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Abstract

We assume that human carrying capacity is determined by food availability. We propose

three classes of human population dynamical models of logistic type, where the carrying

capacity is a function of the food production index. We also employ an integration-based

parameter estimation technique to derive explicit formulas for the model parameters.

Using actual population and food production index data, numerical simulations of our

models suggest that an increase in food availability implies an increase in carrying

capacity, but the carrying capacity is “self-limiting” and does not increase indefinitely.

2020 Mathematics subject classification: primary 34A12; secondary 65R32, 92B05.

Keywords and phrases: logistic model, variable carrying capacity, food production
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1. Introduction

According to the Population Reference Bureau, the world population is projected to

reach 9.8 billion in 2050, representing a 31% increase from the estimated 7.5 billion

population in 2017 [11, 12]. Urbanization is expected to increase, with approximately

70% of the world’s population living in cities or urban areas. Rapid human population

growth is one of the most detrimental environmental issues that we face, and thus

deserves our serious attention [9].

The logistic model for population growth has been utilized extensively to study

the cause-and-effect relationship between the so-called “carrying capacity” (that is,

the population size that available resources can support) and the population size

[2, 6, 19, 26]. It is typically assumed that the carrying capacity is constant in time.

Consequently, the logistic model exhibits a sigmoidal shape when the population is
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plotted as a function of time. It has also been studied in the case where the population

oscillates due to periodic seasonality [13].

However, human population growth exhibits more complex behaviour, unlike

population species grown in laboratory cultures which have a fixed amount of space

and resources. It is, therefore, more realistic to assume a time-varying carrying

capacity when using the logistic model for describing human population dynamics.

Meyer [16], as well as Meyer and Ausubel [17], considered a bi-logistic model,

which is essentially a logistic model but with a sigmoidal time-varying carrying

capacity. The bi-logistic model was applied to the English and Japanese populations,

where a second growth occurred due to a shift from an agriculture-based society to an

industrialized one [17]. Cohen [3] proposed a human population growth model with

a variable carrying capacity, which in turn changes as a function of the population

itself. A conclusion from the above models is that the inclusion of a variable carrying

capacity is more reflective of the human condition.

Safuan et al. [22] considered a coupled system that describes the interaction

between the population and carrying capacity. Their model eliminates the need for

prior knowledge of the carrying capacity, or constraints to be placed upon the initial

conditions. The same authors found an exact solution of a nonautonomous logistic

equation with a special form for the carrying capacity and expressed the solution as

a series [23]. Shepherd and Stojkov [24] studied the logistic equation with a slowly

varying carrying capacity, and used multiple scale analysis to obtain an approximate

closed-form solution. Other assumptions for the carrying capacity that have been

considered are either periodic [14, 21] or stochastic [1].

Cohen [3] and Meyer and Ausubel [17] have attempted to illustrate human carrying

capacity for the purpose of presenting robust models to accurately estimate the human

population size that can be supported. However, there is no consensus with regard to

appropriate models for human carrying capacity [3]. It is more or less accepted that

human carrying capacity is influenced by several factors such as changes in technology,

culture and economics. Specific examples of new technologies and resources are those

that have permitted the increase in crop yields, as well as other innovations that have

brought about the increase in human food availability [8]. Hence food availability

is deemed an important factor that affects human population growth and defines its

carrying capacity [8, 9].

To quantify food production data, a measure of global food availability must be

established. The Food and Agriculture Organization (FAO) obtains data from official

and semi-official reports of crop yields, area under production and livestock numbers.

The food production index covers food crops that are considered edible and that

contain nutrients (see [8] for more details on how the FAO determines this food

production index, as well as a related livestock production index).

As a first step in modelling human population growth with a variable carrying

capacity, we follow Hopfenberg [8] and postulate that food production data is the sole

variable that influences human carrying capacity. In fact, Hopfenberg [8] assumed

a simple linear relationship between human carrying capacity and food production
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index. Using the available FAO food production data and despite a crude fitting

procedure, model parameters were estimated that yielded population estimates that

closely approximate actual population numbers. However, population forecasting was

not discussed in [8].

In this paper we propose more sophisticated human population growth models

that relate human carrying capacity to food production data. The outline of this

paper is as follows. In Section 2 we give three general classes of population models

with variable carrying capacities that depend on food availability. In Section 3 we

derive an integration-based method for model fitting and obtain explicit formulas for

the parameters. Results of numerical simulations are presented and discussed in

Section 4. We conclude with brief remarks in Section 5.

2. Logistic model with variable carrying capacity that depends on food supply

Let us consider the classical logistic equation and assume a variable carrying

capacity, namely,

dN

dt
= rN

[

1 −
N

K(t)

]

, (2.1)

where N(t) is the human population size at time t, r is the (constant and positive)

intrinsic growth rate and K(t) is the carrying capacity at time t. As stated in the

previous section, we suppose for simplicity that food production data is the only

variable that influences human carrying capacity. More precisely, we assume that

K(t) = f (I(t)) (where I(t) is the food production index at time t) for some suitable

smooth function f of I such that f (0) = 0 and f (I) > 0 for I > 0. The former says

that there is zero carrying capacity if no food is available (this is a mathematical

idealization, since I(t) > 0 in practice; hence K(t) > 0), while the latter is due to the

fact that carrying capacity is a positive quantity.

Moreover, we will consider three models depending on the properties of the

function f .

(a) f ′(I) > 0 for I > 0 and f (∞) = ∞.

This model assumes that human carrying capacity increases indefinitely with

increasing food production. A family of examples is f (I) = αIp, where α > 0 and

p ≥ 0. When p = 1, we recover Hopfenberg’s model [8], while p = 0 reduces to

the classical logistic equation with a constant carrying capacity.

(b) f ′(I) > 0 for I > 0 and 0 < f (∞) < ∞.

This is similar to the previous model in that human carrying capacity increases

with increasing food production, but it does not do so indefinitely and tends to

some finite positive limiting value. We say that the human carrying capacity is

“self-limiting”. Some examples are f (I) = αI/(1 + I) or f (I) = α(1 − e−I), where

α > 0. It is easy to see that 0 < f (∞) = α < ∞.

(c) There exists I∗ > 0 such that f ′(I) > 0 for 0 < I < I∗ and f ′(I) < 0 for I > I∗, that

is, f has a unique global maximum at I∗. Furthermore, 0 < f (∞) < ∞.
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Here we assume that there is a critical threshold value for the food production

index. If the food production index is below the threshold, then the carrying

capacity increases with the food supply, as in models (a) and (b). However,

too much food production (and hence a food production index greater than

the threshold) leads to a lowering of the carrying capacity. Some examples are

f (I) = αI(1 + I)/(1 + I2) and f (I) = (I − 1)e−I
+ 1, where α > 0.

The above examples for f can be expressed in the form f (I) = αg(I), where α > 0

and g(I) > 0 for I > 0. The parameter α is to be estimated by fitting the model to the

population data, while the functional form for g is specified according to the behaviour

desired for the human carrying capacity. Of course, in principle, g may also depend

on one or more parameters that will also have to be estimated. However, as an initial

attempt at modelling and to keep the parameter estimation tractable, we assume that g

does not depend on any unknown parameters.

3. Integration-based parameter estimation method

If we set K(t) = αg(I(t)), then equation (2.1) becomes

N′(t) = rN(t) −
r

α

N(t)2

g(I(t))
. (3.1)

Suppose for the moment that N(t) and I(t) are known for all 0 ≤ t ≤ T for some

positive T . Our goal here is to find explicit formulas for α and/or r using the

integration-based method of Holder and Rodrigo [10].

Let w = w(t; s) be a suitable positive weight function parametrized by s ≥ 0.

Examples of possible weight functions are w(t; s) = e−st and w(t; s) = 1/(1 + t)s. If

we choose the exponential function, then
∫ T

0
w(t; s)N(t) dt can be viewed as a finite

Laplace transform. Multiplying both sides of (3.1) by w(t; s) and integrating by parts,

we obtain

w(T; s)N(T) − w(0; s)N(0) −

∫ T

0

w′(t; s)N(t) dt

= r

∫ T

0

w(t; s)N(t) dt −
r

α

∫ T

0

w(t; s)N(t)2

g(I(t))
dt. (3.2)

To simplify the notation, define

a(s) =

∫ T

0

w(t; s)N(t) dt,

b(s) = −

∫ T

0

w(t; s)N(t)2

g(I(t))
dt, (3.3)

c(s) = w(T; s)N(T) − w(0; s)N(0) −

∫ T

0

w′(t; s)N(t) dt,
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so that (3.2) becomes

ra(s) +
r

α
b(s) = c(s). (3.4)

Note that in equation (3.4), a(s), b(s) and c(s) are known quantities for a fixed s. We can

think of (3.4) as a “generating equation” that is used to generate algebraic equations

for α and/or r by assigning specific values to s. In principle, the same values for α

and/or r should be obtained for any value of s ≥ 0, provided the logistic equation (2.1)

were an exact model of human population growth. In practice, of course, this may not

be the case. However, if we believe in the validity of the logistic model, the parameter

values thus obtained should be robust with respect to the choice of s, although only a

heuristic justification of this was given by Holder and Rodrigo [10].

3.1. Rate r is known If the intrinsic growth rate r is assumed to be known as in [8],

then choosing s = s0 ≥ 0 in (3.4) yields the explicit formula

α =
rb(s0)

c(s0) − ra(s0)
, (3.5)

provided α is positive.

REMARK 3.1. From (3.3) we see that b(s0) < 0. Suppose that there exists M > 0 such

that 0 < N(t) < M for all 0 ≤ t ≤ T . For definiteness, assume that w′(t; s0) < 0 for all

0 ≤ t ≤ T . This is the case, for example, when w(t; s) = e−st or w(t; s) = 1/(1 + t)s. The

case when w′(t; s0) > 0 for all 0 ≤ t ≤ T can be treated similarly. Then

w(T; s0)N(T) − w(0; s0)N(0) −

∫ T

0

w′(t; s0)N(t) dt

≥ w(T; s0)N(T) − w(0; s0)N(0) −M[w(T; s0) − w(0; s0)],

which gives

c(s0) − ra(s0) ≥ −[M − N(T)]w(T; s0) + [M − N(0)]w(0; s0) − rM

∫ T

0

w(t; s0) dt.

If s0 is such that

[M − N(T)]w(T; s0) − [M − N(0)]w(0; s0) + rM

∫ T

0

w(t; s0) dt < 0, (3.6)

then c(s0) − ra(s0) > 0 and, therefore, α < 0, a contradiction. For example, if w(t; s) =

e−st, then inequality (3.6) simplifies to

[M − N(T)]e−s0T
− [M − N(0)] +

rM

s0

(1 − e−s0T ) < 0. (3.7)

Since the limit of the left-hand side of (3.7) as s0 → ∞ is −[M − N(0)] < 0, we deduce

that s0 cannot be taken to be too large. For a more general weight function w(·; s0), s0

should not be chosen so that (3.6) holds.
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REMARK 3.2. Here we investigate the robustness of α in (3.5) with respect to s0. One

way is to sketch α against s0, and determine subintervals of s0 where α is “almost

constant” and positive. We then choose any s0 in such subintervals. Another way is to

consider dα/ds0. Differentiating (3.5) with respect to s0 yields

dα

ds0

= r
b′(s0)c(s0) − b(s0)c′(s0) − ra(s0)b′(s0) + ra′(s0)b(s0)

[c(s0) − ra(s0)]2
. (3.8)

In particular, if w(t; s) = e−st, then (3.3) gives

a′(s0) = −

∫ T

0

te−s0tN(t) dt,

b′(s0) =

∫ T

0

te−s0tN(t)2

g(I(t))
dt,

c′(s0) = −Te−s0TN(T) +

∫ T

0

e−s0tN(t) dt − s0

∫ T

0

te−s0tN(t) dt.

If N = N(t) is an exact solution of (3.1), then of course dα/ds0 = 0 for any s0.

Otherwise, sketching dα/ds0 against s0 would indicate subintervals of s0 where the

graph is close to the s0-axis. We then choose s0 in one of these subintervals.

3.2. Rate r is unknown If the intrinsic growth rate r is not assumed to be known,

then we need to determine α and r simultaneously. For this we choose two convenient

nonnegative values of s, for example, s1 and s2 with s1 , s2, in (3.4) to produce the

linear algebraic system

[

a(s1) b(s1)

a(s2) b(s2)

] [

r

r/α

]

=

[

c(s1)

c(s2)

]

for r and r/α. More specifically,

α =
c(s1)b(s2) − c(s2)b(s1)

a(s1)c(s2) − a(s2)c(s1)
, r =

c(s1)b(s2) − c(s2)b(s1)

a(s1)b(s2) − a(s2)b(s1)
, (3.9)

assuming that both quantities are positive. Conditions analogous to (3.6) to ensure the

positivity of α and r in (3.9) can also be derived, which give restrictions on s1 and

s2. Similarly, the robustness of α and r with respect to s1 and s2 can be investigated

by looking at regions in the s1s2-plane, where either (i) the surfaces α and r given in

(3.9) are “almost constant”, or (ii) the surfaces ∂α/∂s1, ∂α/∂s2, ∂r/∂s1 and ∂r/∂s2 are

“close” to the s1s2-plane.

REMARK 3.3. In practice, N(t) and I(t) are not known for all 0 ≤ t ≤ T . Rather,

discrete values Nj and Ij, where j = 0, 1, . . . , n, are given at corresponding times tj such

that t0 = 0 and tn = T . Thus, the integrals appearing in (3.3) will be evaluated using

numerical quadrature.
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REMARK 3.4. Equation (2.1) is a Bernoulli equation whose exact solution is

N(t; r,α) =
1

e−rt/N(0) + (r/α)
∫ t

0
e−r(t−u)/g(I(u)) du

. (3.10)

A nonlinear least squares approach to estimating r and α involves the minimization of

the squared error

E(r,α) =

n
∑

j=0

[N(tj; r,α) − Nj]
2.

In the case of a constant carrying capacity, the integral appearing in (3.10) can

be evaluated explicitly, and partial derivatives of E with respect to r and α can be

calculated, in principle. Here, however, this is not straightforward since one of the

unknown parameters r appears inside the integral, which cannot be evaluated explicitly

since it depends on g(I(u)). The integration-based method we use in this paper is easy

to implement, as we have explicit formulas for α and/or r involving integrals that can

be evaluated numerically.

4. Numerical simulations and discussion

We now present the results of the model fitting and population forecasting.

The world population data [25] and world food production index data [5] can be

downloaded from the World Bank website. Both data sets are visualized in Figure 1.

The food production index is a measure of the net food production of a country’s

agricultural sector per person. This covers all edible agricultural products that contain

nutrients. The FAO determines these numbers relative to the average food production

for three years, and sets the average for these three years equal to 100. Hopfenberg [8]
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FIGURE 1. Data sets for (a) world population (billions) and (b) World Food Index, the net food production

of the agricultural sector in the world per person, from years 1962 to 2014.
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used the three-year period from 1989 to 1991, while we use the current three-year

period from 2004 to 2006. In Figure 1(b), an index value greater than 100 means food

production is increasing with respect to the base years 2004–2006; otherwise it is

decreasing.

There are three steps to be implemented in the procedure. The “parameter estima-

tion” step applies the integration-based technique from the previous section, and makes

use of the data from 1962 (t = 0) to 1991 (t = 29); thus T = 30. We use three different

values of s0 or (s1, s2) to find out which one gives the best estimates for α and/or r,

respectively. The choice of three values is guided by the heuristic arguments given

in Remark 3.2. The “error estimation” step uses the data from 1992 (t = 30) to 2014

(t = 53). Here we use the estimated parameters from the parameter estimation step,

and solve the logistic equation (3.1) numerically to approximate the population from

1962 (t = 0) to 2014 (t = 53). Note that the last available population data are for 2014.

Then we calculate the root mean square (RMS) error between the numerically obtained

population size and the actual population data from 1992 (t = 30) to 2014 (t = 53).

The magnitude of the errors will give an indication of which of the models (a), (b)

or (c) with corresponding s0 or (s1, s2) gives the best fit to the given data. Finally, the

“population forecasting” step is to solve (3.1) numerically from 2015 (t = 54) to 2120

(t = 158), thus predicting the population trend after 2014.

As we can observe in Figure 1(b), the food production index exhibits an exponential

trend. Therefore it is reasonable to implement a linear least squares technique to obtain

the approximate curve I(t) ≃ 32.86e0.025t using the data from 1962 (t = 0) to 1991

(t = 29).

For the weight function we take w(t; s) = e−st. Note that numerical simulations were

also performed with the weight function w(t; s) = 1/(1 + t)s and similar results were

obtained.

4.1. Rate r is known Here we estimate the parameter α only and fix r = 0.03,

similarly to Hopfenberg’s work [8]. By trying out three different values for s0, the

model fitting step using (3.5) and then the error estimation step are implemented.

Table 1(a) gives the results for the three carrying capacity models. It shows that for

model (a) with f (I) = αI, the value α = 0.23 gives the best estimate since the RMS

error has the lowest value. Meanwhile, for models (b) with f (I) = αI/(1 + I) and (c)

with f (I) = αI(1 + I)/(1 + I2), the values α = 11.38 and α = 10.97 are the respective

best approximations.

To justify the choices of s0 in Table 1(a), Figure 2 depicts the RMS error on the

interval [0, 1], where the larger s0 yields the larger value of the error. The value of

s0 that results in the smallest RMS error is then used to approximate the population

number as provided in Figure 4(a). On the other hand, Figure 3(a) shows the graph of

α against s0 from (3.5) and Figure 3(b) shows dα/ds0 against s0 from (3.8). We see

that any s0 in the subinterval [0.00, 0.5] gives an “almost constant” and positive α and

an “almost zero” dα/ds0; hence the choices of s0 = 0.00, 0.01, 0.10 in Table 1(a).
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TABLE 1. Parameter estimation for three carrying capacity models when (a) r is known to be r = 0.03

and (b) r is unknown.

Model (a): f (I) = αI Model (a): f (I) = αI1/4

s0 α RMS (s1, s2) r α RMS

0.00 0.23 0.415 (0.00, 0.01) 0.032 3.86 0.021

0.01 0.23 0.461 (0.00, 0.10) 0.032 3.78 0.018

0.10 0.26 0.970 (0.05, 0.10) 0.032 3.75 0.016

Model (b): f (I) = αI/(1 + I) Model (b): f (I) = αI/(1 + I)

s0 α RMS (s1, s2) r α RMS

0.00 11.41 0.0004 (0.00, 0.01) 0.027 13.36 0.011

0.01 11.38 0.0003 (0.00, 0.10) 0.028 12.93 0.008

0.10 11.16 0.0017 (0.05, 0.10) 0.028 12.71 0.006

Model (c): f (I) = αI(1 + I)/(1 + I2) Model(c): f (I) = αI(1 + I)/(1 + I2)

s0 α RMS (s1, s2) r α RMS

0.00 10.97 0.0001 (0.00, 0.01) 0.027 13.32 0.011

0.01 10.94 0.0002 (0.00, 0.10) 0.027 12.88 0.008

0.10 10.66 0.0065 (0.05, 0.10) 0.028 12.65 0.006

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

2

4

6
Model(a)

Model(b)

Model(c)

FIGURE 2. Root mean square error between numerical and actual population numbers as a function of s0

for three carrying capacity models.

From these estimations we can now implement the population forecasting step to

find out if the population will grow without bound, which is arguably unrealistic, or

if it tends to some limiting population value for large times. Figure 4(b) shows that

only models (b) and (c) give a reasonable result as the population number reaches a

“limiting carrying capacity” α. This is because when t is large, then I(t) is also large

as it is approximated by an exponentially increasing function. Since K = f (I), when I

is large, the carrying capacity will tend towards α. On the other hand, when model (a)

https://doi.org/10.1017/S1446181120000206 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000206


[10] Modelling human carrying capacity 327

0

20

10

5

15

Model(a)

Model(b)

Model(c)

(a)

0

20

40

60

80
Model(a)

Model(b)

Model(c)

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

(b)

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

FIGURE 3. Graphs showing (a) the parameter α estimated as a function of s0 (calculated by (3.5)) and

(b) the gradient of α with respect to s0 (obtained from (3.8)).
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FIGURE 4. Comparison of the best three carrying capacity models (when r is known) with respect to

(a) approximation with the actual data for 1962–2014 and (b) forecasting for 2015–2120.
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FIGURE 5. Root mean square error between numerical and actual population numbers as a function of s1

and s2 for three carrying capacity models.

is applied, then the carrying capacity will approach infinity since I becomes large,

therefore the population number increases without bound.

In summary, since models (b) and (c) give smaller errors than model (a) after fitting

actual population data, the numerical simulations indicate that around 100 years from
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FIGURE 6. The estimated values of α and r which both depend on s1 and s2, calculated by (3.9).

now, the projected world population is about 11 billion (the approximate value of α in

models (b) and (c)). This is in stark contrast to the projected population from model (a),

which is around 92 billion. Note that model (a) with f (I) = αI is identical to the model

proposed by Hopfenberg [8].

4.2. Rate r is unknown Next we estimate both parameters α and r using (3.9). This

time, we choose three pairs of values for (s1, s2). We again choose f (I) = αI/(1 + I) for

model (b) and f (I) = αI(1 + I)/(1 + I2) for model (c) as before when r is assumed to

be given. However, if we choose f (I) = αI for model (a), then (3.9) yields negative

values for r as (s1, s2) is made to vary. Thus we take f (I) = αI1/4 instead (other forms
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FIGURE 7. Comparison of the best three carrying capacity models (when r is unknown) with respect to

(a) approximation with the actual data for 1962–2014 and (b) forecasting for 2015–2120.

such as f (I) = αI1/2 may be taken as well). Table 1(b) summarizes the results for the α

and r estimates together with the corresponding RMS errors.

We see that all three models give very good estimates when (s1, s2) = (0.05, 0.10),

and again models (b) and (c) are (marginally) better than model (a).

To justify the choices of (s1, s2) in Table 1(b), Figure 5 presents the RMS

error of all three models, where the subinterval [0.0, 0.15] × [0.0, 0.15] gives con-

sistent values. Therefore, by this subinterval, any (s1, s2) yields “almost constant”

and positive α and r, as shown by Figure 6. This is why we chose (s1, s2) =

(0.00, 0.01), (0.00, 0.10), (0.05, 0.10) in Table 1(b). Population approximations for the

best value (s1, s2) for each model are provided in Figure 7(a). Meanwhile, population

projections using the best approximation for each of the models are shown in

Figure 7(b).

We summarize as follows. Similarly to the case when r was assumed known, from

the numerical simulations we infer that around 100 years from now, the projected world

population is about 13 billion (the approximate value of α in models (b) and (c)).

However, this time model (a) predicts a population of around 19 billion when α and

r are simultaneously estimated, compared to around 92 billion when r was fixed and

only α was estimated. It should be noted, of course, that the functional forms for f are

different, although they both belong to the class of functions in model (a).

5. Concluding remarks

In this paper, we assumed that the human carrying capacity is a function of food

availability. Extending the classical logistic equation, we proposed three different

classes of models (a), (b) and (c) that describe how the carrying capacity varies

with the food production index. Model (a) assumed that the human carrying capacity
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increases without bound as food production increases, whereas models (b) and (c)

assumed that there is a limit to the carrying capacity, even as food production is

increased indefinitely.

We also proposed an integration-based method to estimate the parameters and gave

explicit formulas for them. The method provides an alternative to a nonlinear least

squares approach when an explicit analytical formula for the solution to the differential

equation is not available or is not easy to implement. In essence, instead of minimizing

the squared error, the integration-based method “averages out the potential errors”

by taking the integrals of associated functions. This statement was not proved by

Holder and Rodrigo [10], but can be heuristically motivated here as follows. A naive

discretization of (3.1) is

N(tj+1) − N(tj)

tj+1 − tj
− rN(tj) +

r

α

N(tj)
2

g(I(tj))
= 0.

Suppose that r is given and we wish to estimate α. For a fixed j0, we substitute

tj0 , I(tj0 ) and N(tj0 ) into the above equation and solve for α (which is basically a

collocation method). However, for each j , j0, the left-hand side will introduce a

residual term which may be positive or negative. By multiplying (3.1) by a weight

function and integrating over [0, T], in effect we are “averaging out the potential

errors”. A more rigorous mathematical analysis of the integration-based method is

still work in progress by the second author.

From the integration-based model fitting using actual world population and food

production index data, our results suggest that models (b) and (c) give the best fit. This

implies that although an increase in food availability implies an increase in carrying

capacity, there is an upper limit to the carrying capacity, which is not unreasonable to

expect. In fact, looking at Figures 4(b) and 7(b), our models (b) and (c) predict human

population in 2050 to be roughly 10 billion, which is comparable to the Population

Reference Bureau prediction of 9.8 billion mentioned in the Introduction.

Potential extensions of our work here would be to include other factors that

influence human carrying capacity, for example, water supply, living space and

environmental conditions [7, 20, 27]. Agriculture requires water for food production

and accounts for almost 70% of all water withdrawals, and up to 95% in some

developing countries [18]. Thus water supply can be considered as a factor that

influences human carrying capacity, since greater food production leads to a decrease

in water supply, which in turn could potentially decrease human carrying capacity.

Food production may also reduce the population size due to deaths from diseases

caused by food plant infection. This is one mechanism that explains model (c), for

example. One well-known example of dieback (see [4] as well as [15] for more

information) occurred in Ireland after a fungus infection destroyed the potato crop

in 1845 (the Irish potato famine). It was reported that as a result of the potato famine,

approximately 1 million people died and 3 million more emigrated to other countries.

The challenge of mathematical modelling is of course how to quantify such factors.
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In this paper, although we elected to model human carrying capacity explicitly as

a function of the food production index only, it is not unreasonable to expect that

the effects of other factors (for example, water supply) are implicitly reflected in the

observed population and food production data, and such effects are encapsulated in the

parameters estimated via the model fitting procedure.
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