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We use data from well-resolved direct numerical simulations at Taylor-scale Reynolds
numbers from 140 to 1000 to study the statistics of energy dissipation rate and
enstrophy density (i.e. the square of local vorticity). Despite substantial variability in
each of these variables, their extreme events not only scale in a similar manner but
also progressively tend to occur spatially together as the Reynolds number increases.
Though they possess non-Gaussian tails of enormous amplitudes, ratios of some
characteristic properties can be closely linked to those of isotropic Gaussian random
fields. We present results also on statistics of the pressure Laplacian and conditional
mean pressure given both dissipation and enstrophy. At low Reynolds number intense
negative pressure fluctuations are preferentially associated with rotation-dominated
regions but at high Reynolds number both high dissipation and high enstrophy have
similar effects.
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1. Introduction
Fluctuations in the energy dissipation rate and the enstrophy density (with the words

‘rate’ and ‘density’ omitted hereafter for brevity, as in common usage), defined by

ε = 2νsijsij; Ω = ωiωi, (1.1)

respectively, are two different descriptors of the structure of small-scale turbulence
(Sreenivasan & Antonia 1997). Here, ν is the viscosity, sij is the strain rate,
ωi is the vorticity and the summation rule applies to repeated tensor subscripts.
The effects of extreme dissipation and enstrophy are quite distinct: for example,
extreme dissipation represents intense local straining which can break flame surfaces
in turbulent combustion, while large enstrophy represents strong vortical motions
which can lead to preferential concentration of inertial particles in multiphase flows.
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Although in homogeneous turbulence these quantities have the same mean value (if Ω
is multiplied by ν), a common finding at moderate Reynolds numbers is that enstrophy
is more intermittent than dissipation (Kerr 1985; Chen, Sreenivasan & Nelkin 1997).
However, data from recent direct numerical simulations (DNS) at high resolution
(Donzis, Yeung & Sreenivasan 2008) focused on extreme events in dissipation and
enstrophy support theoretical arguments (Nelkin 1999) that these two quantities scale
similarly at high Reynolds numbers. This is the first facet we explore in this paper.

Even if ε and Ω scale similarly as each other, it is the differences in their
instantaneous spatial distributions (i.e. the mismatch of spatial regions where one
of them is high or low with those where the other is high or low) that defines the
Laplacian of pressure which, in isotropic turbulence, satisfies

∇2(p/ρ)= (Ω − ε/ν)/2. (1.2)

Although the pressure fluctuation at a point is not prescribed entirely by local values
of Q≡∇2(p/ρ), this Poisson equation justifies using it as a rough diagnostic for small-
scale vortical structures (Jeong & Hussain 1995). The properties of ε,Ω and p were
explored numerically earlier by Pumir (1994) at a low Reynolds number. However,
the Reynolds number dependence of the pressure Laplacian is not understood, and the
intermittency in ε and Ω is likely to lead to qualitative differences between results
at ‘low’ and ‘high’ Reynolds numbers. Investigation of this aspect is our second task
here.

We use results from DNS of forced isotropic turbulence, at grid resolution up
to 40963, to characterize the dissipation and enstrophy fluctuations simultaneously,
and to explore their relationship to pressure. In § 2 we give an overview of the
numerical simulations, which are the best resolved available at the Reynolds numbers
of our database. Results on dissipation and enstrophy, and the connection to pressure
fluctuations, are presented in §§ 3 and 4, respectively. Brief concluding remarks are
provided in § 5.

2. Simulation approach and database
As in Donzis et al. (2008), our results are obtained from Fourier pseudo-spectral

calculations with second-order Runge–Kutta integration in time. The turbulence is
forced numerically at the large scales, using a scheme first used in Donzis & Yeung
(2010). Increased resolution made possible by advances in high-performing computing
has been used both to increase the Reynolds number and to resolve small scales better
(Yakhot & Sreenivasan 2005; Donzis et al. 2008). The condition for the latter is
expressed by the dimensionless parameter kmaxη, where kmax =

√
2N/3 is the highest

wavenumber resolved on an N3 grid and η is the Kolmogorov scale. (The ratio of grid
spacing 1x to η is roughly 3/kmaxη.) Typically, in simulations aimed at increasing the
Reynolds number (see Ishihara, Gotoh & Kaneda (2009)), kmaxη is around 1.4–1.5,
which corresponds to 1x/η ≈ 2. In this work, since resolution is important, we
have used higher values of kmaxη (i.e. finer grids) for all targeted Reynolds numbers
except the highest. Although on occasion we compare results obtained with different
degrees of resolution at different Reynolds numbers, the interpretation of the data takes
account of possible differences in this regard.

Table 1 lists the basic parameters, from the best-resolved simulations at five
Reynolds numbers (140 6 Rλ 6 1000, rounded to the nearest 10). Here Rλ ≡ u′λ/ν,
where u′ is the root-mean-square (r.m.s.) velocity and λ is the Taylor microscale.
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Rλ 140 240 380 600 1000
kmaxη 11.2 11.2 2.7 2.7 1.3
N 2048 4096 2048 4096 4096
T/(L1/u′) 1.96 2.87 4.61 3.36 3.59
NR 35 20 48 33 20
〈ε〉L1/u′

3 0.458 0.449 0.451 0.470 0.464
µ3 of ∇‖u −0.52 ± 0.01 −0.56 ± 0.06 −0.59 ± 0.00 −0.62 ± 0.00 −0.63 ± 0.00
µ4 of ∇‖u 5.68± 0.06 6.82± 0.11 8.06± 0.11 10.01± 0.32 11.17± 0.31
{〈Ω ′2〉/〈ε ′2〉} 1.83± 0.02 1.89± 0.03 1.93± 0.02 1.95± 0.04 1.98± 0.02
{〈Ω ′3〉/〈ε ′3〉} 4.58± 0.24 5.05± 0.48 4.30± 1.26 3.28± 1.42 2.86± 0.93
{〈Ω ′4〉/〈ε ′4〉} 13.5± 2.8 15.6± 5.7 9.4± 7.1 5.6± 5.9 3.3± 1.3

TABLE 1. Selected DNS parameters at five different Reynolds numbers: number of grid
points in each direction, spatial resolution parameter, period for time averaging, number of
snapshots analysed, normalized mean dissipation rate, skewness and flatness of longitudinal
velocity gradients, and the ratios between moments of normalized dissipation (ε ′ = ε/〈ε〉)
and enstrophy (Ω ′ =Ω/〈Ω〉). Angled brackets denote averaging in space and over multiple
snapshots when applicable, while curly braces represent ensemble averaging of the ratios
of spatially averaged moments instead of the moments themselves. We include 95 %
confidence intervals based on Student’s t distribution in statistical theory. In all cases the
box length L0 is 2π , L1/L0 ∼ 0.2 and Rλ is increased by reducing viscosity and keeping
forcing parameters unchanged.

We have included the simulation time period T measured in large-eddy time scales
(L1/u′, where L1 is longitudinal integral length scale) and the number of instantaneous
snapshots (NR) analysed. Clearly, a long simulation is desirable for sampling accuracy
but finite resources have limited the value of T attainable at higher Reynolds numbers.
However, since intense fluctuations of intermittent variables (such as ε and Ω) are
relatively short lived, a large NR is still helpful even if snapshots used for ensemble
averaging are not far apart in integral time. As Rλ increases, the mean dissipation rate
scales with u′3/L1 (Sreenivasan 1998) following classical arguments. The longitudinal
velocity gradient ∇‖u is negatively skewed, and becomes increasingly non-Gaussian
as Rλ increases. Both ε and Ω are normalized by their mean values. Typically, in
simulations with modest resolution, high-order moments of dissipation and enstrophy
(both of which increase with Reynolds number) are underestimated but the ratios
between moments of the two are nearly unaffected (Donzis et al. 2008).

Because rare events of high intensity play a strong role, statistical convergence in
the high-order moments of ε and Ω is difficult to achieve. Figure 1 shows that the
fourth moments can vary between different snapshots from the same simulation by as
much as four orders of magnitude. Improved resolution compounds the difficulty as
more extreme events are captured. In part (a) of this figure all data symbols lie above
the diagonal line, with data at larger values (mostly from simulations at higher Rλ)
generally closer to the diagonal, while in part (b) the ratio of the two fourth moments
(last row of table 1) appears to approach unity in the high-Rλ limit. In part (a) there is
seemingly a change in behaviour at normalized moments around O(105) between two
groups of data points. This feature may bear some relation to the mixing transition
proposed by Dimotakis (2000) and interpreted by Yakhot (2008) as a consequence of
strong fluctuations in the dissipation length scale.
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FIGURE 1. Data on spatially averaged moments of normalized dissipation and enstrophy for
each snapshot, with different symbols for the five simulations listed in table 1 (�, N, 4, •
and ◦, respectively). In (a) the moments are plotted against each other (inset shows second
moments). In (b) the ratio of fourth moments is plotted against the Reynolds number in each
snapshot.

3. Fluctuations of dissipation and enstrophy
The scaling of extreme events in ε or Ω is closely related to the behaviour of the

wide tails of their probability density functions (p.d.f.s). Recent DNS data (Donzis
et al. 2008) have suggested that the tails of p.d.f.s of ε and Ω approach each other
for Rλ ≈ 400 onwards, in the range of fluctuations beyond some 1500 times the
mean. Figure 2 shows the contrast between results for Rλ ≈ 240 and Rλ ≈ 1000:
‘moderately large’ values of Ω ′ (say, O(100) times the mean) are more likely than
ε ′ of comparable magnitude, while extreme values of both occur with about equal
probability. In general, large values of ε and Ω contribute more to the moments 〈ε ′p〉
and 〈Ω ′p〉 as the order of the moment (i.e. p) increases. Consequently from figure 2
we expect that the ratio 〈Ω ′p〉/〈ε ′p〉 will increase with Rλ beyond some Rλ if p is low
enough, but decrease if p is sufficiently large. Indeed, in the last three rows of table 1
we observe a decrease with Rλ for p= 4 in contrast to a slight increase for p= 2.

To investigate if intense fluctuations of ε and Ω occur simultaneously in space and
time, we consider the joint p.d.f. of ε/〈ε〉 and Ω/〈Ω〉. Figure 3 shows contours of
this joint p.d.f. at Rλ ≈ 240 and 1000. The first quadrant represents high dissipation
and high enstrophy while the third quadrant represents low values of both. Strain-
dominated regions, if defined by the criterion ε > νΩ , occupy the lower triangular
half, below the diagonal dashed line of slope unity through the origin. Since both
ε/〈ε〉 and Ω/〈Ω〉 are plotted on logarithmic scales and contour levels are also
spaced logarithmically, approximate linear spacing of contour lines in the first quadrant
reflects nearly exponential (or mildly stretched exponential) behaviour. If dissipation
and enstrophy scale alike, one could expect a trend towards symmetry across the
diagonal noted above, and the contour patterns in the second quadrant (ε < 〈ε〉 and
Ω > 〈Ω〉) and fourth quadrant (ε > 〈ε〉 and Ω < 〈Ω〉) would resemble each other
strongly. At higher Reynolds number, these symmetries become increasingly evident
in the first quadrant, although differences remain in the third. Furthermore, at higher
Rλ a narrow protuberance pointing in the direction of increasing ε and Ω is seen
to develop along the diagonal line. The apparent convergence of this protuberance
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FIGURE 2. p.d.f.s of normalized dissipation (solid lines) and enstrophy density (dashed lines)
from two 40963 simulations. (a) Rλ ≈ 240, kmaxη ≈ 11; (b) Rλ ≈ 1000, kmaxη ≈ 1.4.
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FIGURE 3. Contour plots of the joint p.d.f.s of normalized dissipation and enstrophy density,
at (a) Rλ ≈ 240 and (b) Rλ ≈ 1000. Contour levels are 10, 1, 0.1 and 0.01, and decreasing by
factors of 100 in successive lines beyond. Dashed lines of slope 1 are added to help compare
strain-dominated and rotation-dominated regions.

onto the diagonal line provides strong evidence that extreme events in dissipation
and enstrophy tend to occur together at higher Reynolds numbers. The single-point
joint p.d.f., however, does not provide information on the spatial extent in which such
correlations are maintained between regions of high ε and high Ω .

To assess the relative likelihood of strain-dominated and rotation-dominated regions,
we can consider the probabilities of the events {ε ′ > Ω ′} and {Ω ′ > ε ′} – or, more
generally, the p.d.f. of the dissipation–enstrophy ratio, γ = ε/(νΩ). Since both ε and
Ω can take very small values (close to zero), γ can span a very wide range. Figure 4
shows that this p.d.f. is highly non-symmetric, with peak values occurring in the range
0.1 6 γ 6 1 but also a wide tail on the right, extending to at least γ ∼ 107. Since the
largest samples of ε ′ and Ω ′ are at most O(104) even in the Rλ ≈ 1000 simulation,
both the smallest and the largest values of γ are the result of very small instead
of very large values of ε ′ or Ω ′. The p.d.f.s at Rλ ≈ 240 and 1000 are extremely

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2012.5


10 P. K. Yeung, D. A. Donzis and K. R. Sreenivasan

10–4

10–6

10–8

10–16

10–14

10–12

10–10

10–2

10–110–5 10–310–7 107105103101 10–110–3 103101

(a) (b)

p.
d.

f.
0.5

0.4

0.3

0.2

0.1

0

100 0.6

FIGURE 4. p.d.f. of the ratio γ = ε/(νΩ), in (a) log–log and (b) log–linear scales. DNS
data at Rλ ≈ 240 and 1000 are drawn as two solid lines which almost coincide. Dashed lines
represent a Gaussian random field with the same energy spectrum as DNS at Rλ ≈ 1000.
Dotted lines represent an F distribution estimate (discussed in the text). The inset in (a) shows
a zoom-in for γ in the range 103 to 107, while (b) shows γ in the range 10−3 to 103, using
log–linear scales.

close, both on log–log scales, which emphasize extreme values of the variables (with
power-law behaviour evident in part a), and log–linear scales, which emphasize the
more moderate magnitudes.

The apparent closeness between the p.d.f.s of γ at Rλ ≈ 240 and Rλ ≈ 1000 suggests
the observed behaviour is in part kinematic – which should then be present also
in isotropic Gaussian random fields (GRFs) constructed to have the same energy
spectrum as the DNS data but without Navier–Stokes dynamics. For a GRF all
components of velocity gradient are normally distributed and independent, except
for the incompressibility condition that relates the longitudinal gradients. This means
that Ω is the sum of squares of all three Gaussians and hence behaves as chi-square
of order three, while ε, by incompressibility, is close to chi-square of order five.
It follows that, for a GRF, γ would follow closely the so-called F distribution. In
particular, if χ 2

n and χ 2
m are chi-squared variables of orders n and m, then the variable

x= (χ 2
n /n)/(χ

2
m/m) has the p.d.f.

fn,m(x)=
Γ

(
1
2
(m+ n)

)
nn/2mm/2

Γ (n/2)Γ (m/2)
xn/2−1

(m+ nx)(m+n)/2 , (3.1)

where Γ (·) is the Gamma function. In figure 4 this expression, with n = 5 and m = 3,
is found to be close to the GRF result, especially when γ is large. Furthermore,
according to (3.1), the p.d.f. of the F distribution varies as xn/2−1 for x→ 0 and as
x−(1+m/2) for x→∞, which in our application would lead to power laws of slopes
close to 1.5 and −2.5 for γ → 0 and γ →∞, respectively. Even the DNS data (with
non-Gaussian features) show similar power laws. This result can be understood by
noting that the tails of the p.d.f. of γ are dominated by very small values of ε and
Ω , which in turn imply very small velocity gradients. In other words, these power-law
tails are produced by samples close to the core of the velocity gradient p.d.f.s in a
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FIGURE 5. p.d.f.s of reciprocals of normalized dissipation and enstrophy in (a) log–log and
(b) log–linear scales. Solid lines are for Rλ ≈ 1000 (4 for 〈ε〉/ε, ◦ for 〈Ω〉/Ω). Dashed lines
are for Rλ ≈ 240 (N for 〈ε〉/ε, • for 〈Ω〉/Ω).

regime where non-Gaussian effects are small. In contrast, intense ε ′ and Ω ′ (often
within one order of magnitude of each other) are confined near the core of the p.d.f.
of γ , where (as seen in part b of figure 4) both GRF and F-distribution results differ
substantially from DNS. We also note in passing that the results discussed here cannot
be explained by invoking log-normality for ln ε and lnΩ independently: it is known
that ln ε and lnΩ have a positive correlation coefficient of order 0.5 which increases
weakly with Rλ (Yeung & Pope 1989), and ln γ departs from Gaussian more than ln ε
or lnΩ .

Since the tails in figure 4 are dominated by extremely small ε and Ω , it is useful
to examine the p.d.f.s of the reciprocals of the dissipation and enstrophy, in the form
〈ε〉/ε and, similarly, 〈Ω〉/Ω . (These p.d.f.s are directly related to those of ε/〈ε〉 and
Ω/〈Ω〉 but show the behaviour of small values more clearly.) In part (a) of figure 5
the p.d.f.s of 〈ε〉/ε and 〈Ω〉/Ω at Rλ ≈ 1000 are seen to converge on the left,
corresponding to the far tails in figure 2. To the right of the figure, extremely small Ω
are clearly much more probable than extremely small ε; this trend is consistent with
the phenomenological picture (e.g. Jimenez et al. 1993) that large enstrophy is isolated
and surrounded by large regions of low vorticity. The p.d.f. of 〈Ω〉/Ω also shows a
power-law tail of slope −2.5 for large values of the ratio, which is consistent with very
small Ω being close to chi-square distributed regardless of Reynolds number. Other
ranges of the variable show significant Reynolds number dependence, which is clearer
in part (b) of the figure: e.g. as Rλ increases the probability for ε ′ and Ω ′ to occur in
the range 1–100 is reduced.

4. Relation to the pressure field
As noted earlier, (1.2) shows that pressure fluctuations are associated loosely with

the joint state of dissipation and enstrophy via the pressure Laplacian, denoted by
Q ≡ ∇2(p/ρ). Since enstrophy fluctuations of intermediate magnitudes are more likely
than dissipation fluctuations of similar magnitude, one can expect the probability
distribution of Q to be positively skewed. Further, if intense dissipation and intense
enstrophy tend to occur together, the distribution of Q should be narrower than those
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Rλ 140 240 380 600 1000
N 2048 4096 2048 4096 4096
〈(ε ′)2〉 2.65± 0.02 3.19± 0.05 3.78± 0.05 4.65 ± 0.08 5.21 ± 0.12
〈(Ω ′)2〉 4.85 ± 0.05 6.05± 0.12 7.31± 0.12 9.12 ± 0.12 10.31 ± 0.20
〈(Q′)2〉 0.74± 0.01 0.93± 0.02 1.13 ± 0.02 1.40 ± 0.02 1.57 ± 0.03

〈(ε ′)3〉 17± 0.4 31± 1.5 166± 70 2214±1510 1258± 710
〈(Ω ′)3〉 77± 3 158± 12 473± 120 4517±2900 2800± 1266
〈(Q′)3〉 4.3± 0.2 9.4± 0.8 17± 1 40± 8 38± 3

{〈(Q′)2〉/〈(ε ′)2〉} 0.28± 0.00 0.29± 0.01 0.30± 0.01 0.30± 0.01 0.30± 0.01
{〈(Q′)3〉/〈(ε ′)3〉} 0.26± 0.02 0.30± 0.04 0.26± 0.01 0.15± 0.00 0.07± 0.07
{〈(Q′)4〉/〈(ε ′)4〉} 0.45± 0.01 0.55± 0.26 0.28± 0.29 0.10± 0.01 0.01± 0.01

TABLE 2. Comparison of moments of normalized pressure Laplacian Q′ ≡
∇2(p/ρ)/(〈ε〉/ν) with those of ε ′ = ε/〈ε〉 and Ω ′ = Ω/〈Ω〉, from the same datasets as
in table 1. Fourth moments of ε ′ and Ω ′ are omitted here because of their great statistical
variability, especially at higher Rλ.

Rλ C1 C2 C3 C4 C5 C6

140 −0.31± 0.005 0.23± 0.01 −0.18± 0.02 0.16 ± 0.02 −0.15 ± 0.02 0.14 ± 0.03
1000 −0.049 ± 0.002 0.037 ± 0.003 −0.037 ± 0.01 0.14 ± 0.07 −0.29± 0.1 0.40± 0.1

TABLE 3. Correlation coefficients between nth power of p and ∇2(p/ρ), for n= 1 to 6,
with 90 % confidence intervals.

of ε and Ω , the contrast being greater at higher Reynolds number. In table 2 we
present data on normalized moments to support this expectation. In particular, as the
Reynolds number increases, while all normalized moments grow, high-order moments
of Q grow more weakly than those of ε and Ω . At the highest Rλ shown, the
normalized third-order moments of Q are nearly two orders of magnitude smaller than
those of ε and Ω , and even more so at fourth order. The behaviour of the mean square
of the normalized Laplacian can also be related to the correlation coefficient between
dissipation and enstrophy, which is about 0.5 at Rλ ≈ 140 and 0.73 at Rλ ≈ 1000. The
ensemble-averaged ratio between normalized moments of Q and those of ε and Ω also
shows a decrease for higher-order moments at sufficiently high Rλ.

To connect the observations above to the pressure fluctuation itself, we consider
the nature of solutions to (1.2). For an unbounded flow domain (and periodic domain
in the DNS) a formal solution is p/ρ = −1/4π

∫
Q(x′)/|x − x′| d3x′, which implies

that a sufficiently large positive Q (with Ω > ε/ν) at or close to a given point
in space can lead to strongly negative pressure fluctuations. In addition, the result
〈p∇2(p/ρ)〉 = −〈∇(p/ρ) · ∇(p/ρ)〉 (due to homogeneity) implies that p and Q must be
negatively correlated. To quantify the correlation between increasingly intense events
in p and Q, we compute the correlation coefficients, say Cn, between pn and Qn. If
intense events in ε and/or Ω (resulting in large Q) are closely related, the magnitude
of Cn should increase with n. Results in table 3 for n = 1 to 6 show that this
expectation holds well at Rλ ≈ 1000 (whereas, in contrast, the level of correlation
at Rλ ≈ 140 decreases with n). Furthermore, the increase in correlation level at
Rλ ≈ 1000 is stronger for even moments (which are insensitive to the sign of actual
samples of Q) than for odd moments. This suggests a significant association also exists
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FIGURE 6. p.d.f.s of normalized ε, Ω and Q ≡ ∇2(p/ρ) from simulations at (a) Rλ ≈ 240
and (b) Rλ ≈ 1000. Lines with triangles and circles represent ε/〈ε〉 and Ω/〈Ω〉, respectively.
Unmarked dashed lines and solid lines represent Q′ = Q/(〈ε〉/ν) > 0 and Q′ < 0 (plotted in
absolute value), respectively. Insets give a clearer comparison between results for Q′ > 0 and
Q′ < 0.

between strongly negative p and strongly negative Q, which correspond to regions of
the flow dominated by intense strain rate.

In figure 6 we compare the p.d.f. of the normalized pressure Laplacian with those of
dissipation and enstrophy. To retain the use of logarithmic scales (which allow closer
observation of the tails of the distribution), we have plotted the p.d.f. of Q in the
ranges of Q > 0 and Q < 0 as separate lines. Overall, the probability of events of
Q < 0 (i.e. ε > νΩ) is around 60–65 %, with very little dependence on Rλ. Since the
p.d.f. of Q is smooth at Q = 0, as |Q| → 0, it tends to the same limiting plateau for
both Q > 0 and Q < 0. Because large Ω is more likely than large ε, large positive
values of Q are more likely than negative values of the same magnitude. The tails of
the p.d.f. of Q are clearly not as wide as those for ε and Ω . However, in the case
of Rλ ≈ 1000, at extreme values of |Q|, the p.d.f.s for Q of different signs become
close again. Since Q> 0 when Ω > ε/ν and Q< 0 when Ω < ε/ν, these observations
are consistent with suggestions that the most intense values of ε and Ω tend to occur
together at the higher Reynolds number.

To relate the joint state of ε and Ω to the pressure field, we have also computed
the conditional mean pressures given ε and Ω simultaneously, i.e. 〈p|ε,Ω〉, as shown
in figure 7. This doubly-conditioned quantity is largely confined to the same envelopes
defined by the joint p.d.f. contours shown earlier, but with a greater degree of
sampling noise at the edges. At both Reynolds numbers, positive contour levels
(solid lines) reside primarily in the third quadrant (ε < 〈ε〉 and Ω < 〈Ω〉) while
negative values dominate elsewhere. At low Rλ negative values of 〈p|ε,Ω〉 are
preferentially associated with large values of Ω , which implies rotation-dominated
regions have a stronger tendency than strain-dominated regions to produce a negative
mean pressure when averaged over the conditional samples. However, as the Reynolds
number increases, the most intensely negative contour values are increasingly found
near the diagonal line, precisely at locations where intense events occur simultaneously
in both dissipation and enstrophy.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2012.5


14 P. K. Yeung, D. A. Donzis and K. R. Sreenivasan

(a) (b)

10–4

10–6

10–2

106

104

102

100

10–410–6 10–2 106104102100 10–410–6 10–2 106104102100

10–4

10–2

106

104

102

100

10–6

FIGURE 7. Contour plots of conditional mean pressure (normalized by its root-mean-square
fluctuation) given normalized ε and Ω , at (a) Rλ ≈ 240 and (b) Rλ ≈ 1000. Contour levels
used are: −3.5, −3, −2.5, −2, −1.5, −1, −0.5, −0.25, 0, 0.05, 0.1, 0.15 and 0.2. Solid and
dashed curves denote positive and negative contour levels, respectively.

5. Conclusions
DNS data for isotropic turbulence at high resolution and Taylor-scale Reynolds

numbers from 140 to 1000 are used to study the statistical behaviour of fluctuations
of dissipation rate, enstrophy density and the Laplacian of pressure. We focus on two
questions: (a) as the Reynolds number increases, do dissipation and enstrophy scale in
the same way, and what does it imply for their coincidence (or otherwise) in physical
space? (b) What can we learn about pressure fluctuations if we know the statistics of ε
and Ω?

With regard to (a), despite significant statistical variability, moments at various
orders and joint p.d.f.s indicate that, at sufficiently high Reynolds number (only
recently achievable in DNS) extreme events in dissipation and enstrophy not only
scale in a similar manner but also progressively tend to occur together at high
Reynolds numbers. Events of dissipation exceeding enstrophy occur with a probability
slightly higher than 60 %, while extreme values of the ratio ε/(νΩ) are dominated
by occurrences of very small dissipation and enstrophy associated with the near-
Gaussian cores of velocity gradient p.d.f.s. With regard to (b), we find that the
Laplacian of pressure has a positively skewed p.d.f. with narrower tails compared with
dissipation and enstrophy. As the Reynolds number increases these tails become more
nearly symmetric, while both high dissipation and high enstrophy become substantially
associated with negative pressure fluctuations.

The present study provides clear evidence that turbulence simulations at high
Reynolds number with sufficient resolution are now capable of facilitating new insights
that previous simulations could not provide. An important underlying question is
what is the minimum Reynolds number needed to observe asymptotic behaviour in
the statistics of small-scale turbulence, which likely will depend on the class of
quantity examined. Results on longitudinal and transverse structure functions, and on
the statistics of local averages as a function of averaging scale, will be reported
separately.
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