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Abstract
A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component
has at most c vertices. We prove that planar graphs with maximum degree � are 3-colourable with clus-
teringO(�2). The previous best bound wasO(�37). This result for planar graphs generalises to graphs that
can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then
prove that graphs with maximum degree � that exclude a fixed minor are 3-colourable with clustering
O(�5). The best previous bound for this result was exponential in �.
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1. Introduction
Consider a graph where each vertex is assigned a colour. A monochromatic component is a con-
nected component of the subgraph induced by all the vertices assigned a single colour. A graph
G is k-colourable with clustering c if each vertex can be assigned one of k colours so that each
monochromatic component has at most c vertices. There have been several recent papers on clus-
tered colouring [9,21,24,26,31–33,37–40,42,44,45,53]; see [55] for a survey. The general goal of
this paper is to prove that various classes of graphs are 3-colourable with clustering bounded by a
polynomial function of the maximum degree.

First, consider clustered colouring of planar graphs. The 4-colour theorem [3, 47] says that
every planar graph is 4-colourable with clustering 1. This result is best possible regardless of the
clustering value: for every integer c, there is a planar graph G such that every 3-colouring of G
has a monochromatic component with more than c vertices [1, 24, 34, 55]. All known examples
of such graphs have unbounded maximum degree. This led Kleinberg et al. [34] to ask whether
planar graphs with bounded maximum degree are 3-colourable with bounded clustering. This
question was answered positively by Esperet and Joret [24].
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Three colours is best possible for �� 6, since the Hex Lemma [28] implies that for every inte-
ger c, there is a planar graph G with maximum degree 6 such that every 2-colouring of G has a
monochromatic component withmore than c vertices [35,41]. Furthermore, this degree threshold
is best possible, since Haxell et al. [31] proved that every graph withmaximumdegree 5 (regardless
of planarity) is 2-colourable with clustering less than 20,000.

The following natural question arises: what is the least function c(�) such that every planar
graph with maximum degree � has a 3-colouring with clustering c(�)? The clustering function
of Esperet and Joret [24] was �O(�). While Esperet and Joret [24] made no effort to optimise
this function, exponential dependence on � is unavoidable using their method. Recently, Liu and
Wood [39] improved this bound to O(�37). A primary contribution of this paper (Corollary 4) is
to improve it further to O(�2).

Like the above-mentioned works of Esperet and Joret [24] and Liu andWood [39], our theorem
generalises to graphs with bounded Euler genus.a In particular, we prove (in Corollary 5) that
graphs with Euler genus g and maximum degree � are 3-colourable with clusteringO(g3�2). The
previous best clustering function was O(g19�37) due to Liu and Wood [39]. In fact, our result
and that of Liu and Wood [39] hold in the more general setting of bounded layered treewidth
(defined in Section 2.3). This enables further generalisations. For example, we prove (in Corollary
6) that apex-minor-free graphs are 3-colourable with clustering O(�2), and graphs that have a
drawing on a surface of bounded Euler genus with a bounded number of crossings per edge are
3-colourable with clustering O(�2). All these results are presented in Section 2.

Section 3 focuses on clustered colouring of graphs excluding a fixed minor. For Kt-minor-free
graphs, at least t − 1 colours are needed regardless of the clustering function; that is, for every inte-
ger c there is aKt-minor-free graphG such that every (t − 2)-colouring ofG has a monochromatic
component with more than c vertices [22, 55]. Again, all such examples have unbounded maxi-
mum degree. Indeed, in the setting of bounded-degree graphs, qualitatively different behaviour
occurs. In particular, Liu and Oum [37] proved that bounded-degree graphs excluding a fixed
minor are 3-colourable with bounded clustering (thus generalising the above result of Esperet and
Joret [24] for planar graphs and graphs of bounded Euler genus).

Liu and Oum [37] did not state an explicit bound on the clustering function, but it is at least
exponential in the maximum degree.b We prove (in Theorem 20) that graphs with maximum
degree � that exclude a fixed minor are 3-colourable with clustering O(�5). The proof of this
result is much simpler than that of Liu and Oum [37], and is based on a new structural descrip-
tion of bounded-degree graphs excluding a minor that is of independent interest (Theorems 19
and 24).

Bounded maximum degree alone is not enough to ensure an absolute bound (independent of
the degree) on the number of colours in a clustered colouring. In particular, for all integers �� 2
and c, there is a graph G with maximum degree � such that every ��+2

4 �-colouring of G has a
monochromatic component with more than c vertices; see [1, 31, 55]. This says that in all of the
above results, to achieve an absolute bound on the number of colours, one must assume some
structural property (such as bounded treewidth, being planar, or excluding a minor) in addition
to assuming bounded maximum degree.

aThe Euler genus of the orientable surface with h handles is 2h. The Euler genus of the non-orientable surface with c cross-
caps is c. The Euler genus of a graph G is the minimum integer k such that G embeds in a surface of Euler genus k. Of course,
a graph is planar if and only if it has Euler genus 0; see [43] for more about graph embeddings in surfaces.

A graph H is aminor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges.
A class G of graphs isminor-closed if for every graph G ∈ G, every minor of G is in G. A minor-closed class is proper if it is not
the class of all graphs. For example, for fixed g � 0, the class of graphs with Euler genus at most g is a proper minor-closed
class.

A graph H is apex if H − v is planar for some vertex v.
bChun-Hung Liu (private communication, 2020) believes that the method in [37] could be adapted to give a polynomial

bound using more advanced graph structure theorems.
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To conclude our literature survey, we mention the results of Liu and Wood [38–40] that
generalise the bounded-degree setting. First, Liu and Wood [39] proved that for all s, t, k ∈N,
there exists c ∈N such that every graph with layered treewidth k and with no Ks,t subgraph is
(s+ 2)-colourable with clustering c. The case s= 1 is equivalent to the bounded-degree setting;
thus, this result generalises the above-mentioned 3-colouring results for graphs with bounded
maximum degree. For s� 2, the clustering function here is very large, and the proof is 70+ pages
long. In the setting of excludedminors, Liu andWood [38] proved that for all s, t ∈N and for every
graph H, there is an integer c such that every graph with no H-minor and with no Ks,t-subgraph
is (s+ 2)-colourable with clustering c. Similar results are obtained for excluded topological
minors [40].

2. Planar graphs and generalisations
This section proves that planar graphs with maximum degree � (and other more general classes)
are 3-colourable with clustering O(�2). Let N := {1, 2, . . . } and N0 := {0, 1, . . . }.

2.1 Treewidth
Tree decompositions and treewidth are used throughout this paper. For two graphs G and H,
an H-decomposition of G consists of a collection (Bx:x ∈V(H)) of subsets of V(G), called bags,
indexed by the nodes of H, such that:

• for every vertex v of G, the set {x ∈V(H):v ∈ Bx} induces a non-empty connected subgraph
of H and

• for every edge vw of G, there is a vertex x ∈V(H) for which v,w ∈ Bx.

The width of such an H-decomposition is max{|Bx|:x ∈V(H)} − 1. A tree decomposition is a
T-decomposition for some tree T. Tree decompositions were introduced by Halin [29] and
Robertson and Seymour [49]. The more general notion of H-decomposition was introduced by
Diestel and Kühn [11]. The treewidth of a graph G is the minimum width of a tree decomposition
of G. Treewidth measures how similar a given graph is to a tree. It is particularly important in
structural and algorithmic graph theory; see [6, 30, 46] for surveys.

Our first tool, which was also used by Liu and Wood [39], is the following 2-colouring result
for graphs of bounded treewidth due to Alon et al. [1]. The constant 20 comes from applying a
result from [54].

Lemma 1 ([1]). Every graph with maximum degree � ∈N and treewidth less than k ∈N is
2-colourable with clustering 20k�.

As an aside, it follows from the Lipton–Tarjan separator theorem [36] that n-vertex planar
graphs have treewidthO(

√
n). Thus, Lemma 1 implies that n-vertex planar graphs with maximum

degree� ∈N are 2-colourable with clusteringO(�
√
n), which answers an open problem raised by

Linial et al. [35]. The same result holds for graphs excluding any fixed minor, using the separator
theorem of Alon et al. [2].

2.2 Key lemma
The next lemma is a central result of the paper. Here, a layering of a graphG is an ordered partition
(V0,V1, . . . ) of V(G) such that for every edge vw ∈ E(G), if v ∈Vi and w ∈Vj, then |i− j|� 1.
For example, if r is a vertex in a connected graph G and Vi := {v ∈V(G): distG (r, v)= i} for all
i ∈N0, then (V0,V1, . . . ) is called a BFS layering of G. The lemma assumes that for some layering
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Figure 1. Proof of Lemma 2.

of a graph, every subgraph induced by a bounded number of consecutive layers has bounded
treewidth. This property dates to the seminal work of Baker [4], who used it to obtain efficient
approximation algorithms for various NP-hard problems on planar graphs. We show that graphs
that satisfy this property and have small maximum degree are 3-colourable with small clustering.

Lemma 2. Let G be a graph with maximum degree � ∈N. Let (V0,V1, . . . ) be a layering of G
such that G[

⋃10
j=0 Vi+j] has treewidth less than k ∈N for all i ∈N0. Then G is 3-colourable with

clustering 8000k3�2.

Proof. No attempt is made to improve the constant 8000. We may assume (by renaming the
layers) that V0 =V1 =V2 =V3 =V4 = ∅.

Let i := i mod 3 for i ∈N0. As shown in Figure 1, for i ∈N0, let Gi be the induced subgraph
G[V6i ∪V6i+1 ∪ · · · ∪V6i+4]. Thus Gi has maximum degree at most � and treewidth less than
k. By Lemma 1, Gi has a 2-colouring ci with clustering 20k�. Use colours i and i+ 1 for this
colouring of Gi. We now define the desired colouring c of G. Vertices in V6i ∪V6i+1 coloured i in
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ci keep this colour in c. Vertices in V6i+2 keep their colour from ci in c. Vertices in V6i+3 ∪V6i+4
coloured i+ 1 in ci keep this colour in c. Other vertices are assigned a new colour, as we now
explain.

For j ∈N0 and � ∈ {0, 1, 2}, let Vj,� be the set of vertices in Vj coloured � in the colouring ci
of the corresponding graph Gi (which is well defined since G0,G1, . . . are pairwise disjoint). For
i ∈N0, let

Ai :=
3⋃

j=0
V6i+j,i , Bi :=

4⋃

j=1
V6(i+1)+j,i−1 , Yi :=Ai ∪ V6i+4,i ∪ V6i+5 ∪ V6(i+1),i−1 ∪ Bi.

Note that {Yi:i ∈N0} is a partition of V(G) (since V0 =V1 =V2 =V3 =V4 = ∅). In fact,
(Y0, Y1, . . . ) is a layering of G, since V6i−1 separates Y0 ∪ · · · ∪ Yi−2 and Yi ∪ Yi+1 ∪ · · · .

For i ∈N0, let Zi be the graph obtained from G[Yi] as follows: for each component X of G[Ai]
or G[Bi], contract X into a single vertex vX . The neighbours of vX in Zi are contained within
a monochromatic component of Gi or Gi+1; thus vX has degree at most the size of the corre-
sponding monochromatic component of Gi or Gi+1, which is at most 20k�. Since Zi is a minor
of G[

⋃10
j=0 V6i+j] and treewidth is a minor-monotone parameter, Zi has treewidth less than k. By

Lemma 1, Zi has a 2-colouring c′i with clustering 400k2�. Use colours i and i− 1 for this colouring
of Zi.

We now assign colours to the remaining vertices of G in the colouring c. Vertices in V6i+4,i ∪
V6i+5 ∪V6(i+1),i−1 keep their colour from the colouring c′i of Zi. Note that these vertices were not
contracted in the construction of Zi. For each component X of G[Ai], assign the colour given to
vX in c′i to each vertex in X ∩V6i+3. Similarly, for each component X of G[Bi], assign the colour
given to vX in c′i to each vertex in X ∩V6i+7. This completes the definition of the colouring c of G.

Consider a monochromatic componentM in the 3-colouring c of G. Suppose thatM contains
an edge vw with v ∈ Yi−1 and w ∈ Yi for some i ∈N0. The only colour used by both Yi−1 and Yi
is i− 1; thus M is coloured i− 1. But V6i+2 does not use colour i− 1, and it separates Yi−1 and
Yi. This contradiction shows thatM contains no such edge vw. Since (Y0, Y1, . . . ) is a layering of
G andM is connected,M is contained in some Yi. The only colours used in Yi are i and i− 1. By
symmetry we may assume thatM is coloured i.

IfM is contained in V6i ∪V6i+1 ∪V6i+2, thenM is contained in somemonochromatic compo-
nent of Gi (with respect to the colouring ci), and thus |V(M)|� 20k�. Otherwise,M is contained
in the graph obtained from a monochromatic component C of Zi (with respect to the colouring
c′i) by replacing each contracted vertex vX in C by X. Since |V(C)|� 400k2� and |V(X)|� 20k�,
we conclude that |V(M)|� 8000k3�2. �

2.3 Layered treewidth
Dujmović et al. [19] and Shahrokhi [52] independently introduced the following concept. The
layered treewidth of a graph G is the minimum integer k such that G has a tree decomposition
(Bx:x ∈V(T)) and a layering (V0,V1, . . . ) such that |Bx ∩Vi|� k for every bag Bx and layer Vi.
Applications of layered treewidth include graph colouring [19,39,53], graph drawing [5,19], book
embeddings [17], boxicity [51], and intersection graph theory [52]. The related notion of layered
pathwidth has also been studied [5,13]. In a graph with layered treewidth k, the subgraph induced
by the union of any 11 consecutive layers has treewidth less than 11k. Thus Lemma 2 implies:

Corollary 3. Every graph with layered treewidth k ∈N and maximum degree� ∈N is 3-colourable
with clustering O(k3�2).

This corollary improves on a result of Liu and Wood [39] who proved an upper bound of
O(k19�37) on the clustering function.
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Many classes of graphs are known to have bounded layered treewidth. For example, Dujmović
et al. [19] proved that every planar graph has layered treewidth at most 3, every graph with Euler
genus g has layered treewidth at most 2g + 3, and that any apex-minor-free class of graphs has
bounded layered treewidth. Corollary 3 thus implies the following results.

Corollary 4. Every planar graph with maximum degree � ∈N is 3-colourable with clustering
O(�2).

Corollary 5. Every graph with Euler genus g ∈N0 and maximum degree� ∈N is 3-colourable with
clustering O(g3�2).

Corollary 6. For every fixed apex graph H, every H-minor-free graph with maximum degree� ∈N

is 3-colourable with clustering O(�2).

The above corollaries can also be deduced from Lemma 2 without considering layered
treewidth. First, consider a planar graph G, which we may assume is connected. Let (V0,V1, . . . )
be a BFS layering of G. For i ∈N0, let Gi be obtained from G[V0 ∪V1 ∪ · · · ∪Vi+10] by con-
tracting G[V0 ∪ · · · ∪Vi−1] (which is connected) into a single vertex. Thus Gi is planar and has
radius at most 11. Robertson and Seymour [48] proved that every planar graph with radius d has
treewidth at most 3d. Thus G[Vi ∪ · · · ∪Vi+10], which is a subgraph of Gi, has treewidth at most
33. Corollary 4 then follows from Lemma 2. The same proof works in any minor-closed class for
which the treewidth of any graph G in the class is bounded by a function of the radius of G. For
example, Eppstein [23] proved that every graph with Euler genus g and radius d has treewidth at
most O(gd). Corollary 5 follows. More generally, Eppstein [23] proved that for every apex graph
H, every H-minor-free graph with bounded radius has bounded treewidth. Corollary 6 follows.

Finally, note that one can also prove that every graph with Euler genus g and maximum degree
� is 3-colourable with clustering O(g�6) using Lemma 2 and a result of Esperet and Joret [24].c

2.4 Examples
One advantage for considering layered treewidth is that several non-minor-closed classes of
interest have bounded layered treewidth. We give three examples:

(g,k)-Planar Graphs: A graph is (g, k)-planar if it has a drawing on a surface of Euler genus at
most g such that each edge is involved in at most k crossings (with other edges). Dujmović et al.
[14] proved that every (g, k)-planar graph has layered treewidth O(gk). Corollary 3 implies that
every (g, k)-planar graph with maximum degree � is 3-colourable with clustering O(g3k3�2).
This improves on a result of Liu and Wood [39] who proved an upper bound of O(g19k19�37) on
the clustering function.

Map Graphs: Map graphs are defined as follows. Start with a graph G0 embedded in a surface of
Euler genus g, with each face labelled a ‘nation’ or a ‘lake’, where each vertex of G0 is incident with
at most d nations. Let G be the graph whose vertices are the nations of G0, where two vertices
are adjacent in G if the corresponding faces in G0 share a vertex. Then G is called a (g, d)-map
graph. A (0, d)-map graph is called a (plane) d-map graph; see [8,27], for example. The (g, 3)-map
graphs are precisely the graphs of Euler genus at most g; see [14]. So (g, d)-map graphs generalise

cEsperet and Joret [24] proved that if every plane graph with maximum degree � has a 3-colouring with clustering f (�),
where one colour is not used on the outerface, then graphs with Euler genus g and maximum degree � are 3-colourable with
clusteringO(�2f (�)2g). Now, letG be a plane graph with maximum degree�. LetG+ be the plane graph obtained by adding
one new vertex r adjacent to the vertices on the outerface of G. For i ∈N0, let Vi be the set of vertices in G+ at distance i from
r in G+. By the above contraction argument, (V1, . . . ,Vn) is a layering of G such that any set of 11 consecutive layers induces
a subgraph with bounded treewidth. By Lemma 2, G is 3-colourable with clustering O(�2). Moreover, only two colours are
used on V1 and thus on the outerface of G. By the above-mentioned result of Esperet and Joret [24] with f (�)=O(�2), all
graphs with Euler genus g and maximum degree � are 3-colourable with clustering O(�6g).
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graphs embedded in a surface. Dujmović et al [14] showed that every (g, d)-map graph has layered
treewidth at most (2g + 3)(2d + 1). Corollary 3 then implies that every (g, d)-map graph with
maximum degree � is 3-colourable with clustering O(g3d3�2). This improves on a result of Liu
and Wood [39] who proved an upper bound of O(g19d19�37) on the clustering function.

Graph Powers: For p ∈N, the p-th power of a graph G is the graph Gp with vertex set
V(Gp) :=V(G), where vw ∈ E(Gp) if and only if distG (v,w)� p. It follows from the work of
Dujmović et al. [20] that powers of graphs with bounded layered treewidth and bounded
maximum degree have bounded layered treewidth. Here we give a direct proof with better bounds.

Lemma 7. If G is a graph with layered treewidth k ∈N and maximum degree � ∈N, then Gp has
layered treewidth less than 2pk��p/2�.

Proof. The result is trivial if � = 1, so assume that �� 2. Let (V1,V2, . . . ) be a layering of G
and let (Bx:x ∈V(T)) be a tree decomposition of G such that |Vi ∩ Bx|� k for each i ∈N0 and x ∈
V(T). For each vertex v ∈V(G), let Xv := {w ∈V(G): distG (v,w)� � p

2�}. For each node x ∈V(T),
let B′

x :=
⋃

v∈Bx Xv.
We now prove that (B′

x:x ∈V(T)) is a tree decomposition of Gp. Consider a vertex α ∈V(Gp).
Since α ∈ Xv if and only if v ∈ Xα ,

{x ∈V(T):α ∈ B′
x} =

⋃

v∈Xα

{x ∈V(T):v ∈ Bx}.

Since {x ∈V(T):v ∈ Bx} induces a connected subtree of T, and Xα induces a connected subgraph
of G, it follows that {x ∈V(T):α ∈ B′

x} also induces a connected subtree of T. Now, consider an
edge αβ ∈ E(Gp). There is an edge vw of G (in the ‘middle’ of a shortest αβ-path) such that α ∈ Xv
and β ∈ Xw. Now v,w ∈ Bx for some node x ∈V(T). By construction, α, β ∈ B′

x. This shows that
(B′

x:x ∈V(T)) is a tree decomposition of Gp.
For i ∈N0, letWi :=Vip ∪Vip+1 ∪ · · · ∪V(i+1)p−1. For each edge αβ ∈ E(Gp), if α ∈Vi and β ∈

Vj, then |i− j|� p. Thus if α ∈Wi′ and β ∈Wj′ , then |i′ − j′|� 1. This shows that (W1,W2, . . . )
is a layering of Gp. Since |Xv| < 2��p/2� for each vertex v ∈V(G), for each node x ∈V(T) and
i ∈N0, we have |B′

x ∩Vi| < 2k��p/2�, implying |B′
x ∩Wi| < 2pk��p/2�. Therefore Gp has layered

treewidth less than 2pk��p/2�. �

Corollary 3 and Lemma 7 imply that for every graph with layered treewidth k and maximum
degree �, the p-th power Gp (which has maximum degree less than 2�p) is 3-colourable with
clustering O(k3�3�p/2�+2p). For example, for every (g, k)-planar graph G with maximum degree
�, the p-th power Gp has a 3-colouring with clustering O(g3k3�3�p/2�+2p).

3. Excludedminors
This section shows that graphs excluding a fixed minor and with maximum degree � are
3-colourable with clustering O(�5). The starting point is Robertson and Seymour’s Graph Minor
Structure Theorem, which we now introduce.

3.1 Graphminor structure theorem
For a graph G0 embedded in a surface, and a facial cycle F of G0 (thought of as a subgraph of G0),
an F-vortex (relative to G0) is an F-decomposition (Bx ⊆V(H):x ∈V(F)) of a graph H such that
V(G0 ∩H)=V(F) and x ∈ Bx for each x ∈V(F).

For k ∈N0, a graph G is k-almost embeddable if for some set A⊆V(G) with |A|� k and for
some s ∈ {0, . . . , k}, there are graphs G0,G1, . . . ,Gs such that:
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• G−A=G0 ∪G1 ∪ · · · ∪Gs,
• G1, . . . ,Gs are pairwise vertex-disjoint;
• G0 is embedded in a surface of Euler genus at most k,
• there are s pairwise vertex-disjoint facial cycles F1, . . . , Fs of G0, and
• for i ∈ {1, . . . , s}, there is an Fi-vortex (Bx ⊆V(Gi):x ∈V(Fi)) of Gi (relative to G0) of width
at most k.

The vertices in A are called apex vertices. They can be adjacent to any vertex in G.
It is not clear whether the class of k-almost embeddable graphs is hereditary, so it will be con-

venient to define a graph to be k-almost↓embeddable if it is an induced subgraph of some k-almost
embeddable graph.

In a tree decomposition (Bx:x ∈V(T)) of a graph G, the torso of a bag Bx is the graph obtained
from G[Bx] as follows: for every edge xy ∈ E(T), add every edge vw where v,w ∈ Bx ∩ By.

The following graph minor structure theorem by Robertson and Seymour [50] is at the heart
of graph minor theory.

Theorem 8 ([50]). For every graph H, there exists k ∈N0 such that every graph G that does not
contain H as aminor has a tree decomposition (Bx:x ∈V(T)) such that the torso Gx of Bx is k-almost
embeddable for each node x ∈V(T).

In Theorem 8, we have |Bx ∩ By|� 8k for each edge xy of T because of the following lemma.

Lemma 9 ([19, Lemma 21]). Every clique in a k-almost embeddable graph has size at most 8k.

We need the following slight strengthening of Theorem 8.

Theorem 10. For every graph H, there exists k ∈N such that every graph G that does not contain H
as a minor and has maximum degree at most � ∈N has a tree decomposition (Bx:x ∈V(T)) such
that for each node x ∈V(T), the torso Gx of Bx is k-almost↓embeddable and has maximum degree
less than 8k�.

Proof. Let (Bx:x ∈V(T)) be a tree decomposition of G such that each torso is k-almost↓
embeddable, and subject to this condition,

∑
x∈V(T) |Bx| is minimum. This is well defined by

Theorem 8.
Consider an edge xy ∈ E(T). Let Tx,y be the component of T − xy containing x. Let

Vx,y := ⋃{Bz \ By:z ∈V(Tx,y)}. Suppose for the sake of contradiction that some vertex v ∈ Bx ∩ By
has no neighbour in Vy,x. Let B′

z := Bz \ {v} for each z ∈V(Ty,x), and let B′
z := Bz for each z ∈

V(Tx,y). Since induced subgraphs of k-almost↓ embeddable graphs are k-almost↓ embeddable,
(B′

z:z ∈V(T)) is a tree decomposition of G such that each torso is k-almost↓ embeddable. (This
is the reason we define k-almost↓ embeddability.) Since v ∈ By, we have |B′

y| < |By|, implying∑
z∈V(T) |B′

z| <
∑

z∈V(T) |Bz|. This contradicts the choice of (Bx:x ∈V(T)). Hence every vertex
in Bx ∩ By has a neighbour in Vy,x.

Consider a node x ∈V(T), a vertex v ∈ Bx, and some edge vw of the torso Gx that is not
in G[Bx]. By definition of the torso, v,w ∈ Bx ∩ By for some edge xy ∈ E(T). As shown above,
there is an edge vu in G with u ∈Vy,x; let φx(v,w) := (v, u). Since u /∈ Bx and |Bx ∩ By|� 8k (by
Lemma 9), we have |φ−1

x (v, u)| < 8k (all the elements in the pre-image of (v, u) with respect to φx
are of the form (v, z) with z ∈Vx ∩Vy). Thus degGx (v)< 8k degG (v)� 8k�. �

Let C1 = {v1, . . . , vk} be a k-clique in a graphG1. Let C2 = {w1, . . . ,wk} be a k-clique in a graph
G2. Let G be the graph obtained from the disjoint union of G1 and G2 by identifying vi and wi
for i ∈ {1, . . . , k}, and possibly deleting some edges in C1 (= C2). Then G is a clique-sum of G1
and G2.

The following is a direct consequence of Theorem 10.
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Corollary 11. For every proper minor-closed class G, there exists k ∈N such that every graph G in
G with maximum degree at most � ∈N is obtained by clique-sums of k-almost↓embeddable graphs
of maximum degree less than 8k�.

3.2 Partitions
A vertex-partition, or simply partition, of a graph G is a set P of non-empty sets of vertices in G
such that each vertex of G is in exactly one element of P . Each element of P is called a part. The
quotient of P is the graph, denoted by G/P , with vertex set P where distinct parts A, B ∈P are
adjacent in G/P if and only if some vertex in A is adjacent in G to some vertex in B.

A partition P of a graph G is called an H-partition if H is a graph that contains a spanning
subgraph isomorphic to the quotientG/P . Alternatively, anH-partition of a graphG is a partition
(Ax:x ∈V(H)) of V(G) indexed by the vertices of H, such that for every edge vw ∈ E(G), if v ∈Ax
andw ∈Ay then x= y or xy ∈ E(H). Thewidth of such anH-partition is max{|Ax|:x ∈V(H)}. Note
that a layering is equivalent to a path partition.

Dujmović et al. [18] introduced a layered variant of partitions (analogous to layered treewidth
being a layered variant of treewidth). The layered width of a partition P of a graph G is the mini-
mum integer � such that for some layering (V0,V1, . . . ) ofG, each part inP has at most � vertices
in each layer Vi. A partition P of a graph G is a (k, �)-partition if P has layered width at most �

and G/P has treewidth at most k. A class G of graphs admits bounded layered partitions if there
exist k, � ∈N such that every graph in G has a (k, �)-partition.

Several recent results show that various graph classes admit bounded layered partitions. The
first results were for minor-closed classes by Dujmović et al. [18], who proved that planar graphs
admit bounded layered partitions; more generally, that graphs of bounded Euler genus admit
bounded layered partitions; andmost generally, a minor-closed class admits bounded layered par-
titions if and only if it excludes some apex graph. Some results for non-minor-closed classes were
recently obtained by Dujmović et al. [20]. For example, they proved that (g, k)-planar graphs and
(g, d)-map graphs admit bounded layered partitions amongst other examples.

Dujmović et al. [18] showed that this property implies bounded layered treewidth.

Lemma 12 ([18]). If a graph G has a (k, �)-partition, then G has layered treewidth at
most (k+ 1)�.

What distinguishes layered partitions from layered treewidth is that layered partitions lead
to constant upper bounds on the queue-number and non-repetitive chromatic number, whereas
for both these parameters, the best known upper bounds obtainable via layered treewidth
are O( log n). This led to the positive resolution of two old open problems; namely, whether
planar graphs have bounded queue-number [18] and whether planar graphs have bounded non-
repetitive chromatic number [16]. Other applications include p-centred colouring [10] and graph
encoding/universal graphs [7, 15, 25].

Our next tool is the following result by Dujmović et al. [18].

Lemma 13 ([18]). Every k-almost embeddable graph with no apex vertices has an (11k+ 10, 6k)-
partition.

3.3 Excluding aminor
We now prove that a result like Lemma 13 also holds for k-almost embeddable graphs in which
all the apex vertices have bounded degree (and in particular if the graph has bounded degree).

Lemma 14. Let G be a graph such that, for some A⊆V(G), every vertex in A has degree at most
� ∈N, and G−A has a (k, �)-partition. Then G has a (k+ 1, 2��|A|)-partition.
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Proof. Let P be a (k, �)-partition of G−A, where P has layered width at most � with respect
to a layering (V0,V1, . . . ) of G−A. Let I be the set of integers i such that some vertex in A has
a neighbour in Vi. Thus |I|��|A|. Let P be the path graph (0, 1, . . . ). For j ∈N0, let dj be the
minimum distance in P from j to a vertex in I. For i ∈N0, let Wi be the union of the sets Vj such
that dj = i. For each edge vw of G, if v ∈Va and w ∈Vb then |a− b|� 1, implying |da − db|� 1.
Thus (W0,W1, . . . ) is a layering of G−A. Observe that each layerWi is the union of at most 2|I|
original layers (at most two layers between each pair of consecutive elements in I, plus one layer
before min I and one layer after max I). Thus P has layered width at most 2�|I|� 2��|A| with
respect to (W0,W1, . . . ). By construction, the vertices of G−A that are neighbours of vertices in
A are all inW0. Add A toW0. We thus obtain a layering of G. LetQ be the partition of G obtained
from P by adding one new part A. Thus Q has layered width at most 2��|A| with respect to
(W0,W1, . . . ). Since G/Q has only one more vertex than (G−A)/P , the treewidth of G/Q is at
most k+ 1. �

Lemma 13 and 14 lead to the next result.

Lemma 15. Every k-almost↓ embeddable graph G such that every apex vertex has degree at most
� ∈N has an (11k+ 11, 12k2�)-partition.

Proof. By definition, G is an induced subgraph of a k-almost embeddable graphG′. Since deleting
an apex vertex in a k-almost embeddable graph produces another k-almost embeddable graph,
we may assume that G and G′ have the same set A of apex vertices. By Lemma 13, G′ −A has
an (11k+ 10, 6k)-partition P ′. Let P be obtained by restricting P ′ to V(G−A). Thus P is an
(11k+ 10, 6k)-partition of G−A. Since every vertex in A has degree at most � in G, the result
follows from Lemma 14. �

Dujmović et al. [18] introduced (an equivalent version of) the following definitions and lemmas
as a way to handle clique-sums. Let C be a clique in a graph G, and let {C0, C1} and {P1, . . . , Pc}
be partitions of C. A (k, �)-partition P of G is (C, {C0, C1}, {P1, . . . , Pc})-friendly if P1, . . . , Pc ∈P
and P has layered width at most � with respect to some layering (V0,V1, . . . ) of G with C0 ⊆V0
and C1 ⊆V1.

Lemma 16 ([18]). Let G be a graph that has a (k, �)-partition. Let C be a clique in G, and let
{C0, C1} and {P1, . . . , Pc} be partitions of C such that |Cj ∩ Pi|� 2� for each j ∈ {0, 1} and each
i ∈ {1, . . . , c}. Then G has a (C, {C0, C1}, {P1, . . . , Pc})-friendly (k+ c, 2�)-partition.

A graphG admits clique-friendly (k, �)-partitions if for every clique C inG, and for all partitions
{C0, C1} and {P1, . . . , Pc} of C, there is a (C, {C0, C1}, {P1, . . . , Pc})-friendly (k, �)-partition of G.
A graph class G admits clique-friendly (k, �)-partitions if every graph in G admits clique-friendly
(k, �)-partitions.

Lemma 17 ([18]). Let G be a graph class that admits clique-friendly (k, �)-partitions. Then the class
of graphs obtained from clique-sums of graphs in G admits clique-friendly (k, �)-partitions.

Lemma 15 and 16 lead to the next result.

Lemma 18. Every k-almost↓embeddable graph G of maximum degree at most � ∈N admits clique-
friendly (19k+ 11, 24k2�)-partitions.

Proof. By Lemma 15, G has an (11k+ 11, 12k2�)-partition. It follows from Lemma 16 and 9 that
G admits clique-friendly (19k+ 11, 24k2�)-partitions. �

The following result, of independent interest, says that bounded-degree graphs excluding a
fixed minor admit bounded layered partitions.
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Theorem 19. For every fixed graph H, there is a constant k ∈N such that every H-minor-free graph
with maximum degree � ∈N has a (k, k�)-partition.

Proof. Let G be an H-minor-free graph with maximum degree �. By Corollary 11, there
is a constant k0 (depending only on H) such that G can be obtained by clique-sums of k0-
almost↓embeddable graphs with maximum degree at most 8k0�. By Lemma 18, each such graph
admits clique-friendly (19k0 + 11, 24k20 · 8k0�)-partitions. It follows from Lemma 17 that G also
admits clique-friendly (19k0 + 11, 192k30�)-partitions. The result follows where k := max{19k0 +
11, 192k30}. �

With these tools, we are now ready to prove the main result of this section.

Theorem 20. For every fixed graph H, every H-minor-free graph G with maximum degree � ∈N

is 3-colourable with clustering O(�5).

Proof. Let G be an H-minor-free graph with maximum degree �. By Theorem 19, for some con-
stant k (depending only on H), G has a (k, k�)-partition. Lemma 12 implies that G has layered
treewidth at most (k+ 1)k�. By Corollary 3, G has a 3-colouring with clustering O(k6�5). �

3.4 Strong products
Some of the above structural results can be interpreted in terms of products. The strong product
of graphs A and B, denoted by A� B, is the graph with vertex set V(A)×V(B), where distinct
vertices (v, x), (w, y) ∈V(A)×V(B) are adjacent if:

• v=w and xy ∈ E(B), or
• x= y and vw ∈ E(A), or
• vw ∈ E(A) and xy ∈ E(B).

Lemma 1 was proved using the following result by an anonymous referee of the paper by Ding
and Oporowski [12] (refined in [54]).

Lemma 21 ([12,54]). Every graph with maximum degree � ∈N and treewidth less than k ∈N is a
subgraph of T � K20k� for some tree T.

Lemma 1 follows from Lemma 21 by first properly 2-colouring T and then colouring each
vertex of the graph by the colour of the corresponding vertex of T.

The next observation by Dujmović et al. [18] follows immediately from the definitions.

Observation 22 ([18]). A graph G has an H-partition of layered width at most � ∈N if and only if
G is a subgraph of H � P�K� for some path P.

Dujmović et al. [18] also showed that if one does not care about the exact treewidth bound,
then it suffices to consider partitions with layered width 1.

Observation 23 ([18]). If a graph G⊆H � P� K� for some graph H of treewidth at most k and
for some path P, then G⊆H′ � P for some graph H′ of treewidth at most (k+ 1)� − 1.

By these two observations, Theorem 19 can be restated as follows:

Theorem 24. For every fixed graph X, every X-minor-free graph with maximum degree � ∈N is a
subgraph of H � P for some graph H of treewidth O(�) and for some path P.

It is worth highlighting the similarity of Lemma 21 and Theorem 24. Lemma 21 says that graphs
of bounded treewidth and bounded degree are subgraphs of the product of a tree and a complete
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graph of bounded size, whereas Theorem 24 says that bounded-degree graphs excluding a fixed
minor are subgraphs of the product of a bounded treewidth graph and a path.

4. Open problem
We conclude with a natural open problem that arises from this work. Are planar graphs with
maximum degree � 3-colourable with clustering O(�)? A construction of Kleinberg et al. [34]
shows a lower bound of �(�1/3), while a slightly different construction by Esperet and Joret [24]
shows �(�1/2).
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[10] Dębski, M., Felsner, S., Micek, P. and Schröder, F. (2020) Improved bounds for centered colorings. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms (SODA’20) (S. Chawla, ed.), pp. 2212–2226.
[11] Diestel, R. and Kühn, D. (2005) Graph minor hierarchies. Discrete Appl. Math. 145(2) 167–182.
[12] Ding, G. and Oporowski, B. (1995) Some results on tree decomposition of graphs. J. Graph Theory 20(4) 481–499.
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