + B can be obtained by putting the diagram
of B on top of the diagram of A and by identifying the top element of A with the bottom
element of B.

If A is a bounded algebra with a nontrivial node a, then A = A(a]+A[a). Moreover, if
A is a bounded algebra and a0 < a1 < · · · < an < n+ 1 = 1 are all nodes of A, then

A =
n∑

i=0

A[ai, ai+1],

where A[ai, ai+1] is algebra with universe {b ∈ A | ai ≤ b ≤ ai+1}. Thus, from Corollary
2.6 we obtain the following.

PROPOSITION 2.8. Let A be a finitely generated nontrivial algebra. Then, for some
n ≥ 0,

A =
n∑

i=0

Ai,

where Ai are nodeless nontrivial algebras.

Let us also recall that an algebra A is subdirectly irreducible (s.i. for short) if and only
if it contains a nontrivial node a such that [a, 1] = {a, 1}. In other words, algebra A is s.i.
if and only if A = B+ 2 for some (perhaps trivial) algebra B.

PROPOSITION 2.9. Let A be a finitely generated s.i. algebra. Then,

A = A0 + · · · + An + 2 (7)

for some nodeless nontrivial algebras Ai.

Let us observe that if A is like in (7), then every algebra Ai + 2, i ≤ n is a subalgebra
of A. For Heyting algebras the situation is different: because every subalgebra contains 0,
only A0+2 is a subalgebra of A, while for i > 0, 2+Ai+2, but not Ai+2, is a subalgebra
of A.

The following proposition give us a ground to prove Lemmas 1.4 and 1.5.
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Fig. 2. Two-generated Brouwerian algebras.

PROPOSITION 2.10. Let V be a variety that does not contain algebra S1. Then, every
s.i. finitely generated algebra A ∈ V is of form

A = A1 + · · · + An + 2,

where for every 1 ≤ i ≤ n, A◦i (that is, Ai regarded as a Heyting algebra) is a Boolean
algebra.

Proof. By virtue of Proposition 2.9, algebra A is of form (7). Hence, it suffices to prove
that all algebras A◦i are Boolean. For this, we consider subalgebras Ai + 2 and we prove
that for every nontrivial nodeless algebra B, such that B + 2 ∈ V , Heyting algebra B◦ is
Boolean.

Indeed, let o be a smallest element of B. Suppose that a ∈ B is such that o < a ≤ 1B.
Then, elements o and a generate a subalgebra of B+2 which is one of the algebras depicted
in Figure 2. Let us observe that because o < a, these two elements generate an algebra B
such that B◦ is a homomorphic image of the Rieger-Nishimura lattice.

Let us observe that for every k > 2 algebra C2k+1 cannot be in V for the following
reason: C7 ∼= S1, C9[a) ∼= S1, and for all k > 2, subalgebra C2k+1[b) is isomorphic to
S1, while S1 /∈ V . Thus, the subalgebra of B + 2 generated by a is either C3 = 2 + 2 or
C5 = 4+ 2. In any case, a ∨ (a→ o) = 1B. Hence, in B◦ we have a ∨ ¬a = 1B, that is,
B◦ is a Boolean algebra. �

§3. Proof of Lemma 1.3. We say that an algebra A is totally non-projective if A is not
weakly projective in the variety V(A) generated by algebra A.

Proof. Our goal is to prove that algebras S1 and S2 (see Figure 3) are totally non-
projective. To this end, it is enough to prove that for both i = 1, 2

S′i ∈ V(Si) and S′i ∈ HS′i, while Si /∈ SS′i.

First, let us observe that C ∈ V(Si), i = 1, 2, because C ∼= Si[a) ∈ SSi ⊆ V(Si).
Second, let us observe that S′i is a subdirect product of Si and C. Indeed, in S′1 we have

a ∨ b = 1 and S1(a] ∼= S1 and S1(c] ∼= C. Similarly, in S′2 we have b ∨ c = 1 and
S2(b] ∼= B and S2(c] ∼= C. Thus, we established that S′i ∈ V(Si) and Si ∈ HS′i.

Now, let us demonstrate that S1 /∈ SS′1. The proof follows from the observation that

((a→ b)→ b)→ a = a ∨ (a→ b) and ((a→ b)→ b) ∨ (a→ b) �= 1,

while algebra S′1 does not contain such a pair of elements.
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Fig. 3. Examples of Brouwerian algebras.

To prove that S2 is not embedded in S′2, note that any embedding sends any
three mutually incomparable elements of S2 in three mutually incomparable elements
of S′2, but whole algebra S′2 is generated by any its three mutually incomparable elements
(see Figure 3). �

§4. Proof of Lemma 1.4. Let V be a variety excluding algebra S1 (see Figure 1). We
need to prove that V is locally finite.

First, let us recall that a set of algebras K is said to be uniformly locally finite if for each
finite m there exists a finite n = f (m) such that any m elements of any algebra from K
generate a subalgebra of cardinality that does not exceed n. To prove the claim we will
demonstrate that the set Vfgsi of all finitely generated s.i. algebras from V is uniformly
locally finite, and then we can use the following proposition and complete the proof.

PROPOSITION 4.1 ((Mal’cev, 1973, sec. 14 Theorem 3)). A variety of finite signature is
locally finite if and only if it is generated by a uniformly locally finite family of algebras.

Indeed, let A ∈ Vfgsi be an m-generated algebra s.i. algebra from V . Then, by Proposition
2.9,

A =
k∑

i=0

Ai + 2, where k ≤ 2m,

and, by Proposition 2.10, every A◦i is Boolean.
From Proposition 2.7 it follows immediately that for each i ≤ k algebra Ai is m-

generated: the algebra Ai is a homomorphic image of subalgebra A[ai), where ai is the
bottom element of Ai.

Now, let us recall that m-generated Boolean algebra contains at most 22m
elements. Hence,

|Ai| ≤ 22m
for each i, and therefore,

|A| ≤ (2m)22m + 1

and consequently, the set Vfgsi is uniformly locally finite. Thus, the conditions of Proposi-
tion 4.1 are satisfied, and we can complete the proof.

§5. Proof of Lemma 1.5. Let V be a variety not containing algebras S1, S2 (see Figure
1). We need to prove that every algebra A ∈ Vfnsi, where Vfnsi is a set of all finite s.i.
algebras from V , is weakly projective in Vfin.

Indeed, suppose that A ∈ Vfnsi. Because S1 /∈ V , we can apply Proposition 2.10 and
conclude that
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A =
n∑

i=1

Ai + 2, (8)

where A◦i are Boolean algebras. Let us prove that |Ai| ≤ 4 for all i = 1, . . . , n.
For contradiction: assume that for some 1 ≤ i ≤ n, |Ai| > 4 and consider subalgebra

Ai + 2. Let B be 8-element Boolean algebra. Then, B embeds in Ai. Thus, B + 2 embeds
in Ai + 2: one can easily extend any embedding of B in Ai to the embedding of B + 2 in
Ai + 2. Clearly, Ai + 2 ≤ A ∈ V . Hence, B+ 2 ∈ V . Note that B+ 2 is isomorphic to S2,
and we arrived to contradiction with the assumption S2 /∈ V .

Thus, we established that in (8), for all i = 1, . . . , n, Ai ∈ {2, 4}, and we need to prove
that A is weakly projective in Vfin - the set of all finite algebras from V .

Suppose that algebra A of form (8) is a homomorphic image of some algebra C ∈ Vfin.
Because A and C are finite, they can be viewed as Heyting algebras. Moreover, if A is a
Brouwerian homomorphic image of C, A◦ is a Heyting homomorphic image of C◦. Recall
Balbes & Horn (1970) that finite Heyting algebras of form (8) are projective. Thus, taking
into account that each Heyting embedding is at the same time a Brouwerian embedding,
we conclude that A is embedded in C, and this proves that A is weakly projective in Vfin.

A proof of Theorem 1.9 immediately follows from the above proof.

§6. Proof of Theorem 1.8. In the proof of Corollary 1.7 we use Theorem 1.8. Let us
prove it first.

In this section V is assumed to be a locally finite congruence distributive variety of
algebras. By LvV we denote the lattice of all subvarieties of V , and by Vfnsi we denote the
set of all finite subdirectly irreducible algebras from V .

We recall from (Day, 1973, Corollary 3.8) that every algebra A ∈ Vfnsi is a splitting
algebra, which means that there is a variety V(A) ∈ LvV such that for every W ∈ LvV ,

either V(A) ⊆W or W ⊆ V(A). (9)

In other words, V(A) is the greatest variety from LvV that does not contain A. The variety
V(A) can be defined relative to V by a single identity which we denote by iA. In case
of Heyting or Brouwerian algebras, iA can be taken as X(A) ≈ 1, where X(A) is a
characteristic (Yankov) formula of A (cf. Jankov (1969)).

On the set Vfnsi we define a quasi-order: if A, B ∈ Vfnsi, then

A � B⇐⇒ A ∈ V(B). (10)

Let us note that, because A and B are finite s.i. algebras, by Jónsson’s Lemma A � B if
and only if A ∈ HSPuB. Because B is finite, HSPuB = HSB. Hence,

A � B yields |A| ≤ |B|. (11)

Therefore, if A � B and B � A, we have |A| = |B|, and because A and B are finite, we
have A ∼= B. Thus, � is a partial order.

Let us observe that (11) entails that every descending w.r.t. � chain of algebras from
Vfnsi contains only a finite number of non-isomorphic members. That is, � enjoys the
descending chain condition. Hence, every set {Ai, i ∈ I} ⊆ Vfnsi contains minimal elements
Aj, j ∈ J ⊆ I and for every i ∈ I there is an algebra Aj minimal w.r.t. � and such that
Aj � Ai.

If {Ai, i ∈ I} are algebras from Vfnsi, we say that {Ai, i ∈ I} is an antichain if for all
distinct i, j ∈ I algebras Ai and Aj are incomparable, that is Ai �� Aj and Aj �� Ai.
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A variety V is hereditarily finitely based or it is a Specht variety4, if V and all its sub-
varieties are finitely based. Theorem 1.8 is a trivial consequence of the following theorem
which gives a criterion for a locally finite finitely based congruence distributive variety to
be a Specht variety.

THEOREM 6.1. Let V be a locally finite finitely based congruence distributive variety.
Then, the following is equivalent:

(a) V is a Specht variety;
(b) LvV is at most countable;
(c) Vfnsi has no infinite antichains;
(d) LvV enjoys the descending chain condition.

Proof. (a)⇒ (b) is trivial.
(b)⇒ (c) (comp. (Grätzer & Quackenbush, 2010, Theorem 5.1)) To prove the claim we

will show that if Vfnsi contains an infinite antichain, then LvV is not countable.
Indeed, suppose that C := {Ai, i ∈ I} ⊆ LvV is an infinite antichain. Let us demonstrate

that for every distinct subsets I0, I1 ⊆ I the varieties V0 := V({Ai, i ∈ I0}) and V1 :=
V({Ai, i ∈ I1}) are distinct.

Let I0 and I1 be distinct subsets if I. Because I0 �= I1, without loosing generality, we can
assume that there is i ∈ I0 such that i /∈ I1. Now, let us consider algebra Ai. Because C is
an antichain, Ai �� Aj for all j �= i and we have Ai /∈ V(Aj), that is, V(Ai) � V(Aj). Thus,
by (9), we have that for all j ∈ I1

V(Aj) ⊆ V(Ai).

Hence V1 ⊆ V(A). An observation that Ai /∈ V(Ai), and therefore, Ai /∈ V1 completes the
proof that V0 �= V1. As we saw, any I0 ⊂ I uniquely defines a subvariety of V , and because
I is infinite, there is a continuum distinct subquasivarieties of V .

(c)⇒ (d) For contradiction: assume that Vfnsi has no infinite antichains and V0 ⊃ V1 ⊃
· · · is a strongly descending chain of subvarieties of V . Then, for each i ≥ 0, there is a
finitely generated s.i. algebra Ai ∈ Vi \ Vi+1. Recall that V , and therefore each Vi, i ≥ 0, is
locally finite. Thus, all algebras Ai are finite and Ai ∈ Vfnsi. As we pointed out earlier, the
set Ai, i ≥ 0 contains a subset of minimal relative to � members. Let {Ai, i ∈ I} be a set
of all minimal elements. Then,

for any n ≥ 0 there is j ∈ I such that Aj � An,

that is,

for any n ≥ 0 there is j ∈ I such that Aj ∈ V(An),

or, equivalently,

for any n ≥ 0 there is j ∈ I such that V(Aj) ⊆ V(An). (12)

Next, we observe that, because of the minimality of its members, the set {Ai, i ∈ I}
forms an antichain, and hence, by our assumption, it is finite. Suppose that I does not

4 In 1950, W. Specht was investigating whether or not every variety of associative algebras is
finitely based. Nowadays, the hereditarily finitely based varieties are often referred to as Specht
varieties (cf., e.g., Bahturin & Ol’shanskij. (1991)).
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contain numbers exceeding k. Then, by our selection of algebras Ai, we have

Aj /∈ Vk+1 for all j ≤ k. (13)

On the other hand, consider Ak+1. By selection, Ak+1 ∈ Vk+1 \ Vk+2, hence, Ak+1 ∈
Vk+1 and

V(Ak+1) ⊆ Vk+1. (14)

By (12), for some j ≤ k there is a minimal algebra Aj such that

V(Aj) ⊆ V(Ak+1). (15)

Thus, from (15) and (14), we have

Aj ∈ V(Aj) ⊆ V(Ak+1) ⊆ Vk+1

and this contradicts (13).
(d) ⇒ (a) Suppose that LvV enjoys the descending chain condition. By the theorem’s

assumption, V is finitely based. Thus we need to demonstrate that every proper subvariety
V ′ ⊂ V is finitely based relative to V .

Indeed, let {iμ, μ < σ } be a set of all identities such that V ′ |
 iμ and V �|
 iμ. For each
κ < σ , consider variety Vκ defined relative to V by identities iμ, μ ≤ κ . It is clear that
κ ≤ κ ′ yields Vκ ⊇ Vκ ′ , hence,

{Vκ | κ < σ } is a descending chain such that
⋂
m≥0

Vm = V ′. (16)

Because LvV enjoys the descending chain condition, {Vκ | κ < σ } is finite. Hence, by (16),
for some n < ω, V ′ coincides with Vn, and this means that V ′ is defined relative to V by a
finite set of identities, namely by ik, k < n. �

§7. Proof of main corollary. Proof of (a). We need to prove that there is the smallest
HSCpl positive logic. To prove this, we prove that there is the greatest primitive variety of
Brouwerian algebras and this variety is finitely based.

Indeed, the variety of Brouwerian algebras is congruence distributive. By Theorem 1.2,
a variety V is primitive if and only if S1, S2 /∈ V . Moreover, by Lemma 1.4, it is locally
finite. Algebras S1 and S2 are subdirectly irreducible. Hence, by (9), there is the greatest
variety V(A) that does not contain A, and V(A) can be defined by a single identity. Thus,
variety P = V(S1) ∩ V(S1) is the greatest primitive variety of Brouwerian algebras and P
can be defined by two identities, which means that it is finitely based.

Proof of (b). We need to prove that a set of HSCpl positive logics is countable. First,
we note that the set of all HSCpl positive logics is infinite: a locally finite primitive variety
V has a finite set of subvarieties if and only if V is generated by a finite algebra (see
(Gorbunov, 1998, Prop. 5.1.25)), and clearly for primitive varieties of Brouwerian algebras
the latter is not the case.

Now, we prove that the set of all primitive varieties of Brouwerian algebras is countable.
Indeed, let P be the greatest primitive variety of Brouwerian algebras. From Theorem

1.2 we know that P is locally finite. From Corollary 1.7(a) we know that P is finitely
based. Hence, if we prove that LvP does not contain infinite antichains, we will be able to
apply Theorem 6.1 and complete the proof.

Recall that a quasi-ordered set (A,�) is said to be well quasi-ordered if it enjoys the
descending chain condition and does not contain infinite antichains.
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Recall also from (Huczynska & Ruškuc, 2015, Corollary 1.6) that if (A,�) is a well
quasi-ordered set (an alphabet), then the set A∗ of all finite words (strings) over A is well
quasi-ordered by the domination ordering:

a1, . . . , am � b1, . . . , bn if and only if

∃(1 ≤ j1 < · · · < jm ≤ n)∀(i = 1, . . . , m)(ai � bji).

For instance, consider a set N∗ of all finite sequences of natural numbers with quasi-
order

s1, . . . , sm � r1, . . . , rn if and only if

∃(1 ≤ j1 < · · · < jm ≤ n)∀(i = 1, . . . , m)(si ≤ rji).

Then, (N∗,�) is well quasi-ordered.
It is also known that a class of well quasi-ordered sets is closed under: (i) taking of

subsets; (ii) homomorphic images – images of the surjective order-preserving maps (see,
e.g., (Huczynska & Ruškuc, 2015, Theorem 1.2)).

In particular, subset (N̂∗,�) of all finite sequences that have no subsequent positive
components is well quasi-ordered. For instance, 1, 2, 3 �∈ N̂∗, while 1, 0, 2, 0, 3 ∈ N̂∗.

Observe that all algebras in Pfnsi are weakly projective. Hence, for all A, B ∈ P ,

A � B if and only if A ∈ HSB if and only if A ∈ SB if and only if A ≤ B.

We also know that every algebra from Pfnsi is of form A0 + · · · + An + 2, where
Ai ∈ {2, 4} for all i ≤ n.

Let us consider a quasi-ordered set (P,≤) of all finite subdirectly irreducible Brouwerian
algebras of type A0+A1 · · · +An+ 2, where Ai ∈ {2, 4} and A ≤ B � A ∈ SB. For each
m > 0 by m4 we denote algebra 4+ · · · + 4︸ ︷︷ ︸

m times

, and 04 denotes 2.

Let us note that

n ≤ m, entails n4 ≤ m4. (17)

We will need the following simple properties of bounded Brouwerian algebras, the proof
of which is left to the reader.

PROPOSITION 7.1. Let A, B1, B2, C1, C2 be bounded algebras such that B1 ≤ C1,
B2 ≤ C2 and A is nontrivial. Then, the following holds:

(1) B1 + 2+ B2 ≤ C1 + A+ C2;
(2) B1 + A ≤ C1 + A, in particular, B1 + 2 ≤ C1 + 2;
(3) B1 + 2 ≤ C1 + A;
(4) B1 ≤ A+ C1;
(5) B1 + 2+ B2 ≤ B1 + A+ B2.

Let us point out that, contrary to the situation with Heyting algebras where B1 ≤ C1
and B2 ≤ C2 yields B1 + B2 ≤ C1 + C2, for Brouwerian algebras this needs not be true.
Nevertheless, for bounded Brouwerian algebras the following holds:

B1 + 2 ≤ C1 and B2 ≤ C2, then B1 + 2+ B2 ≤ C1 + C2. (18)

PROPOSITION 7.2. The quasi-ordered set (P,≤) is well quasi-ordered.

Proof. Because a homomorphic image of any well quasi-ordered set is well quasi-
ordered, to prove that P is well quasi-ordered it is sufficient to demonstrate that the map
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ϕ : (N̂∗,�) −→ (P,≤) defined as follows:

ϕ : k1, . . . , km �→ k14+ · · · + km4+ 2, (19)

is a homomorphism of (N̂∗,�) onto (P,≤).
It is not hard to see that ϕ maps N̂∗ onto P.
To prove that ϕ is a homomorphism, we need to demonstrate that

k1, . . . , km � l1, . . . , ln yields k14+ · · · + km4+ 2 ≤ l14+ · · · + ln4+ 2.

We prove the claim by induction on m.
Basis. If m = 1, that is, k1 � l1, . . . , ln, there is 1 ≤ s ≤ n such that k1 ≤ ls. Thus, we

have
n∑

j=1

lj4+ 2 = A+ ls4+ C+ 2, (20)

where

A :=
is−1∑
j=1

lj4 and C =
n∑

j=is+1

lj4+ 2.

Thus, we have

k14 ≤ ls4 by (17)
k14 ≤ A+ ls4 by Proposition 7.1.4
k14+ 2 ≤ A+ ls4+ C+ 2 by Proposition 7.1.3
k14+ 2 ≤ l14+ · · · + ln4+ 2 by (20).

Assumption. Suppose that for all s < m,

if k1, . . . , ks ≤ l1, . . . , ln, then
s∑

i=1

ki4+ 2 ≤
n∑

j=1

lj4+ 2.

Step. Let k1, . . . , km � l1, . . . , ln. Then, by the definition of �, there are 1 ≤ j1 <
· · · < jm ≤ n such that ki ≤ lji for all i = 1, . . . , m. Let us consider two cases: (a) km = 0
and (b) km > 0.

Case (a). We have already considered subcase m = 1. Let m > 1. Therefore, taking into
account that km = 0, that is, km4 = 2, we have,

m∑
i=1

ki4 = B1 + 2 and
n∑

j=1

lj4 = C1 + ljm 4+ C2, (21)

where

B1 :=
m−1∑
i=1

ki4, C1 :=
jm−1∑
j=1

lj4, C2 :=
n∑

j=jm+1

lj4

Then,

(a) B1 + 2 ≤ C1 + 2 induction assumption
(b) (B1 + 2)+ 2 ≤ (C1 + 2)+ 2 by Proposition 7.1.2
(c) (C1 + 2)+ 2 ≤ (C1 + 2)+ C2 + 2 by Proposition 7.1.3
(d) C1 + 2+ (C2 + 2) ≤ C1 + ljm 4+ (C2 + 2) by Proposition 7.1.1
(e) B1 + 2+ 2 ≤ C1 + ljm 4+ C2 + 2 by (b), (c), (d)
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And (e) means (see (21)) that
∑m

i=1 ki4+ 2 ≤∑m
j=1 lj4+ 2.

Case (b). Suppose that km > 0. Recall that word k1, . . . , km is from N̂∗. Therefore,
km−1 = 0. That is,

m∑
i=1

ki4 =
m−2∑
i=1

ki4+ 2+ km4 = B1 + 2+ km4, (22)

and
n∑

j=1

lj4 = C1 + jm−14+ C′2 + ljm 4+ C′′2, (23)

where

B1 :=
m−2∑
i=1

ki4, C1 :=
jm−1−1∑

j=1

lj4, C′2 :=
jm−1∑

j=jm−1+1

lj4, C′2 :=
n∑

j=jm+1

lj4.

Then,

(a) km ≤ ljm
(b) km4 ≤ ljm 4 from (a)
(c) km4 ≤ C′2 + ljm 4 by Proposition 7.1.4
(d) km4+ 2 ≤ C′2 + ljm 4+ C′′2 + 2 by Proposition 7.1.3
(e) B1 + 2 ≤ C1 + 2 by induction assumption
(f) B1 + 2+ km4+ 2 ≤ C1 + 2+ C′2 + ljm 4+ C′′2 + 2 from (e), (d)
(g) B1 + 2+ km4+ 2 ≤ C1 + ljm−1 4+ C′2 + ljm 4+ C′′2 + 2 by Proposition 7.1.5

Thus, by (22) and (23), (g) means that

m∑
i=1

ki4+ 2 ≤
n∑

j=1

lj4+ 2, (24)

and therefore, we completed the proof of (b). �
Proof of (c). As we pointed out earlier, (c) follows immediately from (a), (b) and Theo-

rem 1.8.
Proof of (d). We need to prove that there are infinitely many HSCpl intermediate logics

whose positive fragment is not HSCpl.
Indeed, let us consider Heyting algebras C◦9, (C9 + 2)◦, (C9 + 2 + 2)◦, . . . , where

diagram of C9 is depicted in Figure 2. These algebras are finite non-isomorphic subdi-
rectly irreducible members of a congruence distributive variety. Hence, by (Jónsson, 1967,
Corollary 3.5), the varieties generated by these algebras are distinct. Consequently, the
intermediate logics L0, L1, L2, . . . defined by these algebras are distinct. Also, by virtue of
Theorem 5.4.8 from Rybakov (1997) (or from Lemma 15 from Citkin (1987)), all logics
Li, i ≥ 0 are HSCpl. On the other hand, algebra S1 (see Figure 1) is a subalgebra of each
of algebras C9, C9 + 2, C9 + 2+ 2, . . . , and hence, S1 is a model of positive fragments of
each logic Li, i ≥ 0. Thus, by Theorem 1.1, and these positive fragments are not HSCpl.

§8. Final Remarks. To underscore a difference between structural completeness in
the intermediate and positive logics, let us note that for any intermediate logic L and any
positive formulas A1, . . . , An, B, admissibility in L of rule r := A1, . . . , An/B entails that r
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is admissible in L+. But with regard to structural completeness, the relation between L and
L+ is more complex: from Corollary 1.7(d) it follows that there are structurally complete
intermediate logics, positive fragment of which is not structurally complete. Below we
give a particularly important example of a structurally complete intermediate logic that has
a positive fragment which is not structurally complete.

It is known from Prucnal (1976) that Medvedev’s logic ML is structurally complete.
Recall from Jankov (1968) that for any intermediate logic L between Int and KC – the
logic of week law of the excluded middle – we have L+ = Int+. Also, it was observed that
Int ⊆ ML ⊆ KC (see Maksimova, Skvorcov, & Šehtman (1979)). Hence, ML+ = Int+.
The latter entails that any positive rule admissible in Int is admissible in ML+. For instance,
Mints’ rule (1), which is admissible in Int+, is admissible in ML+. On the other hand,
Mints’ rule is not derivable in Int and therefore, it is not derivable in ML+. Thus, ML+ is
not structurally complete.

REMARK 8.1. Mints’ rule is admissible in ML+ (because it is admissible in Int and
ML+ = Int+) but it is not admissible in ML. Indeed, in (1) substitute

p �→ ¬¬p→ p

q �→ ¬p ∨ ¬¬p

r �→ ¬¬p

and we get

((¬¬p→ p)→ (¬p ∨ ¬¬p))→ ((¬¬p→ p) ∨ ¬¬p)

(((¬¬p→ p)→ (¬p ∨ ¬¬p))→ (¬¬p→ p)) ∨ (((¬¬p→ p)→ (¬p ∨ ¬¬p))→ ¬¬p)
(25)

Because ((¬¬p→ p)→ (p ∨ ¬p))→ (¬p ∨ ¬¬p) ∈ ML, we have

((¬¬p→ p)→ (¬p ∨ ¬¬p))→ ((¬¬p→ p) ∨ ¬¬p) ∈ ML,

On the other hand, note that

(((¬¬p→ p)→ (¬p ∨ ¬¬p))→ (¬¬p→ p))↔ (¬¬p→ p) ∈ Int,

and by the Glivenko Theorem,

(((¬¬p→ p)→ (¬p ∨ ¬¬p))→ ¬¬p)↔ ¬¬p ∈ Int.

Hence,

(((¬¬p→ p)→ (¬p ∨ ¬¬p))→ (¬¬p→ p)) /∈ ML and

(((¬¬p→ p)→ (¬p ∨ ¬¬p))→ ¬¬p) /∈ ML.

Thus, because ML enjoys the disjunction property, Mints’ rule is not admissible in ML.

Note, that ML is the only known structurally complete intermediate logic that is not
HSCpl. Thus, it is natural to ask the following.

Problem 1. Is there a structurally complete positive logic that is not hereditarily struc-
turally complete?

And we would like to remind the following long standing open problem.

Problem 2. Besides ML, is there a structurally complete intermediate logic that is not
hereditarily structurally complete?
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