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Short-wave instability due to wall slip and
numerical observation of wall-slip instability

for microchannel flows

By CAI-JUN GAN AND ZI-NIU WU†
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China

(Received 1 April 2004 and in revised form 18 August 2005)

The stability of an incompressible parallel flow with a linear wall slip – where the
amount of wall slip is proportional to the velocity gradient – is analysed. Numerical
computations are performed for microchannel flows in the slip-flow region. The wall
slip causes short-wave instability while the slip-flow model is stable for long waves.
This instability disappears once the slip wall condition is replaced by the no-slip
condition.

1. Introduction
There are several important applications in which there is a tangential slip on the

wall for the velocity of a viscous fluid. The first example is polymer melts which exhibit
wall slip (see for instance Morton 2001). The second example is some biological and
even technological drag reduction surfaces in which there is a slip (see for instance
Hoyt 1975; Bechert et al. 2000). The third example is high-speed rarefied flow for which
rarefaction leads to wall slip (Kennard 1938; Bird 1994), as in the case of hypersonic
re-entry flow at an altitude of 30 km–60 km. The example with which we are concerned
here is the microchannel flow for a Knudsen number larger than a critical value.

The relation between the amount of wall slip and the gradient of the tangential
velocity is of special importance. For rarefaction-induced slip, such as microflows and
for high-speed rarefied flows, within a first order of approximation, the amount of slip
is linearly proportional to the gradient of the tangential velocity at the wall, with the
proportionality coefficient defined as the slip length (Kennard 1938; Karniadakis &
Beskok 2002). The slip length is proportional to the Knudsen number (Kn), which is
defined as the ratio between the mean-free path of gas molecules and the characteristic
length scale of the flow. Molecules impinging on a solid wall lose only a part of their
tangential momentum, which macroscopically manifests as a velocity slip. Microflows
have important applications in microelectromechanical (MEMs) systems and the study
of microflows has become an active area of research, revealing many new behaviours
such as lower speed rarefaction, lower speed compressibility, viscous heating and
thermal creep for gas micro flows, wetting, adsorption and electrokinetics for liquid
micro flows. For details of this topic see, for instance, Bird (1994), Ho & Tai (1998),
Gad-el-Hak (1999), Cercignani (2000), and Karniadakis & Beskok (2002).

In this paper, we are interested in the problem of stability due to a linear wall
slip, that is, the amount of slip is linearly proportional to the gradient of the tangent
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Figure 1. Flow in a channel.

velocity. This is important in microflows which display linear velocity slip on the wall
for moderate Knudsen numbers.

The model suitable for describing microflows is different from that for macroflows.
The choice of the model depends on the Knudsen number (Kn). The Navier–
Stokes equations are valid for Kn< 0.01 if no-slip wall conditions are used, and the
validity regime extends to 0.01 <Kn< 0.1 if slip wall conditions are used (see, for
instance, Karniadakis & Beskok 2002). For Kn higher than 0.1 (sometimes slightly
different values are used), the flow is in the so-called transition regime and more
complex models such as the Boltzmann equation or Burnett equations, super-Burnett
equations, and so on, should be used (Cercignani 2000).

In order to analyse the instability due to wall slip theoretically, we will consider
an incompressible parallel-flow model. The incompressible slip-flow model can be
considered as a limiting case of the compressible slip-flow model with a vanishing
Mach number. Both long-wave and short-wave stability analyses will be performed.
The Orr–Sommerfeld equation for stability analysis is the same as for classical
instability analysis. The only new feature is that a slip condition is associated with the
boundary. The techniques used here are standard, and can be found in Lin (1955),
Betchov & Criminale (1967), Drazin & Reid (1981), Shivamoggi (1986), and Schmid
& Henningson (2001). For long-wave stability analysis, we will consider a general
velocity profile, while for short-wave stability analysis we consider a specific velocity
profile. Since Poiseuille flow is typical of microchannel flow, we will simply consider
a Poiseuille profile (with correction due to wall slip) for short-wave stability analysis.
Details of the analysis will be presented in § 2.

In § 3, we perform numerical experiments for flows with a velocity slip. The
numerical experiments will be based on a carefully chosen scheme for which we
shall test that the instability is not due to pure numerical treatment. We will verify
that the instability is due to wall slip and that it is a short-wave instability, as predicted
theoretically. Concluding remarks will be provided in § 4.

2. Stability analysis for an incompressible slip-flow model
2.1. The incompressible slip-flow model

Consider a channel as shown in figure 1. The velocity vector of the basic flow is given
by (U ∗, 0, 0) where U ∗ = U ∗(y∗). The incompressible Navier–Stokes equations used
for stability analysis here are given by

∂u∗
k

∂x∗
k

= 0, (1)

ρ∗ ∂u∗
i

∂t∗ + ρ∗u∗
k

∂u∗
i

∂x∗
k

= −∂p∗

∂x∗
i

+
∂

∂x∗
k

[
µ

(
∂u∗

i

∂x∗
k

+
∂u∗

k

∂x∗
i

)]
, (2)
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where ρ∗ is the density, p∗ is the dynamic pressure, µ is the dynamic viscosity
coefficient and u∗

i is the velocity component in the direction x∗
i . Alternatively, we also

use (u∗, v∗, w∗) to denote (u∗
1, u

∗
2, u

∗
3), and (x∗, y∗, z∗) to denote (x∗

1 , x
∗
2 , x

∗
3 ).

The linear slip boundary condition used for stability analysis is given by

u∗ = b∗ ∂u∗

∂y∗ , on the wall (3)

where b∗ is the slip length.
For non-dimensional treatment, we use the following parameters,
(i) velocity U0 = maxy∗

1<y∗<y∗
2
(U ∗(y∗));

(ii) length (half-channel height) H = (y∗
2 − y∗

1 )/2;
(iii) time T = H/U0;
(iv) pressure P0 = ρ∗U 2

0 .
The non-dimensional values are defined by

ui = u∗
i /U0, xi = x∗

i /H, t = t∗/T , p = p∗/P0.

The non-dimensional form of (3) can be written as

u = b
∂u

∂y
, on the wall, (4)

and b = b∗/H . If b =0, (4) is the so-called no-slip wall condition.
The normal velocity must vanish,

v = 0 on the wall. (5)

2.2. The Orr–Sommerfeld equation and its boundary condition

We adopt the method based on linear normal modes analysis to study instability. For
limitations of linear hydrodynamic stability analysis, see Grossmann (2000).

If α denotes the wavenumber, and c denotes the wave speed, the Orr–Sommerfeld
equation used to study stability can be written as

(D2 − α2)2φ = iRe α[(U − c)(D2 − α2) − D2U ]φ. (6)

Here, Re= ρ∗HU0/µ is the Reynolds number, the operator D is defined as D= d/dy.
It should be noted that the Orr–Sommerfeld equation does not contain the slip

length explicitly. The slip length is involved both through the velocity profile and
through the boundary condition which, by using (4) and (5), can be written as

φ = 0, y = ± 1, (7)

Dφ = ∓bD2φ, y = ± 1. (8)

We must pay attention to the sign of the right-hand side of (8) for the upper wall
(y = +1).

2.3. Short-wave instability for Poiseuille flow

The velocity profile for an incompressible Poiseuille flow including the effect of
velocity slip (4) can be obtained easily as

U =
1 + 2b − y2

1 + 2b
, −1 � y � 1. (9)

See Arkilic, Schmidt & Breuer (1997) for more details on the derivation of the velocity
distribution functions in a microchannel.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

80
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005008086


292 C.-J. Gan and Z.-N. Wu

We consider the limiting case of short-wave instability, for which α → ∞. In order
to study the short-wave instability, we expand the modes in terms of a small parameter
(iα)−1. This can be similarly done as instability analysis for large-Reynolds-number
flow, where the modes are expanded in terms of (iαRe)−1/2. The subsequent analysis
holds only when the slip length b is large enough so that the condition

bα � 1 (10)

holds. Hence, the present analysis does not hold for the case b =0.

2.3.1. Solution of the Orr–Sommerfeld equation for short-wave modes

Following Heisenberg (1924), let

φ = exp

(∫
g(y) dy

)
, (11)

where g(y) is also a function of α and satisfies the third-order nonlinear equation

g4 + 6g2g′ + 4gg′′ + 3g′2 + g′′′ − 2α2(g2 + g′) + α4

= iαRe{(U − c)(g2 + g′ − α2) − U ′′}, (12)

where g′ = dg(y)/dy, g′′ = d2g(y)/dy2, g′′′ = d3g(y)/dy3.

Approximation to the solutions of this equation can then be obtained by assuming
an expansion of the form

g(y) = (iα)g0 + g1 + (iα)−1g2 + (iα)−2g3 + · · · . (13)

The recognition that the viscous term does not have a corresponding equilibrium
term in equation (12) and the wave speed c is a function of α, Kn and Re, yields the
following expansion

Re c =(iα)c0 + c1 + (iα)−1c2 + (iα)−2c3 + · · · . (14)

From (14) and c = cr + ici , the leading approximations of cr and ci can be written
as

(cr )0 = c1/Re,

(ci)0 = αc0/Re.

Hence, under the limiting case of short-wave α → ∞, if c0 > 0, then ci > 0 and the
slip-flow model is unstable; if c0 < 0, then ci < 0 and the slip-flow model is stable.

Inserting (13) and (14) into (12) and comparing the corresponding powers of (iα)n

(n= 4, 3, 2, 1, · · ·), we obtain a sequence of equations from which all of the coefficients
gm(y) (m = 0, 1, 2, 3, · · ·) can be determined algebraically. In an approximation of this
type, only c0, c1 are required, and they satisfy the equations(

g2
0 + 1

)(
g2

0 + 1 + c0

)
= 0, (15)

4g3
0g1 + 6g2

0g
′
0 + 4g0g1 = (ReU − c1)

(
g2

0 + 1
)

− c0(2g0g1 + g′
0), (16)

{
2g2

0

(
2g0g2 + g2

1

)
+ 4g2

0g
2
1

}
+ 6

{
g2

0g
′
1 + 2g0g1g

′
0

}
+ 4g0g

′′
0 + 3g′2

0 + 2
{(

2g0g2 + g2
1

)
+ 2g′

1

}
= (ReU − c1)(2g0g1 + g′

0) − c0

{(
2g0g2 + g2

1

)
+ g′

1

}
− c2

(
g2

0 + 1
)
, (17)
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4g2

0(g0g3 + g1g2) + 4g0g1

(
2g0g2 + g2

1

)}
+ 6

{
g2

0g2 + 2g0g1g
′
1 +

(
2g0g2 + g2

1

)
g′

0

}
+ 4(g0g

′′
1 + g1g

′′
0 ) + 6g′

0g
′
1 + g′′′

0 + 2{2(g0g3 + g1g2) + g′
2}

= (ReU − c1)
(
2g0g2 + g2

1 + g′
1

)
− c0(2g0g3 + 2g1g2 + g′

2)

− c2(2g0g1 + g′
0) − c3

(
g2

0 + 1
)

− ReU ′′. (18)

From equation (15), we see that either g2
0 +1 = 0 or g2

0 +1+ c0 = 0. Obviously, from
equation (18), we can have c0 �= 0. Hence, if g2

0 + 1 = 0, according to (16), (17) and
(18), then

g0 = ±i, g1 = g2 = 0, g3 = ± i
ReU ′′

2c0

.

Setting c0 = q2 − 1, where q is not equal to 1, the model is unstable if q > 1 and
stable if q < 1. If g2

0 + 1 + c0 = 0, then by (16), (17) and (18), we have

g0 = ± qi, g1 = ∓ i
ReU − c1

2q
, g2 = ∓ i

(ReU − c1)
2

8q3
(1 − 4q2c2),

g3 = ± i
ς{(1 − 4q2c2)(q

2 − 1) − 4q2 + 8q4c2} + (ReU − c1)c2 − (1 − q2)c3 − ReU ′′

2q(1 − q2)
,

ς =
(ReU − c1)

3

8q4
.

On substituting these results into (13), we obtain the following approximations,

g1,2 = ∓α ∓ i
1

α2

ReU ′′

2(q2 − 1)
+ o

(
1

α2

)
, (19)

g3,4 = ∓αq ∓ i
ReU − c1

2q
+ O

(
1

α

)
. (20)

The above four asymptotic solutions (19) and (20) of the equation g(y) are uniformly
valid in the whole domains of the complex plane.

Inserting (19) and (20) into (11) leads to

φ = a1 exp(−αy) exp

(
−i

1

α2

ReU ′′

2(q2 − 1)
y

)

+ a2 exp(−αqy) exp

(
−i

Re

2q

{
k0

2
[y3/3 − (2b + 1)y] − c1

Re
y

})

+ a3 exp(αy) exp

(
i
1

α2

ReU ′′

2(q2−1)
y

)

+ a4 exp(αqy) exp

(
i
Re

2q

{
k0

2
[y3/3−(2b+1)y]− c1

Re
y

})
,

where k0 = −2/(1 + 2b).
If we decompose φ = φr + iφi , where φr and φi are the real and imaginary parts of

φ, respectively, we have

φr = a1e
−αy cos

(
1

α2

ReU ′′

2(q2 − 1)
y

)
+ a2e

−αqy cos

(
Re

2q

{
k0

2
[y3/3 − (2b + 1)y] − c1

Re
y

})

+ a3e
αy cos

(
1

α2

ReU ′′

2(q2 − 1)
y

)
+ a4e

αqy cos

(
Re

2q

{
k0

2
[y3/3 − (2b + 1)y] − c1

Re
y

})
,

(21)
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φi = −a1e
−αy sin

(
1

α2

ReU ′′

2(q2 − 1)
y

)
− a2e

−αqy sin

(
Re

2q

{
k0

2
[y3/3 − (2b + 1)y] − c1

Re
y

})

+ a3e
αy sin

(
1

α2

ReU ′′

2(q2 − 1)
y

)
+ a4e

αqy sin

(
Re

2q

{
k0

2
[y3/3 − (2b + 1)y] − c1

Re
y

})
.

(22)

2.3.2. Dispersion relation

Substituting (21) into the boundary conditions (7)–(8) yields

a1e
−α cos θ1 + a2e

−αq cos θ3 + a3e
α cos θ1 + a4e

αq cos θ3=0,

a1e
α cos θ2 + a2e

αq cos θ4 + a3e
−α cos θ2 + a4e

−αq cos θ4=0,

a1e
−αK31 + a2e

−αqK32 + a3e
αK33 + a4e

αqK34 = 0,

a1e
αK41 + a2e

αqK42 + a3e
−αK43 + a4e

−αqK44 = 0,




(23)

where

θ1 =
Rek0

2(q2 − 1)α2
, θ ′

1 =
Rek0

2(q2 − 1)α2
, θ ′′

1 = 0,

θ2 = −θ1, θ ′
2 = θ ′

1, θ ′′
2 = 0,

θ3 = −Re

2q

{
k0

2
(2b + 2/3) + (cr )0

}
, θ ′

3 = − Re

2q
(bk0 + (cr )0), θ ′′

3 =
Re

2q
k0,

θ4 =
Re

2q

{
k0

2
(2b + 2/3) + (cr )0

}
, θ ′

4 = − Re

2q
(bk0 + (cr )0) θ ′′

4 = − Re

2q
k0,

c1 = Re(cr )0,

and

K31 = −α cos θ1 − θ ′
1 sin θ1 + b

{(
α2 − θ ′2

1

)
cos θ1 + (2αθ ′

1 − θ ′′
1 ) sin θ1

}
,

K32 = −αq cos θ3 − θ ′
3 sin θ3 + b

{(
α2q2 − θ ′2

3

)
cos θ3 + (2αqθ ′

3 − θ ′′
3 ) sin θ3

}
,

K33 = α cos θ1 − θ ′
1 sin θ1 + b

{(
α2 − θ ′2

1

)
cos θ1 − (2αθ ′

1 + θ ′′
1 ) sin θ1

}
,

K34 = αq cos θ3 − θ ′
3 sin θ3 + b

{(
α2q2 − θ ′2

3

)
cos θ3 − (2αqθ ′

3 + θ ′′
3 ) sin θ3

}
,

K41 = −α cos θ2 − θ ′
2 sin θ2 − b

{(
α2 − θ ′2

2

)
cos θ2 + (2αθ ′

2 − θ ′′
2 ) sin θ2

}
,

K42 = −αq cos θ4 − θ ′
4 sin θ4 − b

{(
α2q2 − θ ′2

4

)
cos θ4 + (2αqθ ′

4 − θ ′′
4 ) sin θ4

}
,

K43 = α cos θ2 − θ ′
2 sin θ2 − b

{(
α2 − θ ′2

2

)
cos θ2 − (2αθ ′

2 + θ ′′
2 ) sin θ2

}
,

K44 = αq cos θ4 − θ ′
4 sin θ4 − b

{(
α2q2 − θ ′2

4

)
cos θ4 − (2αqθ ′

4 + θ ′′
4 ) sin θ4

}
.

Substituting (22) into the boundary conditions (7)–(8) yields

−a1e
−α sin θ1 − a2e

−αq sin θ3 + a3e
α sin θ1 + a4e

αq sin θ3 = 0,

−a1e
α sin θ2 − a2e

αq sin θ4 + a3e
−α sin θ2 + a4e

−αq sin θ4 = 0,

a1e
−αG31 + a2e

−αqG32 − a3e
αG33 − a4e

αqG34 = 0,

a1e
αG41 + a2e

αqG42 − a3e
−αG43 − a4e

−αqG44 = 0.




(24)

Here,

G31 = α sin θ1 − θ ′
1 cos θ1 + b

{(
θ ′2
1 − α2

)
sin θ1 + (2αθ ′

1 − θ ′′
1 ) cos θ1

}
,

G32 = αq sin θ3 − θ ′
3 cos θ3 + b

{(
θ ′2
3 − α2q2

)
sin θ3 + (2αqθ ′

3 − θ ′′
3 ) cos θ3

}
,

G33 = α sin θ1 + θ ′
1 cos θ1 + b

{(
α2 − θ ′2

1

)
sin θ1 + (2αθ ′

1 + θ ′′
1 ) cos θ1

}
,

G34 = αq sin θ3 + θ ′
3 cos θ3 + b

{(
α2q2 − θ ′2

3

)
sin θ3 + (2αqθ ′

3 + θ ′′
3 ) cos θ3

}
,
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G41 = α sin θ2 − θ ′
2 cos θ2 − b

{(
θ ′2
2 − α2

)
sin θ2 + (2αθ ′

2 − θ ′′
2 ) cos θ2

}
,

G42 = αq sin θ4 − θ ′
4 cos θ4 − b

{(
θ ′2
4 − α2q2

)
sin θ4 + (2αqθ ′

4 − θ ′′
4 ) cos θ4

}
,

G43 = α sin θ2 + θ ′
2 cos θ2 − b

{(
α2 − θ ′2

2

)
sin θ2 + (2αθ ′

2 + θ ′′
2 ) cos θ2

}
,

G44 = αq sin θ4 + θ ′
4 cos θ4 − b

{(
α2q2 − θ ′2

4

)
sin θ4 + (2αqθ ′

4 + θ ′′
4 ) cos θ4

}
.

The requirement of non-vanishing ai (non-trivial solution) in (23) and (24) leads to
the following dispersion relation

DR =

∣∣∣∣∣∣∣
e−α cos θ1

eα cos θ2

K31e
−α

K41e
α

e−αq cos θ3

eαq cos θ4

K32e
−αq

K42e
αq

eα cos θ1

e−α cos θ2

K33e
α

K43e
−α

eαq cos θ3

e−αq cos θ4

K34e
αq

K44e
−αq

∣∣∣∣∣∣∣
= 0 (25)

and

DI =

∣∣∣∣∣∣∣
−e−α sin θ1

−eα sin θ2

G31e
−α

G41e
α

−e−αq sin θ3

−eαq sin θ4

G32e
−αq

G42e
αq

eα sin θ1

e−α sin θ2

−G33e
α

−G43e
−α

eαq sin θ3

e−αq sin θ4

−G34e
αq

−G44e
−αq

∣∣∣∣∣∣∣
= 0, (26)

respectively.
A straightforward calculation, presented in Appendix A†, leads to

DR = − e2αq+2α{(K34 cos θ1 − K33 cos θ3)(K42 cos θ2 − K41 cos θ4)}
− e2αq−2α{(K31 cos θ3 − K34 cos θ1)(K42 cos θ2 − K43 cos θ4)}
− e−2αq+2α{(K32 cos θ1 − K33 cos θ3)(K41 cos θ4 − K44 cos θ2)}
− e−2αq−2α{(K32 cos θ1 − K31 cos θ3)(K44 cos θ2 − K43 cos θ4)}
− {(K32 − K34)(K43 − K41) cos θ2 cos θ3 − (K33 − K31)(K44 − K42) cos θ1 cos θ4},

and

DI = − e2αq+2α{(−G34 sin θ1 + G33 sin θ3)(−G42 sin θ2 + G41 sin θ4)}
− e2αq−2α{(−G31 sin θ3 + G34 sin θ1)(−G42 sin θ2 + G43 sin θ4)}
− e−2αq+2α{(−G32 sin θ1 + G33 sin θ3)(−G41 sin θ4 + G44 sin θ2)}
− e−2αq−2α{(−G32 sin θ1 + G31 sin θ3)(−G44 sin θ2 + G43 sin θ4)}
− {(−G32 + G34)(−G43 + G41) sin θ2 sin θ3

− (−G33 + G31)(−G44 + G42) sin θ1 sin θ4}.

For convenience, we rewrite the expressions for DR and DI as

DR = −α2q2e2αq+2α

{
1

α2q2
(K34 cos θ1 − K33 cos θ3)(K42 cos θ2 − K41 cos θ4)

+
1

α2q2
e−4α(K31 cos θ3 − K34 cos θ1)(K42 cos θ2 − K43 cos θ4)

+
1

α2q2
e−4αq(K32 cos θ1 − K33 cos θ3)(K41 cos θ4 − K44 cos θ2)

+
1

α2q2
e−4αq−4α(K32 cos θ1 − K31 cos θ3)(K44 cos θ2 − K43 cos θ4)

† Appendices A–E are available as a supplement to the online version of this paper, or from the
authors or JFM Editorial office.
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+
1

α2q2
e−2αq−2α[(K32 − K34)(K43 − K41) cos θ2 cos θ3

− (K33 − K31)(K44 − K42) cos θ1 cos θ4]

}
(27)

DI = −α2q2e2αq+2α

{
1

α2q2
(G34 sin θ1 − G33 sin θ3)(−G42 sin θ2 + G41 sin θ4)

+
1

α2q2
e−4α(−G31 sin θ3 − G34 sin θ1)(−G42 sin θ2 − G43 sin θ4)

+
1

α2q2
e−4αq(−G32 sin θ1 − G33 sin θ3)(−G41 sin θ4 − G44 sin θ2)

+
1

α2q2
e−4αq−4α(−G32 sin θ1 + G31 sin θ3)(G44 sin θ2 − G43 sin θ4)

+
1

α2q2
e−2αq−2α[(−G32 − G34)(G43 + G41) sin θ2 sin θ3

− (G33 + G31)(G44 + G42) sin θ1 sin θ4]

}
, (28)

which, in the limit α → +∞, q > 0, q �= 1, and under the condition (10), reduces to

DR → α2q2be2αq+2α

(
1 − 1

q2

)2

cos2 θ1 cos2 θ3, (29)

DI → α2q2be2αq+2α

(
1 − 1

q2

)2

sin2 θ1 sin2 θ3. (30)

2.3.3. Results

The conditions for DR and DI , defined by (27) and (28), respectively, to vanish can
be expressed by either cos θ1 = 0 and sin θ3 = 0 or sin θ1 = 0 and cos θ3 = 0.

Using the function (14), we can obtain the leading approximation of αci and cr

α(ci)0 =
α2(q2 − 1)

Re
,

(31)
(cr )0 =

c1

Re
.

From the expression (31), we have that q → 1 + δ where δ is a positive infinitesimal
for α → +∞ if α(ci)0 > 0. Hence, the asymptotic solutions of (29) and (30) for
α → +∞ and αb � 1 can be rewritten as either

c0 = − 1

nπ + π/2

Re

α2(1 + 2b)
, n= 0, ± 1, ±2, . . . ,

or

α(ci)0 = − 1

nπ + π/2

1

1 + 2b
, n = 0, ±1, ±2, . . . ,

(cr )0 =
Re

2mπq
+

2
3

+ 2b

1 + 2b
, m = ±1, ±2, . . . ,




(32)
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or

α(ci)0 = − 1

nπ

1

1 + 2b
, n= ±1, ±2, . . . ,

(cr )0 =
Re

2(mπ + π/2)q
+

2
3

+ 2b

1 + 2b
, m = 0, ±1, ±2, . . . .




(33)

From the expressions (32)–(33) and the inequality b �= 0, there exist modes (n< 0)
such that the growth rate α(ci)0 satisfies

α(ci)0 > 0.

This means that the problem is unstable for short waves.

2.4. Stability for long waves

2.4.1. The long-wave asymptotic expansion for the Orr–Sommerfeld equation

In analysing the stability in channels with small Reynolds number, Pekeris (1936,
1948) and Pekeris & Shkoller (1967) expanded the Orr–Sommerfeld equation in
terms of a small parameter ε = iαRe. Here, it is a long-wave assumption (very small
wavenumber α and small Reynolds number which is generally of the order of 1 ∼ 10
for microchannel flows) that makes the parameter ε small.

Now expand φ and iαRe c as follows:

φ =
∑

εmφm, (34)

iαRe c =
∑

εmcm. (35)

Expanding the Orr–Sommerfeld equation (6) leads to(
φ

(4)
0 + εφ

(4)
1 + · · ·

)
− 2α2

(
φ

(2)
0 + εφ

(2)
1 + · · ·

)
+ α4(φ0 + εφ1 + · · ·)

= εU
[(

φ
(2)
0 + εφ

(2)
1 + · · ·

)
− α2(φ0 + εφ1 + · · ·)

]
− εU (2)(φ0 + εφ1 + · · ·)

− (c0 + εc1 + · · ·)
[(

φ
(2)
0 + εφ

(2)
1 + · · ·

)
− α2(φ0 + εφ1 + · · ·)

]
, (36)

where φ
(n)
i denotes the nth-order derivative of φi with respect to y.

The zeroth-order approximation of (36) is

(D2 − α2 + c0)(D
2 − α2)φ0 = 0. (37)

The stability result will be obtained by using the zeroth-order approximation (37).
This is valid for very small ε.

Let φ0r and φ0i be the real and imaginary parts of φ0, i.e. φ0 = φ0r + iφ0i , then (37)
yields

(D2 − α2 + c0)(D
2 − α2)φ0r = 0. (38)

Using (35) and ε = iαRe, we can write

iαRe c = c0 + iαRec1 + · · · .

If we decompose c = cr + ici where cr and ci are real, then the use of the above
relation leads to the zeroth approximation of ci

(ci)0 = − c0

αRe
. (39)

Obviously, if c0 > 0, then ci < 0 and the slip-flow model is stable; if c0 < 0, then
ci > 0 and the slip-flow model is unstable.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

80
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005008086


298 C.-J. Gan and Z.-N. Wu

For convenience, we set s = iαq with q � 0 and let

c0 = α2 + s2 = α2(1 − q2). (40)

Obviously, the model is unstable if q > 1 and stable if q < 1.
The corresponding zeroth-order approximation of boundary conditions (7) and (8)

can also be rewritten as:
φ0r = 0, y = ±1, (41)

Dφ0r = ∓bD2φ0r , y = ±1. (42)

2.4.2. Solution of the Orr–Sommerfeld equation

For q �= 1, the general solution of (38) can be expressed as

φ0r = a1e
−αy + a2e

−qαy + a3e
αy + a4e

qαy. (43)

Inserting (43) into (41)–(42) yields

a1e
−α + a2e

−qα + a3e
α + a4e

qα = 0,

a1e
α + a2e

qα + a3e
−α + a4e

−qα = 0,

a1(−r + r2b1)e
−α + a2(−qr + q2r2b1)e

−qα + a3(r + r2b1)e
α + a4(qr + q2r2b1)e

qα = 0,

a1(−r − r2b1)e
α + a2(−qr − q2r2b1)e

qα + a3(r − r2b1)e
−α + a4(qr − q2r2b1)e

−qα = 0,

and the requirement of non-vanishing ai (non-trivial solution) leads to the following
dispersion relation

D = 0, (44)

with

D =

∣∣∣∣∣∣∣∣

e−α e−qα eα eqα

eα eqα e−α e−qα

(−α + α2b)e−α (−qα + q2α2b)e−qα (α + α2b)eα (qα + q2α2b)eqα

(−α − α2b)eα (−qα − q2α2b)eqα (α − α2b)e−α (qα − q2α2b)e−qα

∣∣∣∣∣∣∣∣
(45)

or (see Appendix B for the detailed derivation)

D = −2
(
η2

1 + η2
2

)
[cosh(2qα) cosh(2α) + sinh(2qα) sinh(2α)]

− 4η1η2[sinh(2qα) cosh(2α) + cosh (2qα) sinh(2α)]

+ 2(η2
1 + η2

3)[cosh(2qα) cosh(2α) − sinh(2qα) sinh(2α)]

+ 4η1η3[sinh(2qα) cosh(2α) − cosh(2qα) sinh(2α)] − 8qα2, (46)

where

η1 = (q2 − 1)α2b,

η2 = (q − 1)α,

η3 = (q + 1)α.

If the expression (44) admits solutions with q > 1, then there is instability. However,
for any b > 0 and α > 0, we can show (see Appendix C) that

D(q > 1) �= 0. (47)

For the neutrally stable mode q = 1, the solutions of (38) should be expressed as

φ0r = a11e
−αy + a21ye−αy + a31e

αy + a41yeαy. (48)

Inserting (48) into the boundary conditions (41)–(42) and the requirement of non-
vanishing ai1 (non-trivial solution) yields

D(q = 1) = (1 + 2αb)2e4α + (1 − 2αb)2e−4α − 8α2(1 + 2b + αb + b) − 2. (49)
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Figure 2. Contours for the x-component of the velocity near the lower solid wall for
Kn = 0.0964 and at instant t = 0.0002.

For any b > 0 and α > 0, we can still show that (see Appendix D)

D(q = 1) �= 0. (50)

By (47) and (50), there is no solution with q � 1, which means that there is no
long-wave instability.

3. Numerical simulation of flows in a microchannel
3.1. Compressible slip-flow model and numerical methods

We wish to compute numerically the flow in a microchannel as shown in figure 1. We
use the compressible Navier–Stokes equations for numerical computation. The slip
wall condition is still given by (3). The velocity vector of the basic flow is given by
(U ∗, 0, 0) where U ∗ = U ∗(y∗). We will use the analytical velocity distribution function
as initial condition (the use of other types of initial condition does not affect the
results once the flow is established). Arkilic et al. (1997) gives details of the velocity
distribution functions in a microchannel.

For the numerical method, we have used the robust Godunov scheme (Godunov
1959), extended to second-order accuracy by using the standard MUSCL treatment
(Van Leer 1976; Toro 1999), for the inviscid part and a second-order central difference
scheme for the viscous part. We will also compute a flow by using the first-order
scheme, in order to display that the instability is not a pure numerical one. A Strang
splitting (Strang 1968) is used in order to achieve second-order accuracy in time.
Some details are given in Appendix E.

The aspect ratio of the microchannel is chosen to be 2H/L = 1/5. A grid of
150 × 350 points (350 points in the streamwise direction and 150 points in the
transverse direction) is used. Note that the use of a coarse grid cannot capture the
unstable waves.

3.2. Numerical evidence of short-wave instability

Now we present the numerical result for Re = 1.0, Ma = 0.065 and σv = 0.8,

using the second-order Godunov scheme. In terms of the Knudsen number, this
condition corresponds to Kn = 0.0964. The numerical solution (using contours of the
horizontal-component of the velocity) close to the lower wall at instant t = 0.0002
is displayed in figure 2. Similar effects are observed near the upper wall, so we will
simply present numerical results close to the lower wall. For this short time, the flow
is smooth and no instability has yet developed. At later times, irregular structures
develop near the lower wall (also near the upper wall), as can be seen from figure 3 for
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Figure 3. Contours for the x-component of the velocity for Kn = 0.0964 and at instant
t = 0.00125.
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Figure 4. Contours for the x-component of the velocity for Kn = 0.0964 and at instant
t = 0.0025.
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0.030

U(2.86, –0.993)

Figure 5. Time evolution of the x-component of the velocity at the fixed point x = 2.86,
y = −0.993 for Kn = 0.0964. The numerical solution oscillates in time however long we con-
tinue the computation.

t = 00125 and from figure 4 for t = 0.0025. In figure 5, we display the time evolution
of the streamwise velocity at the fixed point x = 2.86, y = −0.993. It is clear that the
velocity oscillates in time. The unstable structures clearly reveal that the instability is
a short-wave one. The initial increase (or decrease in other conditions) of the mean
velocity is due to the initial conditions for numerical computation not being exactly
the final solutions (we do not know the exact solution, though we know the velocity
profile at steady state). As usual, initial conditions affect the initial stage of linear
instability development, but after a long time the (linear) instability is independent of
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Figure 6. Contours for the x-component of the velocity (Re = 1.0, Ma = 0.065) at
t = 0.00125. Uniform initial data are used.
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Figure 7. Contours for the x-component of the velocity at t = 0.0025 for Kn = 0.0964. This
is computed by using the first-order scheme.

the initial condition. In the present case, however, the instability is maintained for as
long as we continue the computation. We have also tested different initial data, for
instance, the case of a uniform flow. We still observe unstable structures close to the
wall (figure 6).

3.3. Dependence of the instability on numerical accuracy and boundary condition

We have used a second-order scheme in the previous computation. In order to show
that the observed instability is not due to the MUSCL treatment, we display in figure 7
the numerical result at t = 0.0025 obtained by the first-order Godunov scheme while
keeping the same other conditions as in § 3.2. We still observe short-wave instability
close to the wall. Hence, the observed instability is not due to numerical treatment.

In fact, the observed instability is due to wall slip (as revealed theoretically). In order
to show that wall slip is the origin for the instability, we have performed a computation
by using the same condition as in § 3.2 while replacing the slip wall condition by the
no-slip wall condition (the velocity vanishes on the wall). The numerical result is
displayed in figure 8 for the contours of velocity at t = 0.1 (a long time after the start
of the computation, before this time the computed flow is also stable) and figure 9
for the time evolution at a fixed point. The computed flow is now stable.

We have also computed a flow for Re = 6.0, Ma = 0.3, and σv = 0.8̇. This corres-
ponds to Kn = 0.07415. If the no-slip wall condition is used, the flow is stable, as
shown in figure 10, while the computed flow becomes unstable when the slip boundary
condition is used, as displayed in figure 11.
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Figure 8. Contours for the x-component of the velocity for Kn = 0.0964 and at instant
t = 0.1. The no-slip wall condition is used and the computed flow is always stable.
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Figure 9. Time evolution of the x-component of the velocity for Kn = 0.0964 and at the fixed
point x = 2.86, y = −0.993, obtained for the no-slip wall condition. No instability is observed.
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Figure 10. Contours for the x-component of the velocity at t = 0.012, obtained with the
no-slip wall condition: Re = 6.0,Ma = 0.3 (Kn = 0.07415).

3.4. Influence of the Knudsen number

We have computed flows for Ma = 0.051 and Ma = 0.06 while keeping σv = 0.8 and
Re = 1.0.

The case Ma = 0.051 corresponds to Kn = 0.0756. The numerical result for t = 0.1
is displayed in figure 12. The computed flow is always stable.

The numerical result is displayed in figure 13 for Ma = 0.06, which corresponds to
Kn = 0.089. The computed flow becomes unstable.
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Figure 11. Contours for the x-component of the velocity at t = 0.012, obtained with the slip
wall condition: Re = 6.0,Ma = 0.3 (Kn = 0.07415).
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Figure 12. Contours for the x-component of the velocity at Kn = 0.00125. The flow
condition is Re = 1.0, Ma = 0.051.
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Figure 13. Contours for the x-component of the velocity at t = 0.00125. The flow condition
is Re = 1.0, Ma = 0.06.

Other computations, not displayed here, show that the computed flow is stable for
Ma smaller than 0.051 (or Knudsen number smaller than 0.0756) and unstable for
Ma larger than 0.06 (or Knudsen number larger than 0.089).

Now we vary the Reynolds number from Re = 0.09 to Re = 1.16 while keeping
σv = 0.8 and Ma = 0.065. In figure 14, we display numerical result for Re = 1.16
(which corresponds to Kn = 0.083). The computed flow is stable. In figure 15, we
display the results for Re = 0.09 (which corresponds to Kn = 0.107). The computed
flow is unstable. Other computations, not displayed here, show that the computed
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Figure 14. Contours for the x-component of the velocity at t = 0.00125. The flow condition
is Re = 1.16, Ma = 0.065.
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Figure 15. Contours for the x-component of the velocity at t = 0.00125. The flow condition
is Re = 0.09 , Ma = 0.065.

flow is stable for Re larger than 1.16 (or Knudsen number smaller than 0.083) and
unstable for Re lower than 0.09 (or Knudsen number larger than 0.107).

Hence, the computed flow is stable for small Knudsen number, while it becomes
unstable for large Knudsen number.

4. Concluding remarks and discussion
We have performed a stability analysis using the slip-flow model for flows in a

microchannel.
For theoretical analysis, we have simply used the slipflow model for an incompres-

sible and parallel flow. The conclusion is that there is short-wave instability and the
model is stable for long waves.

For numerical study we have used the compressible slip-flow model. The numerical
results display short-wave instability, as predicted by the incompressible slip-flow
model. In our numerical experiments, we have carefully checked that the instability
is due to wall slip, and not to numerical instability. When the wall slip is removed,
the flow becomes stable in the slip-flow regime.

Hence, either the slip-flow model is unstable, or the problem of microchannel flow
is physically unstable in the slip-flow regime.

Similarly to the physical instability, pure model instability is also important. An
important example of this type is the so-called Bobylev instability (1982). We know
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that flows with moderate rarefaction effect can be described by the Burnett equations.
In 1982, Bobylev studied the linear stability of the Burnett equations for Maxwellian
molecules and discovered that beyond a certain critical reduced wavenumber there
exist normal modes that grow exponentially, concluding that the Burnett equations
are linearly unstable. Since then some efforts have been made to construct modified
Burnett equations to maintain stability (Zhong, MacCormack & Chapman 1991).
Uribe, Velasco & Garcia-Colin (2000) extended the analysis of Bobylev to any
interatomic potential and interpreted the instability results in terms of the Knudsen
number. They found that there exists a bound for the Knudsen number above which
the Burnett equations are unstable. If the present instability (for the slip-flow model)
is purely a model instability, caution should be exercised in numerical computations
using the slip-flow model. Our experiences shows that unstable waves appear only
when the grid is fine enough. If the assumption of pure model instability were true,
then further effort would be required to build a stable slip-flow model, similar to the
past efforts to modify the Burnett equations.

Though it is not the object of this paper to obtain the critical Knudsen number
for instability, our numerical experiments show that the computed flow becomes
unstable only when the Knudsen number or slip length b is large enough. It would
be important to find the critical Knudsen number for instability. In our short-wave
instability analysis, the expansion has been made by requiring b to satisfy (10).
Hence, the theoretical analysis holds only when b is not very small. This excludes
the possibility of obtaining a critical value for the Knudsen number above which the
problem is unstable. The conclusion of the current paper is that when the wavenumber
α and the combination αb is large enough, the problem is unstable. Removing the
constraint (10) means that lower-order terms must be kept in the analysis so that the
asymptotic solutions for the determinants would be much more complex than those
given by (29) and (30).
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