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Direct numerical simulation of
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and rough-to-smooth step changes
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Direct numerical simulations (DNS) are reported for open-channel flow over
streamwise-alternating patches of smooth and fully rough walls. The rough patch
is a three-dimensional sinusoidal surface. Owing to the streamwise periodicity, the
flow configuration consists of a step change from smooth to rough, and a step
change from rough to smooth. The friction Reynolds number varies from 437 over
the smooth patch to 704 over the rough patch. Through the fully resolved DNS dataset
it is possible to explore many detailed aspects of this flow. Two aspects motivate this
work. The first one is the equilibrium assumption that has been widely used in both
experiments and computations. However, it is not clear where this assumption is valid.
The detailed DNS data reveal a significant departure from equilibrium, in particular
over the smooth patch. Over this patch, the mean velocity is recovered up to the
beginning of the log layer after a fetch of five times the channel height. However,
over the rough patch, the same recovery level is reached after a fetch of two times
the channel height. This conclusion is arrived at by assuming that an error of up to
5 % is acceptable and the log layer, classically, starts from 30 wall units above the
wall. The second aspect is the reported internal boundary-layer (IBL) growth rates
in the literature, which are inconsistent with each other. This is conjectured to be
partly caused by the diverse IBL definitions. Five common definitions are applied
for the same DNS dataset. The resulting IBL thicknesses are different by 100 %,
and their apparent power-law exponents are different by 50 %. The IBL concept, as
a layer within which the flow feels the surface underneath, is taken as the basis
to search for the proper definition. The definition based on the logarithmic slope
of the velocity profile, as proposed by Elliot (Trans. Am. Geophys. Union, vol. 39,
1958, pp. 1048–1054), yields better consistency with this concept based on turbulence
characteristics.

Key words: turbulence simulation, turbulent boundary layers

1. Introduction
Changes in surface roughness occur in many fabricated or natural applications.

Examples include the edges of forests, wind farms or the bio-fouled patches on a

† Email address for correspondence: amirreza.rouhi@unimelb.edu.au
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FIGURE 1. (Colour online) Schematic representation of the IBL, IEL and transition layer,
adopted from Savelyev & Taylor (2005), for a boundary layer over (a) a rough-to-smooth
step change and (b) a smooth-to-rough step change. Here U(x, z) denotes the streamwise
velocity, averaged over time and spanwise direction, and δ(x) and δi(x) are the boundary
layer and IBL thicknesses, respectively.

ship hull. Surface change may occur in the streamwise direction (Antonia & Luxton
1971), spanwise direction (Anderson et al. 2015) or oblique to the flow direction. In
more complex cases, a combination of these surface changes may occur (Bou-Zeid,
Parlange & Meneveau 2007; Yang & Meneveau 2017). This study investigates the
streamwise step change from a smooth surface to a rough surface, and vice versa,
collectively referred to as streamwise-varying roughness.

Streamwise-varying roughness triggers various flow phenomena. Following the
surface change the near-wall flow deviates from equilibrium. Depending on the
surface change from smooth to rough or rough to smooth the surface drag increases
or decreases. Consequently, the near-wall flow decelerates during smooth-to-rough
surface change (Antonia & Luxton 1971; Efros & Krogstad 2011) and accelerates
during rough-to-smooth surface change (Antonia & Luxton 1972; Mulhearn 1978).
While the near-wall flow is affected by the new surface, the flow away from the
wall still carries the history from the upstream surface (figure 1). The near-wall
layer that is influenced by, but not necessarily in equilibrium with, the new surface
is known as the internal boundary layer (IBL) (Kaimal & Finnigan 1994; Brutsaert
1998; Savelyev & Taylor 2005). The IBL thickness δi is the maximum height up to
which the new surface effect is present, and separates the affected and unaffected
regions. The lower part of the IBL that has reached equilibrium with the new surface
is referred to as the internal equilibrium layer (IEL). The flow is still transitioning
above the IEL and below δi (figure 1). The IEL is not the focus of this study and
only the IBL is discussed. The IBL grows until it reaches the boundary-layer edge.
At that point the flow recovers to a new equilibrium across the whole boundary layer.
The recovery length depends on various factors including the surface properties, the
Reynolds number and the quantity of interest (Antonia & Luxton 1971).

Streamwise-varying roughness has been investigated theoretically, numerically and
experimentally (wind tunnel or field measurements). Here, only the numerical and
wind tunnel experimental studies are reviewed, as being within the scope of this article.
For interested readers some theoretical studies are those of Elliott (1958), Panofsky &
Townsend (1964) and Calaf, Meneveau & Meyers (2010), and some field experiments
are those of Miyake (1965), Bradley (1968) and Munro & Oke (1975).

The wind tunnel experiments were conducted over a fabricated rough-to-smooth
surface change, or vice versa. The roughness geometries were composed of
square bars (Antonia & Luxton 1971, 1972; Efros & Krogstad 2011; Jacobi &
McKeon 2011), grit roughness (Hanson & Ganapathisubramani 2016) or mesh
roughness (Carper & Porté-Agel 2008; Chamorro & Porté-Agel 2009; Hanson &
Ganapathisubramani 2016). The measuring devices varied depending on the parameter
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of interest. For the mean or root-mean-square (r.m.s.) velocity, studies used hot-wire
anemometry (Antonia & Luxton 1971, 1972; Cheng & Castro 2002; Chamorro &
Porté-Agel 2009; Hanson & Ganapathisubramani 2016), laser Doppler anemometry
(Loureiro et al. 2010; Efros & Krogstad 2011) or particle image velocimetry (Carper
& Porté-Agel 2008; Jacobi & McKeon 2011). To measure the wall shear stress, due
to the measurement difficulties over rough surfaces, the smooth surface following
the rough-to-smooth step change was mostly emphasised (figure 1a). Studies have
used the Preston tube (Antonia & Luxton 1972; Hanson & Ganapathisubramani
2016), Clauser fitting (Carper & Porté-Agel 2008) or velocity gradient at the nearest
measured point to the wall (Chamorro & Porté-Agel 2009; Jacobi & McKeon 2011).

The computational studies have mostly used wall-modelled large-eddy simulation
(WMLES) or Reynolds-averaged Navier–Stokes. For WMLES, the near-wall region
and hence the rough surface are modelled with a wall model. The commonly used
wall model is the equilibrium logarithmic law of the wall (Bou-Zeid, Meneveau &
Parlange 2004; Silva-Lopes, Palma & Piomelli 2015), and its extension to non-neutral
flow using Monin–Obukhov similarity theory (Albertson & Parlange 1999a,b; Lin &
Glendening 2002; Stoll & Porté-Agel 2006). The only fully resolved studies were the
direct numerical simulations (DNS) by Lee (2015) and Ismail, Zaki & Durbin (2018).
In both studies, the rough surface was composed of square bars. However, Lee (2015)
considered a smooth-to-rough step change in a boundary layer, while Ismail et al.
(2018) considered a rough-to-smooth step change in a channel flow.

The computational studies differ from the wind tunnel experiments in two aspects.
First is the flow configuration, which is boundary layer in the experiments, while
it is typically full-channel or open-channel flow in the computations. Second is Reτ ,
which is of the order of 103 in the experiments (Antonia & Luxton 1971; Hanson &
Ganapathisubramani 2016), while it is of the order of 105–106 in the WMLES studies
(Miller & Stoll 2013; Silva-Lopes et al. 2015) and about 200–1000 in the DNS studies
(Lee 2015; Ismail et al. 2018).

All the previous studies are invaluable in understanding the physics of the
streamwise-varying roughness. Some aspects of this flow demand high-fidelity
three-dimensional datasets. Two of these aspects that motivate this article are outlined
below.

(i) Equilibrium assumption. In most of the experimental or numerical studies, the
measurements/calculations are performed from a certain height z+ (in wall units)
above the wall. Consequently, the missing near-wall region is modelled mostly with
an equilibrium assumption. For instance, Carper & Porté-Agel (2008) carried out a
particle image velocimetry study of the rough-to-smooth surface change at Reτ ' 8800.
The first measured point was at z+' 88. Therefore, a Clauser fit was used to estimate
the wall shear stress. Antonia & Luxton (1972) studied a rough-to-smooth step change
at Reτ ' 1700. They used a Preston tube to measure the wall shear stress. The tube
diameter was D+ ' 95, implying that the equilibrium assumption was used up to
z+ ' 95. They noticed a 25 % difference between the Preston tube wall shear stress
and the Clauser fit wall shear stress. Hanson & Ganapathisubramani (2016) studied
a rough-to-smooth step change with Reτ close to that of Antonia & Luxton (1972).
They also used a Preston tube with D+ close to that of Antonia & Luxton (1972).
They obtained wall shear stress close to that of Antonia & Luxton (1972). Jacobi
& McKeon (2011) studied a perturbed boundary layer by a short rough patch at
Reτ ' 970–1200. They measured the flow over the downstream smooth surface down
to z+ ' 3. They conjectured that the viscous sublayer departed from equilibrium.
Therefore, they instead used the wall shear stress of a canonical boundary layer for
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inner scaling. In the computational studies with WMLES, Reynolds number is high.
Therefore, equilibrium is assumed for a larger extent of the wall layer. For instance,
in Saito & Pullin (2014) at Reτ ' 2× 104–2× 106 the first grid point was at z+' 410.
In Silva-Lopes et al. (2015) at Reτ = 1.5 × 105 the first grid point was at z+ ' 260.
Despite the extensive use of the equilibrium assumption, it is not clear where this
assumption is valid.

(ii) Internal boundary layer. The IBL thickness δi has been quantified based on many
definitions (table 1 of Savelyev & Taylor 2005). Thickness δi and its growth rate
(mostly described with a power law δi ∝ xα) appear to depend on the definition of δi.
The studies that adopted the same definition obtained close α. However, those that
used different definitions, despite the similar flow conditions, obtained different α.
For instance, Cheng & Castro (2002) and Lee (2015) studied a smooth-to-rough
step change at Reτ = 2500 and 180. They used the same definition (Pendergrass &
Arya 1984) and obtained close α (0.33, 0.22). Antonia & Luxton (1971) and Win,
Mochizuki & Kameda (2010) studied a smooth-to-rough step change at Reτ = 2200
and 2600. They used the same definition (Antonia & Luxton 1971) and obtained close
α (0.72, 0.8). From these two pairs of studies, comparing Antonia & Luxton (1971)
with Cheng & Castro (2002), the reported α differ by more than two times. However,
both considered a smooth-to-rough step change at close Reτ . It is conjectured that
the definition of δi is a major cause of discrepancy. A separate study that investigates
this possibility is still missing.

This article aims to address the two above-mentioned aspects. For this purpose,
DNS of open-channel flow are performed with a bottom wall equally paved with
smooth and rough patches. The presented DNS differ from Lee (2015) and Ismail
et al. (2018) in two aspects. First, the roughness here is a three-dimensional sinusoidal
wall with the mean roughness height aligned with the smooth patch (figure 2). In Lee
(2015) and Ismail et al. (2018) roughness is made of square bars with the mean height
above the smooth patch. Second, here with the streamwise periodicity both rough-
to-smooth and smooth-to-rough step changes are studied simultaneously. In contrast,
Lee (2015) only considered a smooth-to-rough step change, and Ismail et al. (2018)
only considered a rough-to-smooth step change. After describing the DNS set-up (§ 2),
the results section starts with the domain-length study (§ 3.1). Then, the equilibrium
assumption is investigated (§ 3.2). Finally, the definitions of δi are thoroughly studied
to search for the most physically consistent choice (§ 3.3).

2. Direct numerical simulation
The continuity and Navier–Stokes equations are solved in this study:

∂ui

∂xi
= 0,

∂ui

∂t
+
∂uiuj

∂xj
=Gδi1 −

1
ρ

∂ p̃
∂xi
+ ν

∂2ui

∂x2
j
, (2.1a,b)

where x1, x2 and x3 (or x, y and z) are the streamwise, spanwise and wall-normal
directions corresponding to the velocity components u1, u2 and u3 (or u, v and w),
respectively. The pressure gradient ∂p/∂xi has been decomposed into the constant
volume and time-averaged driving part −ρG, and the periodic part ∂ p̃/∂xi.

Open-channel flow is the computational domain (figure 2). The bottom surface is
equally divided between the smooth and rough patches. The smooth surface is aligned
with the mean roughness height (figure 2a), and the z-coordinate origin is placed at
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FIGURE 2. (Colour online) Computational domain equally divided between the smooth
and rough patches. The bottom solid surface is identified with iso-surface of φp = 0.5.
Here φp is the volume of fluid for the pressure cells (appendix A). (a) Side view of the
domain, at the smooth-to-rough surface change overlaid by the grid. (b) The roughness
elements, coloured by z/h. The red curve is the friction Reynolds number Reτ ≡ uτh/ν
based on the local uτ .

the aligned height. The distance between the aligned height and the top boundary
is denoted by h. Periodic boundary conditions are imposed in the streamwise and
spanwise directions. No-slip boundary condition is imposed on the bottom surface
through an immersed boundary method (IBM; appendix A) and free-slip boundary
condition is imposed on the top boundary. Parameter G in (2.1b) is chosen such that
the global Reynolds number Reτo ≡ uτoh/ν = 590, where uτo is the friction velocity
based on the total bottom wall drag, averaged over time and the entire bottom surface.
Similar to a homogeneous channel flow, G= u2

τo
/h. However, local Reτ ≡ uτh/ν (based

on local uτ ) varies from about 700 over the rough patch to about 430 over the smooth
patch (figure 2). The local uτ accounts for both the viscous and form (pressure) drags,
which is calculated by integrating the IBM force (appendix A). The bulk velocity is
constant in each streamwise location. Therefore, the rough patch exerts a larger drag
(larger uτ ) than the smooth patch. In other words, Reτ > 590 over the rough patch and
Reτ < 590 over the smooth patch.

The rough patch (figure 2b) is made of ‘egg-carton’ roughness (Chan et al. 2015;
Chung et al. 2015). The roughness surface zr is the following sinusoidal function:

zr = k cos(2πx/λ) cos(2πy/λ), (2.2)

where k= 0.056h and λ= 7.1k are the roughness height and wavelength, respectively.
For the ‘egg-carton’ roughness, Chan et al. (2015) found that the mean roughness
height is an appropriate choice for the virtual origin. Furthermore, Chan et al. (2015)
and Chung et al. (2015), by fitting the data of this roughness geometry in the fully
rough regime, obtained the equivalent sand-grain roughness ks' 4.1k. Therefore, with
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Case Lx/h Nx ×Ny ×Nz ∆+xs
, ∆+xr

∆+ys
, ∆+yr

∆+zs
|0, ∆

+

zr
|0 λ/∆x λ/∆y

6h 6.06 384× 384× 400 6.9, 11.9 3.6, 6.3 0.3, 0.5 25.2 48.0
12h 12.03 768× 384× 400 6.7, 11.5 3.5, 6.1 0.2, 0.4 25.4 48.0
24h 23.96 1536× 384× 400 6.7, 11.9 3.5, 6.3 0.2, 0.5 25.5 48.0

TABLE 1. Domain size and grid resolution information. For all cases Reτo = 590 (based
on the global uτo and h) and Ly/h= 3.1808. Parameters ∆+xs

, ∆+ys
and ∆+zs

|0 are scaled by
uτ at a fetch of 2h over the smooth patch. Parameters ∆+xr

, ∆+yr
and ∆+zr

|0 are scaled by
uτ at a fetch of 2h over the rough patch. Here ∆+zs

|0, ∆
+

zr
|0 are the near-wall 1z+ at z= 0.

Parameters λ/∆x and λ/∆y indicate the number of grid points per roughness wavelength
in the streamwise and spanwise directions, respectively.

the current set-up, the flow falls into the fully rough regime over the rough patch,
k+s ' 165. For further information on the geometric characteristics of this type of
roughness, the reader is referred to table 2 of Chan et al. (2015).

Equations (2.1a,b) are integrated in time using the fractional-step algorithm (Perot
1993). The time-marching scheme is the third-order Runge–Kutta (Spalart, Moser &
Rogers 1991). Spatial discretisation is the fully conservative fourth-order symmetry-
preserving scheme of Verstappen & Veldman (2003). Appendix A contains details of
the numerical scheme, IBM and verification against a body-conforming grid solver.

Three cases are considered whose domain sizes and grid resolutions are listed
in table 1. For these cases all the input parameters are the same except the
domain lengths (6h, 12h and 24h). Uniform grid spacing is used in the streamwise
and spanwise directions. For the wall-normal grid, a uniform distribution with
∆zuτo/ν = 0.35 is generated up to the roughness crest, and then is stretched up
to the top boundary in a tangent-hyperbolic mapping (figure 2a). The grid sizes are
normalised by the local uτ at a fetch of 2h over the smooth patch (∆+xs

, ∆+ys
, ∆+zs
|0)

and at a fetch of 2h over the rough patch (∆+xr
, ∆+yr

, ∆+zr
|0). The reason for measuring

the resolution at a distance of 2h is the small variation in the local uτ (less than 6 %)
beyond a fetch of 2h. The choices of the resolutions in table 1 are from various
verification studies (appendix A).

To ease the discussion, the x-coordinate at the rough-to-smooth step change is
xRS and at the smooth-to-rough step change is xSR (figure 2). The statistics over
the smooth patch are averaged over time and spanwise directions. Over the rough
patch, first the statistics are averaged over time and spanwise directions, considering
only the in-fluid cells. Then they are streamwise-averaged from a distance of λ/2
upstream to λ/2 downstream. For locations with distances less than λ/2 to xSR or xRS,
the averaging window is constrained by the distance to xSR or xRS. Throughout this
article U,W and P denote the streamwise and wall-normal mean velocities and mean
pressure, respectively. Parameters urms, vrms and wrms are the r.m.s. of streamwise,
spanwise and wall-normal fluctuating velocities, respectively. All these statistics are
averaged following the described procedure. Also 〈.〉 by default denotes the same
averaging procedure (i.e. 〈u〉 = U), unless it appears with a subscript (i.e. 〈u〉t is
time-averaged u). All the parameters in plus units (.)+ are normalised by the local
uτ and ν (where uτ is averaged following the averaging procedure described).

3. Results
The results are presented in three subsections. In § 3.1 the parameters of interest

are shown insensitive to the domain length and streamwise periodicity. In § 3.2
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FIGURE 3. (Colour online) Comparison of the local Reτ between cases 6h (– – –), 12h
(– - – - –) and 24h (——), the cases being shown on the right. Comparison over (a) the
smooth patch and (b) the rough patch. The x-origin is placed at (a) xRS and (b) xSR.

the equilibrium assumption and its range of validity are studied. Finally, in § 3.3
definitions of δi are studied to find the most physical choice.

3.1. Domain-length effect
In the streamwise-varying roughness, flow recovery is slow (§ 3.2). Full recovery is
reached after a fetch of 64h (Saito & Pullin 2014). Consequently, the previous wind
tunnel experiments (Antonia & Luxton 1971; Hanson & Ganapathisubramani 2016)
or DNS studies (Lee 2015; Ismail et al. 2018) do not reach full recovery due to
development lengths that are less than 20δ (or 20h). However, full recovery is not
the focus of this study. The focus here is on the flow within the IBL in the near field
of the surface transition. Given the finite patch length and streamwise periodicity, the
unrecovered flow prior to the surface change will in general influence the downstream
flow. However, Bou-Zeid, Meneveau & Parlange (2005) also simulated step changes in
a periodic open-channel set-up to replicate the measurements of Bradley (1968). They
argued that the near-wall flow (within the IBL) was insensitive to domain periodicity.
Here, this insensitivity is verified by comparing the three domain lengths of table 1.
Additionally, in appendix B the case of 12h is compared with a non-periodic rough-
to-smooth case, where fully recovered flow over a rough wall is imposed to the inlet,
at the beginning of the smooth patch.

The patch-length effect on Reτ is studied over the smooth patch (figure 3a) and
the rough patch (figure 3b). The origin has been placed at the beginning of the
corresponding patch, to better isolate the domain-length effect. Except the shortest
domain length (case 6h), the two longer cases yield almost identical Reτ over both
the smooth patch (figure 3a) and the rough patch (figure 3b). Even the maximum
difference between case 6h and the two longer cases is only 6.7 % (near xRS).

The patch-length effect on U+ and u+rms is studied over the smooth patch (figure 4)
and the rough patch (figure 5). The IBL thickness δE (– –E– –) (defined by Elliott
(1958) and discussed in § 3.3) has been overlaid on the contour lines. Within the IBL,
cases 12h and 24h yield almost identical U+ and u+rms. This is better demonstrated
by comparing the U+ and u+rms profiles up to a fetch of 2.5h over the smooth patch
(figure 4b,d) and over the rough patch (figure 5b,d). Within the IBL, the maximum
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FIGURE 4. (Colour online) Contour lines of (a) U+ and (c) u+rms for the three domain
lengths over the smooth patch. The x-origin is placed at xRS (consider the top domains).
Profiles of (b) U+ and (d) u+rms at several (x− xRS): 1 0.5h, 2 1.5h and 3 2.5h. Legends
are consistent with those of figure 3. Quantities in plus units are scaled by the local uτ
and ν. The IBL thickness, defined by Elliott (1958), is overlaid on the contour lines and
profiles (– –E– –).

difference between cases 12h and 24h in the U+ profiles is 1 % over both the smooth
patch (figure 4b) and the rough patch (figure 5b). Within the IBL, the maximum
difference in the u+rms profiles is 4 % over the smooth patch (figure 4d) and 1 % over
the rough patch (figure 5d). As a further support for the small dependence on the
domain length, the IBL thicknesses are compared in figure 6. The maximum difference
between cases 12h and 24h is 5 % over the smooth patch (figure 6a) and 3 % over
the rough patch (figure 6b). Similar to the findings here, in appendix B negligible
difference within the IBL is seen between case 12h and the non-periodic case; the
difference is less than 1 % in U+, and 4 % in u+rms and Reτ .

The identical statistics below δi and the differences above δi are justifiable through
the IBL concept: a layer that is influenced by the surface underneath. Below δi,
the flow ignores its history from the upstream surfaces. Therefore, it has minimal
dependence on the patch length. Above δi, however, the flow carries its history
from upstream surfaces. Therefore, it depends on the patch length. This section and
appendix B show that with domain lengths of at least 12h (6h for each patch), the
flow inside the IBL remains insensitive to the patch length and streamwise periodicity.
The results reported in the rest of this paper are from the longest case (case 24h).
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FIGURE 5. (Colour online) Contour lines of (a) U+ and (c) u+rms for the three domain
lengths over the rough patch. The x-origin is placed at xSR (consider the top domains).
Profiles of (b) U+ and (d) u+rms at several (x− xSR): 1 0.5h, 2 1.5h and 3 2.5h. Legends
are consistent with those of figure 3. Quantities in plus units are normalised by the local
uτ and ν. The IBL thickness, defined by Elliott (1958), is overlaid on the contour lines
and profiles (– –E– –).
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FIGURE 6. (Colour online) IBL thickness defined by Elliott (1958) (δE, discussed in § 3.3)
over (a) the smooth patch and (b) the rough patch. Cases 6h (u, red), 12h (u, blue) and
24h (u, black). The insets are the same plots using log–log scales.
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FIGURE 7. Variations of (a) U/Ub, (b) (h/Ub)(∂U/∂x), (c) [h/(ρU2
b)](∂P/∂x), (d) W/Ub

and (e, f ) urms/Ub, scaled by the bulk velocity Ub and h. The regions over the smooth
patch (S1+S2) and rough patch (R1+R2) are separated into zones S1 and R1 that cover
a fetch of 2h, and zones S2 and R2 that cover the remaining portions. The fields are
overlaid by the spanwise projection of the roughness, in black colour. In (c) the total
pressure gradient ∂P/∂x includes the driving −ρG and periodic ∂P̃/∂x parts. In ( f ) the
z-axis is in log scale to highlight the near-wall region. The outer peak of urms over the
smooth patch is marked with (– – –).

3.2. Equilibrium assumption
In this subsection validity of the equilibrium assumption is examined. First, the overall
flow behaviour is described (figure 7). The quantities are scaled by the bulk velocity
Ub ' 12.78uτo and channel height h. For ease of discussion, each patch is divided
into two zones: S1 and S2 over the smooth patch, and R1 and R2 over the rough
patch. Zones S1 and R1 cover up to a fetch of 2h, where the flow variations are
rapid. Zones S2 and R2 cover the remaining portions, where the flow variations are
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more gradual. As a measure of the flow acceleration or deceleration, (h/Ub)(∂U/∂x)
is plotted in figure 7(b). In figure 7(c) the pressure gradient ∂P/∂x includes both the
driving part (−ρG) and the periodic part (∂P̃/∂x). During the step change the periodic
∂P̃/∂x becomes an order of magnitude larger than the driving −ρG. In other words,
hG/U2

b ' 6× 10−3 which is not visible with the colour range in figure 7(c).
In figure 7(b) following the rough-to-smooth step change the near-wall flow

accelerates, while away from the wall the flow decelerates. This is because
dUb/dx =

∫ h
0 (∂U/∂x) dz = 0, and ∂U/∂x > 0 near the wall must be accompanied

by ∂U/∂x < 0 away from the wall. Simultaneously, the flow is exposed to
an adverse pressure gradient (APG) (∂P/∂x > 0), which becomes strong at the
beginning of zone S1 (figure 7c). Following the smooth-to-rough step change, the
acceleration/deceleration mechanism is reversed: the near-wall flow decelerates while
the outer one accelerates, and the flow is exposed to a favourable pressure gradient.
In figure 7(d) immediately downstream of the rough-to-smooth step change (zone S1),
the wall-normal flow direction is downward (W < 0), while immediately downstream
of the smooth-to-rough step change (zone R1), the wall-normal flow direction is
upward (W > 0). This behaviour is justifiable through the continuity equation,
∂U/∂x + ∂W/∂z = 0. In zone S1, ∂U/∂x > 0 near the wall requires ∂W/∂z < 0,
and since W = 0 at the wall, W must be negative near the wall. The same analysis
justifies positive W in zone R1.

Some interesting phenomena are seen in the urms field (figure 7e, f ). Immediately
downstream of the rough-to-smooth step change, there is a locally high urms region
(at x− xSR '−12h and z' 0.05h). Along the smooth patch, urms near the wall (z .
0.5h) is decreased, while away from the wall (z> 0.5h) it preserves its intensity. This
leads to formation of an outer peak in the urms field (marked with the dashed magenta
curve). Immediately downstream of the smooth-to-rough step change (at x− xSR ' 0)
there is a sudden rise in urms. Along the rough patch the high-intensity urms around
the roughness elements gradually propagates to higher z distances. These phenomena
are further investigated next.

3.2.1. Rough-to-smooth step change
The profiles of U and urms up to a fetch of 2h over the smooth patch are shown

in figure 8. The profiles are scaled by Ub and h in figure 8(a,b), local uτ and ν in
figure 8(c,d) and uτo and ν in figure 8(e, f ). Over the smooth patch, Reτ converges to
the asymptotic value of 437. Therefore, to measure the flow distance to equilibrium,
a separate simulation of fully developed smooth open-channel flow at Reτ = 437 was
conducted (Lx/h× Ly/h= 2π×π, ∆+x ×∆

+

y ' 10.7× 5.4).
In figure 8(c) the U+ profiles substantially depart from equilibrium. The departure

even propagates down to the buffer and viscous sublayer regions (z+ . 30). Due to
the thinner buffer layer, a downshift appears in the U+ profiles. Similar downshift
is seen in the APG boundary layers (Nickels 2004). When the APG strength P+x ,
ν/(ρu3

τ )(∂P/∂x), goes beyond 0.005, it breaks the linear viscous sublayer. Here, from
the beginning of the smooth patch up to a fetch of 2h, P+x varies from 0.022 to 0.001
(not shown). Therefore, it is possible that APG is causing the downshift in the U+
profiles. This possibility was examined by reconstructing the U+ profiles using the
obtained P+x from DNS, substituted in Nickel’s formulation for the viscous sublayer
(U+ = z+ + 1/2P+x z+

2
+ h.o.t) and the log layer ((3.1) in Nickels 2004). At each x-

location, P+x is constant for z+6 100. The reconstructed profiles had a much shallower
downshift than what is seen in figure 8(c). Therefore, the downshift is not merely
caused by APG.
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FIGURE 8. (Colour online) Profiles of (a,c,e) U and (b,d, f ) urms up to a fetch of 2h over
the smooth patch, zone S1. Profiles are normalised by (a,b) Ub,h, (c,d) local uτ and ν and
(e, f ) uτo and ν. The black curves are equally spaced in the range 0.2h 6 (x− xRS)6 1.8h
(the shadowed box at the top). Here (x− xRS)= 0.05h (——), 0.08h (– - – - –, blue), 0.1h
(– – –) and 2h (– - – - –, magenta); DNS of fully developed smooth open-channel flow at
Reτ = 437 (+).

One can also see that there is a change in the logarithmic slope of the U+ profiles
across the channel. This is better demonstrated in figure 9(a) showing the U+ profile
at (x− xRS)= 2h. To detect the slope change, the slope curve ∂U+/∂ ln(z+) at (x− xRS)

= 2h (——) is compared with the equilibrium counterpart (+) in figure 9(b). For
equilibrium open-channel flow, ∂U+/∂ ln(z+) yields almost a plateau for 40. z+.300,
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FIGURE 9. (Colour online) Profiles of (a) U+ and (b) its logarithmic slope ∂U+/∂ ln(z+)
for case 24h at (x− xRS)= 2h (——), indicated in the top domain. The inner and outer
logarithmic slopes are identified through the extrema of ∂U+/∂ ln(z+) (u, red; u, blue).
The fitting lines (– – –) and (– - – - –) have the same slopes as the extrema. Fully developed
open-channel flow at Reτ =437 (+). Canonical boundary layer at Reτ '445 (E) by Jiménez
et al. (2010).

indicating that the logarithmic region dominates the wake in this range. This is clear
when compared to a canonical boundary layer (E) at similarly matched Reτ ' 445
(Jiménez et al. 2010), which yields a narrow logarithmic region but a strong outer
wake. During the rough-to-smooth step change (——) the slope curve yields a
local minimum (u, red) and a local maximum (u, blue) at z+ ' 40 and z+ ' 200,
indicating the inner and outer logarithmic slopes, respectively. The inner slope reflects
the influence of the new smooth surface, while the outer slope owing to the weak
channel wake predominantly reflects the flow history from the upstream rough surface.
The new surface effect can also be seen in figure 8(e) comparing the U profiles with
their most upstream counterpart (the green curve). The extent up to which each
profile departs from the green curve (which also appears as the inner logarithmic
slope) is the result of the new surface underneath.

In figure 8(b,d, f ) the urms profile at the very beginning of the smooth patch (the
green curve at x − xRS = 0.05h) yields a large inner peak (at z+ ' 9). This peak
corresponds to the high near-wall urms appearing immediately downstream of the
rough-to-smooth step change, discussed earlier in figure 7(e, f ). It is the remnant
of the turbulent fluctuations emanated from the upstream rough patch. This peak
is different from the inner peak formed further downstream due to the buffer layer
formation (the magenta dashed-dotted curve at z+ ' 14). This is better shown in
figure 10, comparing the urms profiles immediately upstream of the rough-to-smooth
step change (x − xRS = −0.05h) with the profiles immediately downstream of the
step change (x − xRS = 0.05h) and at a fetch of 2h (x − xRS = 2h). To make the
profiles comparable, they are scaled by Ub. As is seen, the inner peak immediately
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FIGURE 10. (Colour online) Profiles of urms, normalised by Ub, at (x − xRS) = −0.05h
(- - - -), 0.05h (——) and 2h (– - – - –), indicated in the domain on the right. The vertical
dashed line locates the roughness crest (z= k). The upward and downward arrows indicate
the inner and outer peaks of (– - – - –).

Study Reτr , Reτs k/h k+s Rough/smooth schematic figure

Case 24h 715, 443 0.056 165 Egg carton
Ismail et al. (2018) 2220, 1277 0.083 1540 Square bars

TABLE 2. Summary of flow configuration for case 24h and rough-to-smooth DNS of
Ismail et al. (2018). The rough patch Reynolds number Reτr = uτr h/ν is computed at
(x − xRS) = −h, and the smooth patch Reynolds number Reτs = uτs h/ν is computed at
(x− xRS)= 7.5h. The arrow indicates the flow direction.

downstream of the step change (the green solid curve) is a weakened remnant of the
inner peak immediately upstream of the step change (the black dotted curve). Further
downstream at (x− xRS)= 2h (the magenta dashed-dotted curve), two different peaks
appear which are identified by arrows. The inner peak (the upward arrow) is due to
the buffer layer formation, and the outer one (the downward arrow) is due to the
surface change. The magenta curve matches the most upstream profile (the green
solid curve) beyond the outer peak location. Along the smooth patch the outer peak
moves to a higher z (figure 8f ), locating the maximum height up to which urms is
influenced by the surface underneath. This outer peak is marked with a magenta
dashed curve in figure 7(e, f ).

The profiles of U and urms in the remaining portion of the smooth patch, zone S2,
are shown in figure 11. In this figure the x-distance between the first and the last
profile is four times larger than the one in figure 8. However, the profile variation
is much slower. In other words, the recovery for the initial 2h fetch length is much
faster than that for the remaining portion. By the end of the smooth patch, the flow
is still not fully recovered. The effect of the upstream rough patch still persists in the
urms profile (figure 11b,d, f ), as well as the U profile (figure 11a,c,e).

Recovery of U+ over the smooth patch is compared with the rough-to-smooth
DNS of Ismail et al. (2018) in figure 12 and table 3. The configuration of Ismail
et al. (2018) differs from the current case (case 24h) in several aspects (table 2).
These aspects include: Reτ , roughness shape, roughness size and roughness origin.
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FIGURE 11. (Colour online) Profiles of (a,c,e) U and (b,d, f ) urms for 3h6 (x− xRS)6 11h,
zone S2. Normalisation is consistent with figure 8. The black curves are equally spaced
in the range 5h6 (x− xRS)6 9h (the shadowed box). Here (x− xRS)= 3h (——) and 11h
(– - – - –). DNS of fully developed smooth open-channel flow at Reτ = 437 (+).

Considering figure 12, initially at (x − xRS) = 0.8h (figure 12a) the U+ profile of
Ismail et al. (2018) yields a larger departure from equilibrium. Nevertheless, after
a fetch of (x − xRS) = 4.1h (figure 12c) the U+ profile of both datasets reaches the
same recovery level. This is better quantified in table 3, which reports the z+ up to
which U+ differs from the fully developed profile U+S by less than 1 %, 2 % and 5 %.
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FIGURE 12. (Colour online) Rough-to-smooth comparison of U+ profiles between
case 24h (——) and DNS of Ismail et al. (2018) (– – –). Comparison is made at the
several (x− xRS) locations (shown in the domain): (a) 0.8h; (b) 2.5h; (c) 4.1h; (d) 7.5h.
Fully recovered flow for case 24h at Reτ = 437 (+) and Ismail et al. (2018) at Reτ = 1115
(×).

It is seen that the recovered z+ between case 24h and Ismail et al. (2018) does
not change beyond a fetch of (x − xRS) = 4.1h, despite the differences in Reτ and
roughness geometry. This finding is different from the WMLES of Saito & Pullin
(2014) over rough-to-smooth step change, and vice versa. They showed that varying
Reτ by two orders of magnitude delays the recovery distance of U+ by two to three
times. This difference might be due to the wider range of Reτ in Saito & Pullin
(2014) or due to the WMLES, which inherently assumes some degree of equilibrium.

Table 3 shows that the equilibrium assumptions must be applied cautiously over the
rough-to-smooth step change. For instance, to predict uτ by at least 5 % error from
the equilibrium profile, the flow must be resolved down to z+ ' 9 at a fetch of 2.5h,
and z+' 69 at a fetch of 7.5h. Beyond a fetch of 11h, fitting at any z+ yields uτ with
less than 5 % error. Note that these findings are based on the processed datasets and
may change for other datasets.
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(x− xRS)/h |U+ −U+S |/U
+

S z+ (case 24h) z+ (Ismail et al. 2018)

2.5
61 % 65 63
62 % 66 64
65 % 69 67

7.5
61 % 612 611
62 % 618 616
65 % 669 665

11.0
61 % 620 NA
62 % 648 NA
65 % 6Reτ NA

TABLE 3. Recovery in U+ of case 24h and DNS of Ismail et al. (2018) after the rough-to-
smooth step change. Recovery is measured based on 1 %, 2 % or 5 % difference with the
U+S profile of fully developed smooth channel. The fully developed case is at Reτ = 437
for case 24h and Reτ = 1115 for Ismail et al. (2018).

3.2.2. Smooth-to-rough step change
Figure 13 shows the profiles of U and urms up to a fetch of 2h over the rough patch,

zone R1. To measure the flow recovery, the profiles are compared against the DNS of
homogeneous ‘egg-carton’ rough open-channel flow, with k/h= 0.056 at the expected
fully recovered flow condition over the rough patch (Reτ = 704, Lx/h× Ly/h' 5.97×
3.18, ∆+x ×∆

+

y ' 10.9× 5.8).
The U+ profiles (figure 13c), similar to the smooth patch, yield two logarithmic

slopes with the inner one having a higher slope than the outer one. In figure 13(b,d, f )
the urms profiles yield an inner peak below the roughness crest (z/h' 0.04, z/k' 0.7).
Chan et al. (2018) used a triple decomposition over the ‘egg-carton’ roughness. They
observed that the inner peak is due to the turbulent wakes behind the roughness
elements. In the triple decomposition the fluctuations are decomposed into the
coherent or time-averaged spatially varying part ũi= 〈ui〉t −Ui (where 〈.〉t is averaged
over time) and the background turbulence or time-varying part u′i = ui − 〈ui〉t. As
shown in figure 10 (the green solid curve), the remnant of this inner peak persists
in urms at the beginning of the smooth patch. The urms inner peak over the rough
patch does not change significantly up to a fetch of 2h (figure 13b, f ). This is not
seen in the u+rms profiles (figure 13c) because of their scaling by the variable local uτ .
Beyond a fetch of 2h (figure 14b, f ) the urms inner peak gradually decreases. Above
the roughness crest (z/k > 1), on the other hand, urms gradually increases along the
rough patch (figures 13b and 14b). Figure 7(e) shows the decrease of urms inner peak
and its increase above the crest.

Profiles of U and urms over the remainder of the rough patch, zone R2, are shown
in figure 14. Compared to the smooth patch (figure 11) it appears that the profiles
are recovered to a higher z+ after a fetch of 11h. The recovery over the rough patch
is quantified in table 4, which confirms that recovery occurs faster compared to the
recovery over the smooth patch (compare table 4 with table 3). Based on the 2 %
threshold, recovery in U+ over the rough patch (versus smooth patch) reaches up to
z+ ' 21 (versus z+ ' 6) after a fetch of 2.5h, z+ ' 475 (versus z+ ' 18) after a fetch
of 7.5h and z+ ' 528 (versus z+ ' 48) after a fetch of 11h.

The study in this section yields a higher reliability of equilibrium assumptions
over the rough patch than the smooth patch. If an error up to 5 % were considered
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FIGURE 13. (Colour online) Profiles of (a,c,e) U and (b,d, f ) urms up to a fetch of 2h over
the rough patch, zone R1. Normalisation is consistent with figure 8. The vertical dashed
line locates the roughness crest. The black curves are equally spaced in the range 0.8h6
(x− xSR)6 1.8h, (x− xSR)= 0.2h (——), 0.4h (– - – - –, blue), 0.6h (– – –) and 2h (– - – - –,
magenta). Fully developed open channel over homogeneous ‘egg-carton’ roughness (E),
with k/h= 0.056 at Reτ = 704.

acceptable and if the beginning of the log layer is classically noted as 30 wall
units above the wall, over the rough patch the log-law assumption becomes
valid (i.e. recovery reaches the beginning of the log layer) after a fetch of 2.5h.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.84


468 A. Rouhi, D. Chung and N. Hutchins

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

101 102 103 101 102 103
0

5

10

15

0

5

10

15

20

101 102

zu†o/˜

z+ z+

U
/u

† o

u+ rm
s

u r
m

s/
u †

o

U+

U
/U

b

z/h z/h

zu†o/˜
103 101 102 1030

1

2

3

4

0.2 0.4 0.6 0.8 1.00

0.1

0.2

0.3

u r
m

s/
U

b

0

1

2

3

4

-12
-6

0
6

12

(x - xSR)/h

(a) (b)

(c)   (d)

(e)   (f)

FIGURE 14. (Colour online) Profiles of (a,c,e) U and (b,d, f ) urms for 3h6 (x− xSR)6 11h,
zone R2. Normalisation is consistent with figure 8. The black curves are equally spaced
in the range 5h6 (x− xSR)6 10h, (x− xSR)= 3h (——) and 11h (– - – - –). Fully developed
open channel over homogeneous ‘egg-carton’ roughness (E), with k/h = 0.056 at Reτ =
704.

However, over the smooth patch the same assumption is valid only after a fetch
of 5h. This conclusion is consistent with the results of Bou-Zeid et al. (2005) who
compared WMLES of rougher-to-smoother transition (and vice versa) with the field

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.84


DNS of flow over smooth-to-rough and rough-to-smooth step changes 469

(x− xSR)/h |U+ −U+R |/U
+

R z+ z/ks

2.5
61 % 619 60.11
62 % 621 60.12
65 % 628 60.16

7.5
61 % 6125 60.78
62 % 6163 61.01
65 % 6Reτ 64.35

11.0
61 % 6169 61.05
62 % 6528 63.28
65 % 6Reτ 64.35

TABLE 4. Recovery in U+ of case 24h after the smooth-to-rough step change based on
the 1 %, 2 % or 5 % difference with the U+R profile of fully developed homogeneous rough
wall open-channel flow. The fully developed case is at Reτ = 704 with the same roughness
properties and channel height as the smooth-to-rough case. Here ks ≈ 30z0 ≈ 4.1k.

measurements of Bradley (1968). They observed large discrepancy with the field
measurements at the initial 5h distance after each step change. The discrepancy was
decreased by further refining the grid and resolving the flow to a lower z+.

3.3. Internal boundary layer
This section studies the IBL and attempts to find a proper definition for its thickness δi.
The literature has not converged on a unified definition of δi, and this consequently
hinders a systematic comparison of the IBL growth rates. To demonstrate this
divergence of views, some of the common definitions and the previous studies
that have adopted these definitions are outlined in table 5. The corresponding Reτ in
each study as well as the obtained power-law exponents α for the IBL growth rate
(δi ∝ xα) are added to the table.

The obtained power-law exponents in table 5 are compiled in figure 15. To ease
the interpretation, the studies that have adopted the same definition are shown with the
same symbol (and the same colour). Additionally, the results of some of the definitions
that were applied to case 24h are added to figure 15, and are highlighted with circled
symbols. At a fixed Reynolds number over either the smooth or the rough patch, the
obtained values of α from different definitions are substantially different from each
other. This is also supported by the 50 % variance seen in the resulting values of α,
obtained from case 24h. Thus, it appears that part of the scatter seen in figure 15
stems from the different definitions. Note that the studies highlighted with asterisks
in table 5 considered transitions from a rougher to a smoother surface. Disregarding
these studies from figure 15 (which correspond to some symbols for Reτ > 6× 104)
does not reduce the scatter caused by the IBL definition. In this section, the definitions
of δi arranged in table 5 are discussed further, through their application to case 24h.
Eventually, a reliable definition is proposed according to the physical justifications.

Figure 16 shows the application of the definitions of δi (table 5) to case 24h. Each
field in figure 16 shows the characteristic parameter (e.g. ∂U/∂x, ∂urms/∂x) to quantify
δi based on each definition. All the definitions are invariant to the normalising velocity
or length scale. The markers on each panel locate δi based on the corresponding
definition. However, for definition AL (figure 16e) it is not trivial to identify δi from
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FIGURE 15. (Colour online) Values of the power-law exponent α for δi from the previous
studies in table 5. Studies that have adopted the same definition of δi are indicated with
the same symbol. (a) Rough-to-smooth and (b) smooth-to-rough step change. AW (p); AL
(E); BMP (+); SP (×); E (u); PA (@). The circled symbols at Reτ =443 (a) and Reτ =715
(b) are obtained from application of different definitions of δi to case 24h.

the current data. To recognise the different definitions, the subscript of δi shows the
definition used from table 5 (e.g. δBMP is obtained from BMP, Bou-Zeid et al. 2004).

Figure 16(a) corresponds to δAW based on ∂U/∂x. As was discussed in § 3.2,
∂U/∂x is a measure of flow acceleration/deceleration. Originally this method was
applied to boundary layer data, and a threshold was necessary for ∂U/∂x ' 0.
This is due to the unbounded nature of the boundary layer, in which the flow
acceleration/deceleration near the wall is gradually decreased to zero away from
the wall (Hanson & Ganapathisubramani 2016). For the channel flow, since ∂U/∂x
changes its sign at some distance away from the wall (§ 3.2), detecting ∂U/∂x= 0 is
straightforward. Figure 16(b,c) corresponds to δBMP and δSP, respectively. Parameter
δBMP is defined as the height where the local ∂U/∂z is equal to its x-averaged value,
〈.〉x, and δSP is based on ∂u2

rms/∂x= 0.
Figure 16(d) shows the characterising parameter to identify δE, defined based on

the observation made in § 3.2. The mean velocity profile after a surface change yields
two logarithmic slopes. The inner slope is the result of the new surface and the
outer slope is the imprint of the previous surface. Elliott (1958) defines δE as the
intersection point of inner and outer slopes. To detect the slopes in each x-location,
the slope curve ∂U+/∂ ln (z+) is plotted for the velocity profile at that location.
This is demonstrated in figure 17 for a profile in the middle of the smooth patch
(figure 17a,c) and for a profile in the middle of the rough patch (figure 17b,d). Note
that the choice for scaling the profiles (here uτ and ν) does not affect the obtained δE.
The inner and outer logarithmic slopes appear as extrema in ∂U+/∂ ln (z+). Once the
slopes (extrema) are found, two fitting lines with the same slopes are passed through
the velocity profile at the located extrema. Here δE is identified by intersecting
the two fitted lines. Application of this approach to the whole field is shown in
figure 16(d). The inner and outer slopes can be recognised as the two distinct
(blue and red) regions. In addition to Elliott (1958), Panofsky & Townsend (1964)
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FIGURE 16. (Colour online) Application of the definitions of δi in table 5 to case 24h.
(a) AW, (b) BMP, (c) SP, (d) E, (e) AL. In each panel the contour plot shows
the characteristic parameter to identify δi, and the symbols locate δi based on the
corresponding definition (δAW (p), δBMP (+), δSP (×), δE (u)). In (e) detecting δi from AL
was not straightforward (refer to text). The fields are overlaid by the spanwise projection
of the roughness, in black colour.

proposed a variant of δE where δi was placed higher up, at the beginning of the upper
logarithmic region. Here, the definition by Elliott (1958) is preferred as Panofsky &
Townsend’s (1964) definition requires a threshold for the upper logarithmic region,
while Elliott’s (1958) definition, based on the intersection of the two logarithmic
lines, is not dependent on a threshold.

The same slope-based approach was followed to calculate δAL (Antonia & Luxton
1971). According to this definition, if the mean velocity is plotted against z1/2, it
yields two distinct straight-line slopes and δAL falls at their intersection. The profiles
of U/Ub versus (z/h)1/2, over both the smooth and rough patches, are shown in
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FIGURE 17. (Colour online) Identifying δE from logarithmic slope change. The quantities
are normalised by the local uτ and ν. Profiles of (a,b) U+ at (x − xSR) = −6h and 6h,
indicated in the computational domain. Profiles of (c,d) ∂U+/∂ ln(z+) corresponding to the
profiles in (a,b). The inner and outer slopes are the extrema of ∂U+/∂ ln(z+) (u, red;u,
blue). Here δE (u, magenta) is located by intersecting the inner (– – –) and outer (– - – - –)
logarithmic fitting lines.

figure 18. The profiles do not show two slopes. This is supported by the slope curves
∂(U/Ub)/∂(z/h)1/2 (figure 18c,d). Other than distinct peaks close to the wall, there
are no clear extrema and no signs of the two distinct slopes that should be yielded
by this technique. Figure 16(e) shows the characteristic parameter ∂(U/Ub)/∂(z/h)1/2
over the entire domain. Due to the gradual variation of this quantity, δAL is difficult
to detect. The problem in applying this technique may lie with the lower Reynolds
number of the current simulation. The experiments where this technique was applied
extended up to and beyond Reτ ' 2000.

The method proposed by Pendergrass & Arya (1984) is not applicable to
channel flow as is quantified based on the velocity deviation from its undisturbed
profile upstream of the surface change. In a channel flow there is a strong
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FIGURE 18. Profiles of (a,b) U/Ub versus (z/h)1/2 at the same locations indicated in
figure 17. Profiles of (c,d) the slope curves, ∂(U/Ub)/∂(z/h)1/2, corresponding to the
profiles in (a,b).

acceleration/deceleration during each surface change (figure 7b) that substantially
modifies the U profile across the entire channel. Hence the new profile is no longer
comparable to the one upstream.

All δi values calculated from the different definitions are plotted in figure 19.
Over the rough patch (figure 19c,e), with the exception of δSP (×), the three other
definitions yield almost identical growth rates, especially for (x− xSR)> 4h. However,
over the smooth patch, a discrepancy of up to 100 % is seen among the definitions.
Assessment of the obtained values of α (figure 19d,e) reveals their sensitivity to
definition, which was earlier conjectured as one possible cause of scatter in the
literature (figure 15). One notable behaviour in δBMP (+) is its almost identical growth
rate over the smooth and rough patches, an observation that was earlier discussed by
Bou-Zeid et al. (2004) and Silva-Lopes et al. (2015). Both Bou-Zeid et al. (2004)
and Silva-Lopes et al. (2015) considered transitions from a rougher surface to a
smoother surface (and vice versa), with roughness height ratios of z01/z02 = 10−1 and
z01/z02 ≈ 10−3, respectively. Despite the differences between the current DNS and
these two studies, in each study δBMP yields the same power-law scaling over both
smooth (or smoother) and rough (or rougher) surfaces, albeit with different power-law
scaling α between the studies.

One key finding from this section is the sensitivity of δi to its definition. This
explains some of the discrepancies in the literature. The remainder of this section
attempts to arrive at a physically motivated definition. The IBL definition must be
consistent with the IBL concept, a layer that is influenced by the new surface and
above which the flow does not feel the surface underneath. This concept also includes
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FIGURE 19. (Colour online) Comparison between the definitions of δi throughout the
domain in linear scale (a). The resulting δi plotted in log scale over (b) the smooth patch
and (c) the rough patch. Note that the origin has been shifted to the beginning of the
smooth patch (xRS) in (b,d). Power-law fitting the resulting δi over (d) the smooth patch
and (e) the rough patch. Definitions: δAW (p, – – –); δBMP (+, – - – - –); δSP (×, - - - -); δE
(u, ——). The framed regions in (b,c) highlight the close behaviour of δE and δBMP within
a fetch of 3h.

turbulence characteristics, i.e. turbulence characteristics within the IBL differ from
those above. However, all the definitions of δi in table 5 (except δSP) are derived
from the mean velocity. Therefore, a fair examination of consistency between the IBL
concept and the IBL definitions would be through the turbulence characteristics.

Various definitions may be chosen to characterise turbulence. Here, the ratio of
the turbulent time scale over the mean time scale S∗ ≡ |S|K/ε (Pope 2000, § 7.1.7)
is selected, where K and ε are the turbulent kinetic energy and its dissipation
rate, respectively. Parameter |S| =

√
2SijSij is the mean strain-rate magnitude.

In an equilibrium smooth-channel flow at Reτ ' 395, S∗ is almost constant for
0.1 6 z/h 6 0.7 (less than ±10 % variation). This range covers the heights above
the buffer region up to the outer wake region. The constant S∗ is linked to the
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FIGURE 20. (Colour online) The normalised mean shear rate S∗ = |S|K/ε, overlaid with
the IBL definitions: (a) δAW (p), (b) δBMP (+), (c) δSP (×) and (d) δE (u). The fields are
overlaid by the spanwise projection of the roughness, in black colour.

production–dissipation balance and constancy of the normalised Reynolds shear stress
by K (Pope 2000). In figure 20, S∗ is plotted, overlaid by the four IBL definitions.
The region very close to the bottom surface (the red region for z/h. 0.1) corresponds
to the viscous and buffer regions, and is disregarded. Considering 0.16 z/h6 0.6, S∗
highlights two distinct regions, which differ in turbulence characteristics. The region
closer to the wall is influenced by the new surface, while the region away from the
wall preserves the characteristics associated with the previous surface. Among all
the IBL definitions, δE appears to behave more consistently with the distinct regions
created by S∗. Over the rough patch, all the IBL definitions, except δSP, behave in a
manner consistent with the distinct regions. However, over the smooth patch, only δE
captures the sharp gradient in S∗ that marks the edge of the IBL. As a support to the
latter argument, the gradient magnitude of S∗, |∇S∗| =

√
(∂S∗/∂x)2 + (∂S∗/∂z)2, is

plotted in figure 21. The regions where this quantity is maximum correspond to the
regions where S∗ has the largest variation (i.e. turbulence characteristics are changing).
As is seen in figure 21(a), the regions of maximum |∇S∗| appear as layers that are
emanated from the leading edges of the smooth and rough patches. In figure 21(b)
it is seen that over each patch, δE is coincident with this newly formed layer of
maximum |∇S∗| that is emanated from the leading edge of each patch.

Consistency of the IBL definitions with the IBL concept is examined through the
r.m.s. quantities over the smooth patch in figure 22. Profiles of urms (figure 22b),
vrms (figure 22c) and wrms (figure 22d), at a fetch of 2h, 5h, 8h and 11h over the
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FIGURE 21. (Colour online) The gradient magnitude of S∗ (|∇S∗|) corresponding to
figure 20 is shown in (a) and (b). In (b) |∇S∗| is overlaid with δE (u). The fields are
overlaid by the spanwise projection of the roughness, in black colour.

smooth patch (– – –) are compared with their upstream counterparts immediately
downstream of the rough-to-smooth step change, at a fetch of 0.1h (——). At
each downstream location, the height up to which the r.m.s. profile departs from
its upstream counterpart indicates the maximum height to which the new surface
influence has reached (i.e. IBL concept based on r.m.s. quantities). Figure 22 shows
that among the four overlaid δi definitions, δE (u) coincides better with the departure
point for all three r.m.s. quantities; this is more evident in the most downstream
profile at (x− xRS)= 11h. The same study was conducted over the rough patch (not
shown), and with the exception of δSP the three other definitions agreed well with
the departure point. Therefore, from turbulence characteristics and r.m.s. quantities
it is concluded that δE is more consistent with the IBL concept. Based on either
turbulence characteristics S∗ (figures 20 and 21) or any of the r.m.s. quantities
(figure 22), Elliott’s (1958) definition (δE, u) is consistent with the IBL concept.
Therefore, any new IBL definition that is derived from S∗ or Reynolds stresses would
be no different from δE.

This section represents the first to analyse the IBL definitions so extensively,
highlighting the large discrepancy in IBL growth rates from the various definitions
for the same flow. We can thus propose the most physically consistent IBL definition.

4. Conclusions
In this study, DNS of open-channel flow over streamwise-alternating patches

of smooth and fully rough walls were investigated. The computational domain
was equally divided between the smooth patch and the rough patch. Owing to the
streamwise periodicity, both rough-to-smooth and smooth-to-rough step changes were
studied. With the detailed information provided by DNS, some aspects of this flow
were investigated that were hard to explore through either experimental techniques
or computational models. These aspects included: (1) the validity of the equilibrium
assumptions and (2) a thorough study of the IBL definitions.

Before studying the above-mentioned aspects, it was ensured that the parameters of
interest are invariant to the finite domain size, and its periodicity. For this aim, three
cases with domain lengths varying from 6 to 24 times the channel height h as well
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FIGURE 22. (Colour online) (a) The urms field overlaid with the IBL definitions.
Comparison of profiles of (b) urms, (c) vrms and (d) wrms, after a fetch of 2h, 5h, 8h and
11h over the smooth patch (– – –), with their upstream counterparts after a fetch of 0.1h
(——). The extracted locations are indicated in the urms field in (a). The four overlaid
IBL definitions are: δAW (p), δBMP (+), δSP (×) and δE (u). The spanwise projection of
the ‘egg-carton’ roughness is indicated with black colour.

as a non-periodic rough-to-smooth case with fully developed inflow were simulated.
The results showed that with a domain length of at least 12h (assigning 6h to each
patch), the flow quantities within the IBL are not influenced by the domain length
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and periodicity. Above the IBL, due to the history effects, the flow remains sensitive.
Nevertheless, the physics of interest occur within the IBL or at its edge, including the
wall shear stress, the IBL thickness and the flow recovery.

Assessment of the mean velocity profiles revealed that the equilibrium assumptions
are not entirely valid, in particular over the smooth patch. If an error of up to 5 % is
noted acceptable and if the beginning of the log layer is classically noted as 30 wall
units above the wall, over the rough patch the log-law assumption becomes valid after
a fetch of 2.5h, while over the smooth patch it is valid after a fetch of 5h.

An extensive study was conducted of the IBL. Most commonly used definitions
of the IBL thickness were tested with the current DNS. It was noticed that for
the same dataset, depending on the definition, the resulting IBL thickness may
differ by up to 100 %. To choose the proper definition, the authors started from the
fundamental perception of the IBL, as a layer that separates the region influenced by
the surface underneath from the uninfluenced one. Then, they applied this concept to
the turbulence characteristics and r.m.s. quantities. Results showed that the definition
by Elliott (1958), which is based on the logarithmic slope change of the velocity
profile, is more consistent with this perception of the IBL.
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Appendix A. Numerical scheme and the IBM
In this appendix details of the numerical scheme, the IBM and verification of the

numerical set-up against a body-conforming grid solver are presented.
Equation (2.1) in § 2 is integrated in time using the fractional-step algorithm (Perot

1993). The time-marching scheme is the third-order Runge–Kutta (Spalart et al. 1991),
which divides each time step into three sub-steps. During each sub-step, the fractional-
step algorithm consists of the following three steps to update the velocity from the
current sub-step (un

i ) to the next sub-step (un+1
i ).

(1) Predicting the intermediate velocity (u∗i ):

u∗i − un
i

∆t
= Explicit+ ν

(
∂2ui

∂x2
3

)n,∗

+ Fm
i , (A 1)

Explicit= ξm

[
−

1
ρ

〈
dP
dx

〉
φuδi1 −

1
ρ

(
∂ p̃
∂xi

)n]
+

[
ν

(
∂2

∂x2
1
+
∂2

∂x2
2

)
ui −

∂uiuj

∂xj

]n,n−1

.

(A 2)

(2) Solving the Poisson equation:

1
ρ

∂2
[δp̃]
∂x2

j
=

1
ξm∆t

∂u∗i
∂xi

. (A 3)
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(3) Updating the velocity (un+1
i ) and periodic pressure (p̃n+1) for the next sub-step:

un+1
i = u∗i −

ξm∆t

ρ

∂[δp̃]
∂xi

, p̃n+1
= p̃n
+ φp[δp̃]. (A 4a,b)

The spatial discretisation is the fully conservative fourth-order, staggered, finite-
difference scheme (Morinishi et al. 1998; Verstappen & Veldman 2003). Parameter
ξm∆t is one sub-step size, i.e. ∆t = ξ1∆t + ξ2∆t + ξ3∆t. The advection and the
wall-parallel diffusion terms are advanced explicitly using the low-storage third-order
Runge–Kutta, (.)n,n−1

= γm(.)
n
+ ζm(.)

n−1, while the wall-normal diffusion term is
advanced implicitly, (.)n,∗ = αm(.)

n
+ βm(.)

∗, where αm, βm, γm and ζm depend on the
sub-step (Spalart et al. 1991, its appendix).

To impose the no-slip condition on the bottom smooth and rough surfaces, the IBM
force

Fm
i =−(1− φi)[Explicit+ ν(∂2ui/∂x2

3)
n,∗
+ un

i /∆t] (A 5)

is added such that u∗i = 0 when φi = 0, as written in (A 1). Here φi is the fraction of
each computational cell occupied by the fluid, computed during pre-processing for the
staggered velocity components and pressure (φu, φv φw and φp). Through substitution
for Fm

i in (A 1), step (1) can be recast into the following equation:(
1− νφiβm∆t

∂2

∂x2
3

)
u∗i = φi

(
1+ ναm∆t

∂2

∂x2
3

)
un

i +∆tφi Explicit. (A 6)

The term in the brackets on the left-hand side of (A 6) is a heptadiagonal matrix
(owing to the fourth-order discretisation), which is solved directly for u∗i .

The wall shear stress at each time step at each (x, y) location can be obtained
through integration of the streamwise IBM force term Fm

1 over the z-direction:

τw

ρ
=−

3∑
m=1

[∫ zmax

zmin

Fm
1 dz

]
, (A 7)

where the integrals are summed over the three sub-steps of Runge–Kutta (i.e.
m = 1, 2, 3), and zmin and zmax are the minimum and maximum z-coordinates of
the computational domain (here −4/3k and h, respectively). The friction velocity
uτ (x) =

√
〈τw〉/ρ is obtained through averaging τw over time and spanwise direction.

Over the rough patch 〈.〉 also indicates averaging over a finite streamwise window
size, following the procedure described in § 2.

This IBM is of the direct-forcing category with the volume of fluid interpolation
(Fadlun et al. 2000) suitable for implementing solid geometries in Cartesian codes.
In this method the computational domain includes both the solid and fluid regions
(figure 2a), from zmin = (−4/3)k to zmax = h, placing a (1/3)k solid gap between
the roughness trough and the bottom computational boundary, with the no-slip
condition imposed on the bottom boundary. To drive only the fluid zone, 〈dP/dx〉
has been multiplied by φu in (A 1). The direct-forcing IBM with the volume of
fluid interpolation has been adopted in previous rough-wall simulations (Scotti 2006;
Yuan & Piomelli 2014). However, the IBM adopted here has been slightly modified
compared to the one adopted by Scotti (2006) and Yuan & Piomelli (2014) by
adding (A 4b) in step (3), which corrects the pressure by φp. With this modification,
Fm

i is non-zero only in the computational cells that intersect the solid–fluid interface.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.84


DNS of flow over smooth-to-rough and rough-to-smooth step changes 481

0

10

0

0

10

20

200

400

600Re†

U+

u+ rm
s

800

1000(a)

(b) (c)

-4 -3 -2 -1 0
(x - xSR)/h

1 2 3 4

-0.1
-0.2 0.2

(x - xSR)/h

0

-3
0

3

0.4

100 101 102

z+ z+
103 100 101 102 103

0

2

0

2

4

0
0.1
0.2
0.3

FIGURE 23. (Colour online) Comparison between cases 6h (——) and 6h verification (E).
(a) Reynolds number Reτ based on local uτ and h. Profiles of (b) U and (c) urms. The
quantities in plus units are normalised by the local uτ and ν. Comparison is made in the
middle of the smooth patch (lower curves in b,c) and in the middle of the rough patch
(upper curves in b,c), demonstrated in the domains on the right-hand side.

Case Lx/h Ly/h Nx Ny Nz ∆+xs
, ∆+xr

∆+ys
, ∆+yr

λ/∆x λ/∆y

6h verification 6.06 3.18 384 384 192 6.8, 12.3 3.7, 6.2 24.0 48.0

TABLE 6. Summary of the verification case using the body-conforming grid solver
(Cascade Technologies, Inc.; Ham, Mattsson & Iaccarino 2006) for comparison with case
6h in table 1 using the IBM. The global Reynolds number Reτo =590, the same as case 6h.

However, in the uncorrected approach Fm
i is also non-zero in the non-intersecting

in-solid cells. The modified approach yields uτ more directly in heterogeneous flows.
The code that adopts the numerical schemes described above, without the IBM,

has been verified in previous DNS studies (Chung, Monty & Ooi 2014; Chung
et al. 2015). To verify the IBM, a grid-refinement study and a comparison against
a body-conforming grid solver were carried out. The grid-refinement study was
conducted for homogeneous ‘egg-carton’ roughness (implemented with the IBM), at
Reτ = 590, and grid convergence was reached when λ/∆x = 25.6 and λ/∆y = 48.0.
Then case 6h (table 1) was repeated using a body-conforming grid solver, from
Cascade Technologies, Inc. (Ham et al. 2006), and is denoted as case 6h verification
with the grid and domain size listed in table 6. All the physical parameters are
identical to those of case 6h except the wall-normal grid (right-hand side of figure 23).
For the body-conforming grid, the hyperbolic grid distribution starts from the bottom
surface (as opposed to the roughness crest in case 6h). Despite the earlier grid
stretching above the rough surface, ∆+z (based on the local uτ ) is maintained below
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Case Lx/h Nx ×Ny ×Nz ∆+xs
, ∆+xr

∆+ys
, ∆+yr

∆+zs
|0, ∆

+

zr
|0 λ/∆x λ/∆y

Non-periodic 7.95 512× 384× 400 6.6, 10.9 3.5, 5.8 0.2, 0.4 25.6 48.0

TABLE 7. Summary of the non-periodic case for the main simulation with Ly/h= 3.1808.
For the precursor simulation, the domain size and number of grid points are the same as
those of the main simulation, and the resolution is the same as that of the main simulation
over the rough (fringe) region.

unity up to the roughness crest. Figure 23 shows the comparison between cases 6h
and 6h verification for the parameters of interest (including local Reτ , and profiles of
U and urms), and good agreement (less than 3 % difference) is obtained between the
two cases.

With the chosen grid resolution in table 6, one repeatable tile of ‘egg-carton’
roughness with an area of λ× λ is resolved by λ/∆x × λ/∆y ' 25× 48= 1200 grid
points in the xy-plane. Scotti (2006), who used IBM to implement the sand-grain
roughness, resolved each roughness element by a maximum of 66 grid points in the
xy-plane. Yuan & Piomelli (2014), who also adopted Scotti’s IBM and considered
sand-grain roughness, resolved each roughness element by 16 grid points in the
xy-plane.

Appendix B. Periodic versus a rough-to-smooth non-periodic case
In this appendix the periodic case 12h (table 1) is compared with a non-periodic

case with fully recovered inflow. Here, only the rough-to-smooth step change is
considered due to the slow flow recovery over the smooth patch. For the non-periodic
case, the concurrent precursor method (Stevens, Graham & Meneveau 2014; Munters,
Meneveau & Meyers 2016) was adopted to simulate a non-periodic flow with a
periodic code (figure 24). This method consists of a precursor simulation, which
here is a fully recovered flow over homogeneous rough surface with a domain
length of about 8h (figure 24c), in addition to the main simulation, which here
is a rough-to-smooth step change with a domain length of about 6h smooth and
2h rough (figure 24b). Both simulations are run synchronously with the same time
steps, domain sizes and number of grid points in each direction. The precursor
simulation is driven by a pressure gradient, which here is adjusted such that
Reτo = 704, the asymptotic Reynolds number downstream of the smooth-to-rough
step change (figure 3b). The main simulation is driven by the imposed flow (uprec,i)
from the precursor simulation (shaded area in figure 24c) through the fringe force
ffr,i = −λf (un

i − un
prec,i), added to the right-hand side of (A 1). The masking function

λf = λmax{Sf [(x − xs)/∆s] − Sf [(x − xe)/∆e + 1]} (figure 24a) is non-zero only in the
fringe region (shaded area in figure 24b). For Sf the reader may refer to equation (4c)
in Munters et al. (2016). With this forcing technique, the flow over the precursor
homogeneous rough-wall simulation is copied to the end of the main simulation over
its rough patch (consider the arrow from figure 24c to figure 24b). The periodic
boundary condition in the main simulation (figure 24b) recycles the fully developed
flow over the rough patch to the beginning of the smooth patch, and hence we
simulate a rough-to-smooth step change with fully developed oncoming flow over the
rough surface.

The smooth patch length and resolution of the non-periodic case (table 7) are almost
identical to those of case 12h (table 1). A domain length of 20 roughness wavelengths
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FIGURE 24. (Colour online) Illustration of concurrent precursor method (Stevens et al.
2014; Munters et al. 2016) for the rough-to-smooth non-periodic set-up with fully
recovered inflow. (b) The main domain and (c) the precursor domain at zuτo/ν = 15. The
shaded regions indicate the data extraction region in (c) and the fringe forcing region
in (b). (a) The fringe masking function λf normalised by λmax = 3000.
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FIGURE 25. (Colour online) Comparison of statistics between case 12h (– - – - –) and non-
periodic case (——) during rough-to-smooth step change. (a) Reynolds number Reτ ; and
contour lines of (b) U+ and (c) u+rms. Quantities in plus units are normalised by the local
uτ and ν. The IBL thickness, defined by Elliott (1958), is overlaid on the contour lines
(– –E– –).

(20λ≈ 8h) is considered, which for the precursor simulation is homogeneously rough,
and for the main simulation is partially smooth (15λ≈ 6h) and partially rough (5λ≈
2h), in its fringe region. The input parameters for λf are λmax= 3000, xs= 0.8Lx, xe=

Lx, ∆s = 0.1Lx and ∆e = 0.05Lx; these parameters are adjusted according to Munters
et al. (2016) to sufficiently damp the terms in (A 1) except ffr,i, yet low enough for
numerical stability.
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Comparison of the statistics between the non-periodic case and the periodic
case 12h (figure 25) shows that the difference between these two cases in terms
of Reτ (figure 25a) is less than 1 % after a fetch of 0.8h. The difference in terms
of U+ and u+rms (figure 25b,c) is less than 1 % and 4 %, respectively, after a fetch of
0.3h within the IBL (– –E– –, region of interest). The discrepancy up to a fetch of
0.8h could be due to the forcing up to the very end of the fringe region (figure 24a).
Nevertheless, the conclusions drawn from the analysis of U+ do not depend on this
minor discrepancy: § 3.2 on equilibrium assumption and § 3.3 on the suitable IBL
definition. Also, 4 % difference in u+rms does not have an impact on the conclusions
drawn in § 3.2. This appendix reinforces the domain length study in § 3.1.
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