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Improvement of X-ray reflectivity calculations on a multilayered surface
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X-ray reflectometry is a powerful tool for investigating rough surface and interface structures.
Presently, X-ray reflectivity is based on Parratt formalism, accounting for the effect of roughness
by the theory of Nevot—Croce. However, the calculated results showed a strange phenomenon in
that the amplitude of the oscillation because of interference effects increases in the case of a specific
roughness of the surface. We propose that the strange results originated from the currently used
equation because of a serious error in which the Fresnel transmission coefficient in the reflectivity
equation is increased at a rough interface, and the increase in the transmission coefficient completely
overpowers any decrease in the value of the reflection coefficient because of lack of consideration in
diffuse scattering. In the present study, we present a new improved formalism that corrects this error,
and thereby derives an accurate analysis of X-ray reflectivity from a multilayer surface, taking into
account the effect of roughness-induced diffuse scattering. © 2013 International Centre for
Diffraction Data. [doi:10.1017/S0885715613000110]

Key words: X-ray reflectivity, Parratt formalism, theory of Nevot—Croce, surface roughness, diffuse

scattering, multilayer surface and interfaces

I. INTRODUCTION

Grazing incidence X-ray scattering is a powerful tool for
investigating rough surface and interface structures (Parratt,
1954; Nevot and Croce, 1980; Sinha et al, 1988; Holy
et al., 1993; Daillant and Gibaud, 1999; Sakurai, 2009; Fujii
et al., 2004, 2005; Fujii, 2010, 2011). In many previous
studies of X-ray reflectometry, X-ray reflectivity was based
on Parratt formalism (Parratt, 1954), coupled with the use of
the theory of Nevot and Croce to include roughness (Nevot
and Croce, 1980). However, the calculated results of X-ray
reflectivity often showed strange results where the amplitude
of the oscillation because of the interference effects would
increase for a rougher surface. These strange results disagree
with reality and suggest that there is a problem in how the
effect of roughness is incorporated into Parratt formalism,
and hence the effect of roughness is not accurately represented
in the theoretical formula of X-ray reflectivity. In our previous
study, we proposed that these strange results originated
because of neglect of the effect of a decrease in the intensity
of refracted X rays because of diffuse scattering at a rough sur-
face and interface (Fujii, 2010, 2011).

In the present study, we propose more clearly that the
strange results originated from a currently used equation
because of a serious error in which the Fresnel transmission
coefficient in the reflectivity equation is increased at a rough
interface. We investigate the calculated result of X-ray reflec-
tivity based on Parratt formalism (Parratt, 1954) with the effect
of the roughness incorporated by the theory of Nevot—Croce
(Nevot and Croce, 1980), and present a new accurate formal-
ism to correct the error.
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Il. X-RAY REFLECTIVITY CACULATIONS

The reflectance of an N-layer multilayer system can be cal-
culated using the recursive formalism given by Parratt (1954).
In the following, we show in detail the process of obtaining
Parratt’s expression and, further, show that this expression
requires conservation of energy at the interface. We go on to
show that the dispersion of energy by interface roughness can-
not be correctly accounted for Parratt’s expression.

A. X-ray reflectivity from a flat surface of a multilayer
with flat interfaces

First, we consider the reflection from a flat surface of a
multilayer with flat interfaces. We take the vertical direction
to the surface as the z-axis, with the positive direction pointing
towards the bulk. The scattering plane is made the x—z plane.
Following that approach, let n; be the refractive index of the jth
layer. The wave vector k; of the jth layer is related to the refrac-
tive index n; of the jth layer by

ki -kj=niko-ko, ko-ko=kK (1

as this necessitates that the x,y-direction components of the
wave vector are constant, then the z-direction component of
the wave vector of the jth layer is

kio= 2k — K2, )

The electric fields E;, E' i below the interface between the
j — Ith layer and jth layer are expressed as

Ej(zj-1,) = Ajexplikj.x + kjyy — wi)],

v o 3)
(zj—14) = Ajexplikjx + kjyy — wb)].
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The amplitudes A; and A’; at the jth layer are derived from
the equations for the interface between the j — 1 and j layers
and the electric field variation within the jth layer with
depth A; as expressed by the following matrix:

<A}_1 exp(— ikj—l,zh.f—l)) _ (‘I’ju ‘Dj,/l)
Aj Pj-1j Wi

% (Aj—l CXp(ikj_]’zhj_1)>

A’ ’

“)
where ¥;_; ;and @ ;_, ; are the Fresnel coefficient tensors for
reflection and refraction at the interface between the j — 1 and j

layers. For s-polarization, the Fresnel coefficients are

2k
D iy =—L
J=1jyy kj_]’z + kj,z
P _ ij,Z v, :kj_l,z—kj,z
Ji—Lyy kj—l,z n kj,z J=Ljyy kj—l,z ¥ kj,z’
ki, — ki
Wy, = 2anhe 5
Ji—=Lyy kjfl,z + kj,z ®)

The reflection coefficient is defined as the ratio R, ; of the
reflected electric field to the incident electric field at the sur-
face of the material and is given by

A’y = Ry, 1Ao. (6)

The reflection coefficient R;_; ; of the electric field E';_,
to the electric field E;_, at the interface of j — 1th layer and jth
layer is

Aj =RjjAj0 (7
and the ratio R;_, ; is related to the ratio R; ;,; as follows:

Vi) + (Pj1jPjj1 = Vi1 ¥jj- DR 1
1 — W 1Rj; (8)

Rjj=
x exp(2ikj_y;hj_1).

Here, from the relation between the Fresnel coefficient for
reflection and the Fresnel coefficient for refraction,

D jPjj1 — Vi j ¥ =1, ©)
W= -, (10)
we can formulate the following relationship:

Vi1 +Rjjn

R . =
R T A

expQik;_1.hj 1), (11)

It is reasonable to assume that no wave will be reflected
back from the substrate, so that,

Ryyi1 =0. (12)

Then, the X-ray reflectivity is simply,

Thus, we obtain Parratt’s expression.

B. Previous calculations of X-ray reflectivity when
roughness exists at the surface and interface

When the surface and interface have roughness, the
Fresnel coefficient for reflection is reduced (Vidal and
Vincent, 1984; Sinha et al., 1988; Holy et al., 1993, 1999;
Boer, 1995; Daillant and Gibaud, 1999; Fujii et al., 2004,
2005; Sakurai, 2009; Fujii, 2010, 2011). The effect of rough-
ness was previously put into calculation based on the theory of
Nevot and Croce (1980). The effect of such roughness was
taken into account only through the effect of changes in den-
sity of the medium in a vertical direction to the surface and
interface. With the use of relevant roughness parameters
such as the root-mean-square (rms) roughness o;_;; of the
Jjth layer, the reduced Fresnel reflection coefficient ¥ for
s-polarization is transformed as shown below:

v

Lo = Wijexp(— 2k k1205, ) (14)

and the X-ray reflectivity is calculated using the following
equation:

Rjj1 + lF~_1 :
Ri_j=—t1——— I 2ik;_y,hi_1). 15
Jj—1J 1+Rjj+llp;_]Jexp( 1Kj—1,z1j 1) ( )

Figure 1 shows the reflectivity from a tungsten-covered
silicon wafer calculated by the theory in use prior to this work.

The ratio of the oscillation amplitude to the value of the
reflectivity from a surface with an rms surface roughness of
0.3 nm (dashed line) does not decrease but increases near
the angle of incidence of 1.8°. We now consider the above
strange result of X-ray reflectivity, which was based on
Parratt formalism (Parratt, 1954) with the use of the Nevot
and Croce approach to account for roughness (Nevot and
Croce, 1980). In that calculation, the X-ray reflectivity is
derived using the relation of reflection coefficient R;_; ; and
R;j+1 as Eq. (15). However, the relationship between the

J
reflection coefficients R;_;; and R; ;. was originally derived
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Figure 1. X-ray reflectivity from a silicon wafer covered with a thin (10 nm)
tungsten film calculated by the theory in use prior to this work. Solid line

R=IR 2 13 shows the case of a flat surface. Dashed line shows the case of a surface
= | 0,1 | : (13) with an rms surface roughness of 0.3 nm.
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as the following equation:

R . — w —|—((I)( jJ 1 11/ 11/,; l)R],/Jrl
Y qjj,; 1RJJ+1
x expikj_ihj_1). (16)

Here, the following conditional relations between the
Fresnel coefficient for reflection and refraction are relevant
to the above equation,

(17' (D/ -

v =1,

Ji—1 =1 = jj-1 (17)
'I/H,i ==V
then,
Y =1V (18)

The Fresnel coefficients for refraction at the rough inter-
face are derived using the Fresnel reflection coefficient ¥ as
follows:

OBy~ PPy = W
(19)
><< — exp(—2k;k;_ 1102” 1))
D P = P Bijor + (1= By By
(20)

x (1 —exp(— 2k ki 1.0%_, )).

Therefore, the Fresnel coefficients for refraction at the
rough interface are necessarily larger than the Fresnel coeffi-
cient for refraction at the flat interface. The resulting increase
in transmission coefficient completely overpowers any decrease
in the value of reflection coefficient. These coefficients for
refraction obviously contain an error as the penetration of
X-rays should decrease at a rough interface because of diffuse
scattering. We propose that the unnatural results in the previous
calculation of X-ray reflectivity originate from the fact that dif-
fuse scattering was not considered. In fact, Eq. (15) contains the
X-ray energy conservation rule at the interface as the following
identity equation for the Fresnel coefficient:

D, D;

=1y

it = Wi Wi = @@+ W =1
20

When the Fresnel coefficients at the rough interface obey
the following equations:

D, P

Ji—1

-V, Y

-1 =1

v

-1 =

.

Ji—1
(22)

these coefficients fulfill X-ray energy flow conservation at the
interface, and so diffuse scattering was not considered at the
rough interface.

This conservation expression should not apply any longer
when the Fresnel reflection coefficient is replaced by the
reduced coefficient ¥ when there is roughening at the inter-
face. Therefore, calculating the reflectivity using this reduced
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Fresnel reflection coefficient ¥ in Eq. (15) will incorrectly
increase the Fresnel transmission coefficient @', i.e., @< P'.

The penetration of X-rays should decrease at the rough
interface because of diffuse scattering. Therefore, the identity
equations for the Fresnel coefficients become,

¢,/ ®/JJ1 1[/’ q/ l_ﬁld(ﬁul
+V,,=1-D"<1,

(23)

where D? is a decrease because of diffuse scattering. Then, in
the calculation of X-ray reflectivity when there is roughening
at the surface or the interface, the Fresnel transmission coeffi-
cient @ should be used for the reduced coefficient. Several
theories exist to describe the influence of roughness on
X-ray scattering (Sinha et al., 1988; Holy et al., 1993, 1999;
Daillant and Gibaud, 1999). When the surface and interface
are both rough, the Fresnel coefficient for refraction has
been derived in several theories (Vidal and Vincent, 1984;
Sinha et al., 1988; Holy et al., 1993, 1999; Boer, 1995).

C. A new formula for reflectivity of rough multilayer
surface

When the z position of the interface of Oth layer and 1st
layer z,; fluctuates vertically as a function of the lateral pos-
ition because of interface roughness, the relations between
the amplitudes Ay, Ay, A;, and A’| are derived by use of the
Fresnel coefficient tensor @ for refraction and the Fresnel
coefficient tensor ¥ for reflection as follows:

(+)-

- exp(iky ;. +ko)z0,1)
" exp(i( — ko, +k12)z01)

Dy, exp(i( —ki . +ko)z01), Wi

D, oexp(itko; —ki2)z0,1)

. exp(i( — ko —k1.2)70,1)
“exp(i( — ko +k1.2)20,1)

Ag
x (A/])' 24)

We therefore consider the derivation of the average value
of the following matrix.

We take the average value of this matrix. For Gaussian
statistics of standard deviation value o, the Fresnel reflection
coefficient ¥ is as follows:

(exp(itks; + ko)z0.1))
o1 = Y01 pG kos + krozo)
exp(— %(kO,z + kl,z)zazo, D
exp(— ko, — kl,z)2020,1)
= Wy exp(— 2ko k1 -05 ). (25)

= *0.1

These reduced reflection coefficients accord with the
result in prior works (Vidal and Vincent, 1984; Sinha et al.,
1988; Holy et al, 1993, 1999; Boer, 1995; Daillant and
Gibaud, 1999; Sakurai, 2009). SinceX-rays penetrating an
interface reflect from the interface below, and penetrate former
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interface again without fail, it is necessary to treat the refrac-
tion coefficients @ ; and @'  collectively.

@), P

= (Dy; exp(i(— ki, + ko )z0,1) P10 exp(itko, — ki ;)z0.1))
= @ | Dy ((exp(i(— ki ;. + ko)z0,1) expl(ilko, — ki 2)z0,1))
= @y D) o{exp((2ko; — 2k12)20,1))

= @y, Py exp(—2(ko, — k1.)* 05 ). (26)

Then the Fresnel coefficients ¥ and @' are reduced as fol-
lows:

()

Wy, exp(—2ko k1 .03,), Proexp(—(ko.—ki)*03)
@Dy exp(— (ko — ki )05 ), Wioexp(—2koki .03 )

Ag
x (A/])' @7)

The Fresnel refraction coefficients @ derived by this
method are reduced, and can be used to calculate the reflectiv-
ity from rough surface and interface. Therefore, we calculate
the reflectivity using these newly derived Fresnel coefficients
in an accurate reflectivity equation of R;_;; and R;;,; as fol-
lows:

Y+ (P P — W W DR
1 — W R

JJ—17%7

R

1=
X exp(2ik_,-_ l,zhj—] ) (28)

Based on the above considerations, we again calculated
the X-ray reflectivity of the W/Si system, but now considered
the effect of attenuation in the refracted X-rays by diffuse scat-
tering resulting from surface roughness. However, the reduced
refraction coefficient in prior work varies (Vidal and Vincent,
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Figure 2.  X-ray reflectivity from a silicon wafer covered with a thin (10 nm)
tungsten film calculated by the new calculation that considered diffuse
scattering. Solid line shows the case of a flat surface. Dashed line shows the
case of a surface with an rms surface roughness of 0.3 nm.
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1984; Sinha et al., 1988; Holy et al., 1993, 1999; Boer, 1995;
Daillant and Gibaud, 1999; Fujii et al., 2004, 2005; Sakurai,
2009; Fujii, 2010, 2011). Then, about the reduced refraction
coefficient, reduction is the same as the reflection coefficient
applied.

In the reflectivity curve from a surface with an rms surface
roughness of 0.3 nm (dashed line), the amplitude of oscillation
in Figure 1 has reduced in Figure 2. These results are now
physically reasonable. The strange results seen in Figure 1
have disappeared in Figure 2. It seems natural that the effect
of interference does decrease at a rough surface and interface,
because the amount of coherent X-rays should reduce because
of diffuse scattering.

lll. CONCLUSION

We have investigated the fact that the calculated results of
X-ray reflectivity based on Parratt formalism with the effect of
the roughness incorporated by the theory of Nevot—Croce
show a strange phenomenon in which the amplitude of the
oscillation because of the interference effects increase in the
case of the rougher surface. We found that the strange results
originate in the currently used equation where the Fresnel
refraction coefficient in the reflectivity equation is increased
at a rough interface. The increase in the transmission coeffi-
cient completely overpowers any decrease in the value of
the reflection coefficient because of the lack of consideration
of diffuse scattering. Then, we have developed a new formal-
ism that corrects this error, producing more accurate estimates
of the X-ray reflectivity for systems having surface and
interfacial roughness, taking into account the effect of
roughness-induced diffuse scattering. The new, accurate form-
alism is completely described in detail. The X-ray reflectivity
R is derived by use of accurate reflectivity equations for R;_ ;
and R;;,, as the following:

2
R=|Ro:|", Ryn+1=0,
Vi (PP = Wi, VDR

1— q/j,jfleJ-i-l

Rj1j=

x exp(2ik;_1;hj_1),

where the Fresnel coefficients ¥ for reflection and @' for
refraction are reduced. The reflectivity calculated with this
new, accurate formalism, gives a physically reasonable result.
Here, the reduced Fresnel coefficients ¥ and @ in the reflec-
tivity equation need further research and we will continue to
refine this theory. The use of this equation resolves the strange
numerical results that occurred in the previous calculations
that neglected diffuse scattering and is expected that the buried
interface structure can now be analyzed more accurately.
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