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The lift-generating capabilities of a translating and passively pitching rectangular plate
are assessed experimentally. The plate pitch dynamics are generated by a rotational
spring, and a genetic algorithm isolates a set of spring parameters maximizing the
average lift. Our experiments identified a range of parameters that produce kinematic
trajectories associated with optimal lift production. The stroke length and the dynamic
response of the spring at the driving frequency are revealed to play crucial roles in
the generation of such trajectories. Measurements taken with digital particle image
velocimetry are used to analyse the results.
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1. Introduction

Flapping wings have long intrigued biologists and engineers alike, particularly in
the context of insect flight. Ellington (1984) showed that leading-edge vortices (LEV)
generated by insect wings play a key role in lift production; this pioneering work
has been followed by studies for two-dimensional (Ellington 1996; Dickinson & Götz
1993) and three-dimensional (Liu, Ellington & Kawachi 1998; Birch & Dickinson
2001) cases. Dickinson (1999) studied the lift generated by a flapping fruitfly wing
experimentally, and Ramamurti & Sandberg (2002) performed the same studies using
simulations. In these studies, wings were considered to be rigid bodies.

More recent efforts have focused on the interaction between elastic flapping wings
and the associated flow. Among the computational studies on the subject, Bergou, Xu
& Wang (2007) showed that the aerodynamic and inertial forces equally contribute
to the passive pitching of a plate with torsional elasticity concentrated at the leading
edge. Eldredge, Toomey & Medina (2010) investigated a two-link structure where
the rotational kinematics of the upper link are prescribed, while the second link is
attached with a torsional spring and allowed to pitch passively. A similar structure
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was also investigated by Vanella et al. (2009). In these studies, lift generation is
fairly consistent over a range of phase differences between pitching and heaving.
Vanella et al. (2009) also examined the flow structure to establish the effect of natural
frequency on the formation of leading-edge vortices and wake capture mechanisms.

Ishihara, Horie & Denda (2009a) explored a lumped torsional flexibility model,
concluding that lift generation from purely passive pitching is a possibility. Ishihara
et al. (2009b) and Tanaka, Whitney & Wood (2011) explored the same setup
experimentally, reaching similar conclusions. Zhang, Liu & Lu (2010) used a similar
model in the context of fish-like propulsion, and showed that the ratio between
the natural frequency of the spring and the heaving frequency affects the direction
of propulsion. They also identified a region of non-periodic motion based on the
frequency ratio. Dai, Luo & Doyle (2012) simulated a plate with distributed elasticity
in three-dimensions, and examined the relative importance of wing inertia and
aerodynamic load on the deformation. An important relationship resulting from these
studies is the effect of frequency ratio on the phase shift between the plate’s heaving
and passively pitching motion. Dickinson (1999) examined the effects of this phase
shift on aerodynamic forces and flow structures. Ramananarivo, Godoy-Diana & Thiria
(2011) assumed inertia to be the dominating force in passive pitching, and showed
that the interplay between heaving–pitching phase difference and aerodynamics has
a key role in propulsive efficiency. Kim & Gharib (2011) linked the increase in the
forces acting on a flexible plate to the delayed development of three-dimensional
vortex formation. Khan, Steelman & Agrawal (2009) approached the passive pitching
mechanism from a design perspective, by optimizing a set of nonlinear spring
parameters to maximize the lift based on a quasi-unsteady model.

This paper aims to characterize the relationships between natural frequency and
damping ratio of an elastically mounted flapping plate that produces positive average
lift, i.e. optimal in the context of hovering motion. We set up an experiment using
a flat plate free to translate in a direction perpendicular to its long axis, following
a purely sinusoidal motion, while another motor rotates the plate about its long axis.
A model-following controller is designed such that the behaviour of a spring can
be precisely emulated by the rotational motor. The amplitude and frequency of the
sinusoidal translation of the plate are fixed, and the spring parameters are optimized
to maximize the average lift force produced during three translation periods of the
plate, starting from a still-water condition. The optimization is performed by the same
clustering genetic algorithm used by Milano & Gharib (2005) to uncover families of
lift-maximizing kinematics for a flapping plate.

Here the genetic algorithm produces families of spring parameters that maximize
the average lift measured in a stationary reference frame. Using full force and torque
measurements, as well as digital particle image velocimetry (DPIV) measurements
of the corresponding vortical structures, we present a full comparison between
optimal and suboptimal lift-generating dynamics. Separate optimization experiments
are performed for different translation amplitudes. These experiments show that the
optimal average lift decreases significantly beyond a limiting range of amplitudes,
and highlight important factors that determine optimal lift generation. The phase and
magnitude responses of the springs at the translation frequency are also identified
as crucial parameters in understanding the resulting trajectories associated with the
optimal parameters.
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FIGURE 1. Experimental setup shown with arbitrarily placed but properly oriented lab frame
{i, j, k}. The body frame {ib, jb, kb} is attached to the transducer, which rigidly connects to the
plate in series. The DPIV camera is positioned to capture the motion in a plane parallel to {i, j}
through the inclined mirror.

2. Problem definition and experimental setup

The goal of the experiment is to maximize the average lift generated by a
rectangular plate with two degrees of freedom, i.e. rotation and translation. The
experimental setup is shown in figure 1. The acrylic plate used is 5.1 mm thick
with chord length c = 40 mm and aspect ratio of 6. The plate is attached to a six-axis
force transducer and a rotational motor, and the assembly is driven by a translation
motor at the base plate. The translational trajectory is a simple sinusoid of the form:

x(t)= 1
2 [A cos(Ωt)+ A], (2.1)

where A is defined as the stroke length associated with each half-stroke. The direction
x(t) is along the translational motor rail and parallel to the unit vector i shown in
figure 1. The location x = A/2 is defined to be the centre of the tank, and the distance
from the plate to the walls at any instant is at least 10c to minimize the interference
from reflected waves. A Reynolds number of 104 (based on the plate chord length
and maximum translational velocity Umax) is chosen with room-temperature water
as the medium, consistent with the upper range for insect flight (Wang 2005). The
translational period and angular frequency are defined as T = πA/Umax and Ω = 2π/T
respectively. The numerical values of these parameters are listed in table 1. We
performed separate optimization experiments for different stroke lengths between the
range of A = 2.5c and A = 10c to examine the effect of travel distance on the optimal
lift attainable with passive pitching.

A model-following controller allows accurate emulation of a wide range of elastic
parameters for the rotational mount. The emulated model for the elastically mounted
plate is:

θ̈ + 2ζωnθ̇ + ω2
nθ =

1
J

Mf , (2.2)
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A

J

FIGURE 2. The elastic plate is modelled as a second-order system with natural frequency ωn,
damping ratio ζ and moment of inertia J about the pivot at the half-chord location. The angle
convention is as shown for the convenience of emulation. The frame {i′, j ′} maintains the same
orientation as the lab frame {i, j} shown in figure 1 but travels with the plate through the stroke
length A.

A (m): 2.50c 3.00c 4.00c 5.00c 6.00c 7.00c 10.0c

T (s): 1.25 1.50 2.00 2.50 3.00 3.50 5.01
Ω (rad s−1): 5.02 4.18 3.14 2.51 2.09 1.79 1.255

TABLE 1. Representative optimization experiment configurations. The Reynolds number
is 10 000 for all cases, based on chord length c = 40.0 mm and peak velocity
Umax = 0.251 m s−1.

where ζ and ωn are the damping ratio and natural frequency of the emulated spring,
respectively. θ is the plate angle as illustrated in figure 2, and J = 0.0005 kg m2 is the
moment of inertia of the plate. The torque acting on the plate Mf is measured, and an
internal Runge–Kutta integrator propagates the states to prescribe the upcoming point
in the trajectory, providing in real time the correct reference signal to the rotational
motor. Zero initial conditions θ(0) = θ̇ (0) = 0 are used. The control loop runs at
100 Hz, whereas the highest translation frequency used in our experiments is 0.89 Hz.

The optimization problem is posed as:

max
ζ,ωn

L= 1
R

R∑
i=1

∣∣∣∣ 1
3T

∫ 6T

3T
Li(t) dt

∣∣∣∣ , (2.3)

where R = 7 is the number of trials repeated for each set of ζ and ωn to account
for measurement errors. Li is the time-varying lift generated from trial i, defined as
the force along the j-direction. The average is taken of the last three periods out
of a total of six periods for each trial, thus excluding the initial transient dynamics
from the optimization. The absolute value accounts for the fact that plate motion can
start with either positive or negative θ depending on the initial moment imbalance
on the plate. The resulting kinematic trajectory of each run is saved by the emulator,
allowing precise playback of the same trajectory for digital particle image velocimetry
measurements.
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FIGURE 3. Average cost of optimal population versus stroke length. Pitching responses
associated with A = 2.25c and 2.5c fail to settle into steady state within 6 periods; their average
costs are shown here as dashed stems.

3. Results from the genetic algorithm

A genetic algorithm is used to tune the model parameters of the spring emulator
such that average lift is maximized. The algorithm was developed in Milano &
Koumoutsakos (2002) in the context of drag reduction over a cylinder in cross-flow,
and used by Milano & Gharib (2005) in producing optimal kinematic parameters
associated with the maximum lift of a flapping plate. The algorithm started with an
initial population of n= 50, where a population member is a particular combination of
ζ and ωn. The algorithm systematically searches the parameter space and evolves the
population to approximate the set of parameters that yield maximum lift. Convergence
is declared when the average lift values corresponding to 90 % of parameters in the
population are within the sensitivity of the force transducer, ±0.0285 N.

Average costs associated with the converged populations are shown in figure 3
for different stroke lengths. The pitching motions associated with A = 2.25c and
A = 2.5c are unable to reach steady state within 6 periods as specified by (2.3);
thus our discussion is focused on A > 3c. Two distinct regions emerge from the
result: stroke lengths between 3c and 6c produce optimal average lifts that are an
order of magnitude higher than for the longer stroke lengths. The optimal parameter
clusters for various stroke lengths are shown in figure 4; these clusters approximate
the set of parameters that produces lift-maximizing oscillations. The trends exhibit by
different stroke lengths can be clarified by considering phase and magnitude responses
associated with the spring, which is discussed in § 6.

We pick two representative stroke lengths, A = 5c and A = 10c, from the high-lift
and low-lift region respectively, for comparison. The global cluster of ζ and ωn for
the A = 5c case can be interpreted by considering the relative stiffness and damping
of the systems: low values of natural frequency signify ‘soft’ springs, for which
small disturbances in the forcing cause larger pitch angles; conversely, high values of
natural frequency are associated with stiff springs, in which case the plate remains at
θ = 0 throughout the run. The two clusters shown for A = 10c can be explained in a
similar fashion. However, the longer stroke length and period significantly limit the lift
generation. Our subsequent analyses are first restricted to these two stroke lengths, in
order to gain insight into the effects of stroke length on the lift. Then we explore the
effects of flow structures on the lift optimality, by considering a suboptimal case from
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FIGURE 4. Optimal population clusters for stroke lengths with high lift (A = 3c–6c) (a),
compared with a representative low-lift case (A = 10c) (b). The optimization bounds are
0.1 6 ζ 6 1 and 0.1 6 ωn 6 6 rad s−1. Only the region containing converged points is shown.

Case A (m) ζ ωn (rad s−1) Lavg (N) L (N) Description

1 5c 0.35 1.6 0.20 0.22 Optimal (short stroke)
2 5c 0.40 1.0 0.18 0.090 Suboptimal (short stroke)
3 10c 0.065 1.6 0.047 0.048 Low-ζ optimal (long stroke)
4 10c 0.94 0.48 0.039 0.037 High-ζ optimal (long stroke)

TABLE 2. Parameter values for selected cases. We choose a trial k with average lift
Lavg = |(1/3T)

∫ 6T
3T Lk(t) dt| from each case, and use its kinematics for PIV measurements.

outside the optimal cluster for A = 5c. The parameter values for these cases are listed
in table 2.

4. Stroke length and lift generation

As shown before, the stroke length has a significant effect on the lift; here we
compare DPIV measurements for the A= 5c and A= 10c cases at 50 % span. Vorticity
fields are plotted along the trajectories for cases A = 5c and A = 10c in figures 5 and
6 respectively, and the lift associated with each frame is labelled in the adjacent plots.
For the A = 10c case, we choose to focus on the low-ζ optimal point, since the pitch
angle was insignificant for points in the high-ζ cluster. The highest average lift that
can be generated for a stroke amplitude A = 10c is one order of magnitude less than
for the shorter stroke amplitude. This result suggests that stroke amplitude is crucial
for maximum lift generation.

Frames (a) and (b) of figure 5 show the plate at the beginning of the fourth
period. The counter-clockwise (CCW) vortex shown near the top-left of the plate
in (a) is a previously shed leading-edge vortex (LEV), from the end of the third
period (not shown); it drifts downward in (b), revealing a wake capture mechanism
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FIGURE 5. Vorticity plots for optimal trajectory (A = 5c) over one representative period.
The solid contours represent counter-clockwise rotations and dashed lines clockwise rotations.
(a) t/T = 4; (b) 4.125; (c) 4.25; (d) 4.375; (e) 4.5; (f ) 4.625; (g) 4.75; (h) 4.875; (i) 5.
The average lift over this particular period is 0.195 N. The kinematic trajectories are shown
as temporally equidistant snapshots on the top-right figure, with downstroke on the top row
and upstroke on the bottom. The grey and white background colour on the lift plot denotes
downstroke and upstroke respectively.
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FIGURE 6. As figure 5, but showing plots for optimal trajectory (A = 10c) over one
representative period. The average lift for this particular period is 0.043 N. (a) t/T = 4;
(b) 4.125; (c) 4.1875; (d) 4.25; (e) 4.28; (f ) 4.38; (g) 4.61; (h) 4.725; (i) 4.84.

(Dickinson 1999), that can also be seen as a minor peak in the lift plot. Frame
(b) also shows the development of the LEV to the right of the plate due to the
translating motion, while the plate rotation produces another CCW vortex to the left of
the plate. The secondary vortex, generated from the rotation shown in (b), eventually
combines with the LEV to form a larger vortex. This combined LEV remains attached,
continuing to form as shown in frame (c). Due to the short travel distance, the vortices
have yet to be fully shed near the end of downstroke at frame (e). Frames (f –i) mirror
frames (b–e).
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In contrast with the A = 5c case, the optimal trajectory for A = 10c in figure 6
shows irregular downstrokes and upstrokes: the plate begins with a negative angle of
attack in frame (a) as a result of transient responses from the previous period (not
shown), settling into a positive angle of attack between (b) and (c); between the same
frames, the clockwise (CW) rotation of the plate generates a CCW vortex near the
leading edge. Part of the same vortex combines with the LEV, subsequently breaking
off before frame (d) due to the return of the angular position to a negative angle of
attack.

As remarked, the optimal trajectory for this case yields an average lift one order
of magnitude smaller than the A = 5c case. Since this lift is fairly close to the
sensitivity of the force transducer, along with fact that the plate fails to lock into a
periodic pattern, we suspect that the extremely low value of average lift is the effect of
measurement noise. To test this, we ran the emulator with the same set of parameters
in air, which produced similar values for the average lift. This confirmed that the
optimal lift generated for the A = 10c case is not significant, thus we will limit our
discussion to the A= 5c case in the following section.

5. Flow response

Figure 7 compares lift and vorticity for optimal and suboptimal cases. Sequence (a)
in figure 7 shows the vorticity after the plate reaches its maximum velocity during the
downstroke, revealing that the LEV for the optimal case remains attached for a longer
duration. The next sequence (b) immediately follows the stroke reversal, showing
a still well-formed (for the optimal case) vortex from the wake of the downstroke.
Sequence (c) shows the creation of CW vortices to the left of the plate due to
plate rotation in both cases, though the suboptimal case lags behind the optimal case.
The optimal case forms the rotation-induced vortex in the first frame and begins to
form the LEV in the second frame, whereas the suboptimal case only starts to form
the rotation-induced vortex in the second frame. This means that phase differences
in the plate trajectory, determined by the spring parameters, are crucial for optimal
lift generation. In the next set of frames (d), the plate goes through the stroke
reversal at the end of a downstroke. Here the flow structure in the optimal trajectory
exhibits similar mechanisms as before, whereas for the suboptimal trajectory there
is a significant lag in vortex formation; it can be seen that this lag causes delayed
stroke reversals for the suboptimal case. Delayed stroke reversals have been noted in
Dickinson (1999) to have detrimental effects on lift generation.

6. Dynamic response of the plate

The optimal population of ζ and ωn for A = 5c shown in figure 4 can be expressed
in terms of the phase and magnitude response for the rotational second-order system in
(2.2). The phase φ and magnitude G between the output angle and the input moment
at the driving frequency Ω are given by the relationships (Ogata 2002):

φ =− arctan
2ζ
Ω

ωn

1−
(
Ω

ωn

)2 , (6.1)
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FIGURE 7. Differences in the lift trend between optimal (solid line) and suboptimal (dashed
line) trajectories for A= 5c. The inset vorticity plots are enclosed in a continuous line frame for
the optimal case, and in a broken line frame for the suboptimal case. The arrows represent the
current travel direction of the plate and the plate’s velocity magnitude (relative to other frames
in the plot). The abscissa is normalized by the total travel length of a full stroke (2A) to better
indicate the particular location of the plates.

G= 20 log
(

1
Jω2

n

)
− 20 log

√√√√(1−
(
Ω

ωn

)2
)2

+
(

2ζ
Ω

ωn

)2

. (6.2)

An analysis of the optimal population (figure 8) shows that both φ and G approach
Gaussian distributions with means φ = −138◦ and G = 56.1 dB, and standard
deviations of Sφ = 8.09◦ and SG = 3.69 dB. The phase and magnitude of the optimal
case we analysed are −142◦ and 56.8 dB respectively, which is representative of the
average values associated with the optimal population. The value of φ in this case
reveals that the output angle lags behind the input torque by the specified amount
as shown in figure 9(a), thus providing a link between the translational kinematics,
system dynamics, and rotational kinematics.

Given that periodic torque forcing of the plate is possible only if the plate is
oriented properly at each quarter-stroke, the plate must reverse its direction with
precise timing and allow the pitch angle to build up to the desirable orientation at the
quarter-stroke. Additionally, the plate needs to maintain positive, non-vertical angles of
attack throughout most of each half-stroke to produce consistently positive lift. Such
requirements suggest that pitch reversal must occur near the end of each half-stroke.
In essence, the phase shift of the spring response at the driving frequency provides an
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FIGURE 8. Optimal population for A= 5c in terms of magnitude and phase response of the
system at the driving frequency Ω = 2.51 rad s−1.
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FIGURE 9. The torque, position, and lift of the optimal (a) and suboptimal (b) cases over seven
runs are plotted. The thick line is the mean, and the thin lines are the 2 standard deviation
upper and lower bounds. Note that the initial perturbation of angular travel, which determines
the subsequent direction of motion, has been unified for all runs. The consistency in behaviour
shown by this particular optimal case is also exhibited by all other sets of parameters in the
optimal population.

intuitive measure for the timing of pitch reversal. Similarly, the magnitude response is
a criterion that must be met to achieve the proper orientation.

The suboptimal case that we analysed has phase of −159◦ and magnitude of
50.95 dB, placing the point just outside the optimal region as shown in figure 8.
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FIGURE 10. Optimal magnitude and phase responses at the driving frequencies associated
with different stroke lengths A. The centroids (Ḡ, φ̄)A are (70.3,−134)3c, (65.5,−134)3.5c,
(62.6,−129)4c, (56.1,−138)5c and (51.7,−138)6c.

The phase and magnitude associated with the suboptimal system prevent the plate from
locking into a periodic trajectory, which is illustrated in figure 9(b) as the torque and
angular trajectories for this point become wildly inconsistent across the seven repeated
trials.

The phase and magnitude analysis we applied to case A = 5c can be generalized
for stroke lengths from A = 3c to 6c. Figure 10 shows an optimal range of
phases (near −135◦) shared by these high-lift stroke lengths, and reveals that their
magnitude decreases with increasing stroke length. The flow structures associated
with shorter lengths are characterized by rapid destruction of LEVs before shedding.
This premature termination of vortices leads to smaller values of circulation, thus
producing less torque on the plate as shown in figure 11. The smaller forcing requires
higher amplification for the plate to reach pitch angles similar to longer stroke length
cases; hence the inverse relationship between the optimal magnitude and stroke length.
Figure 10 also shows that the longer stroke lengths are more sensitive to changes in
phase response, since in such cases the timing at which vortices are shed becomes
crucial. The shorter stroke lengths are less dependent on the travel length as the
vortices are captured by returning strokes before saturation.

Ramananarivo et al. (2011) also studied the frequency response of a flexural beam
in the context of passive pitching. They assumed inertia to be the primary force
contributor, and derived the magnitude and phase relationships between heaving and
pitching. In contrast, our phase and magnitude analysis relates the torque to pitching,
thus providing an intermediate layer that connects the unsteady flow structures to the
plate dynamics and kinematics.

7. Conclusions

We explored the possibility of using elasticity to generate optimal passive pitch
reversal for a flapping plate, so as to maximize the lift generated. A key result of
this study is that in order for the pitch reversal to occur only near the end of each
half-stroke, the translational amplitude needs to be less than approximately 6 times the
plate chord length. For larger stroke lengths, our optimizer showed that it is impossible
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FIGURE 11. The torque, position, and lift of the A= 3c (a) and A= 6c (b) cases over seven
trials. Other details are the same as figure 9.

to choose spring parameters that lock the system into a periodic pitching, thereby
preventing the flapping plate from generating significant lift.

The other two parameters shown to be critical for optimal lift generation are
the magnitude and phase responses of the rotational spring at the plate translation
frequency. We identified regions in which these parameters produce maximum average
lift, for translation amplitudes between 3 and 6 chord lengths.
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