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SUMMARY
Many research works on the control of nonholonomic wheeled mobile robots (WMRs) do not
consider the actuator saturation problem and the absence of velocity sensors in practice. The actuator
saturation deteriorates the tracking performance of the controller, and the use of velocity sensors
increases the cost and weight of WMR systems. This paper simultaneously addresses these problems
by designing a saturated output feedback controller for uncertain nonholonomic WMRs. First, a
second-order input–output model of nonholonomic WMRs is developed by defining a suitable set of
output equations. Then a saturated adaptive robust tracking controller is proposed without velocity
measurements. For this purpose, a nonlinear saturated observer is used to estimate robot velocities.
The risk of actuator saturation is effectively reduced by utilizing saturation functions in the design
of the observer–controller scheme. Semi-global uniform ultimate boundedness of error signals is
guarantied by the Lyapunov stability analyses. Finally, simulation results are provided to show the
effectiveness of the proposed controller. Compared with one recent work of the author, a comparative
study is also presented to illustrate that the proposed saturated controller is more effective when
WMR actuators are subjected to saturation.

KEYWORDS: Actuator saturation; Adaptive control; Nonholonomic robots; Output feedback
control; Trajectory tracking; Uncertainty.

1. Introduction
The motion control of uncertain nonholonomic wheeled mobile robots (WMRs) is an attractive
research area because of the challenging theoretical nature of the problem according to the well-
known Brockett’s theorem.1 Such systems are referred to a class of WMRs without any precise
knowledge of their models which are also subjected to nonholonomic constraints that arise from
pure rolling without slipping constraint of their wheels. In fact, since nonholonomic WMRs are
underactuated systems, i.e. systems with fewer actuators than the degrees of freedom, designing
tracking controllers for such WMRs is more difficult than designing controllers for fully actuated
ones. After seminal works in refs. [2–6], a variety of control solutions have been proposed in literature
for the tracking control of uncertain nonholonomic WMRs.7–20

In spite of extensive researches, most of previously proposed controllers2–20 require velocity
sensors to be implemented on a real WMR. From a practical viewpoint, such sensors may increase
the implementation cost and weight of the system. Moreover, most of the commercially available
WMRs are not equipped with velocity sensors. One traditional solution to leave out velocity sensors
is the designing of output feedback controllers (OFBCs). However, since the separation principle does
not hold for nonlinear systems, the designing of OFBCs is still a challenging task and is the subject of
current researches. In addition, the nonholonomic constraints of WMRs make the OFB problem more
challenging. The problem is even more demanding in the presence of parametric and nonparametric
uncertainties in the system models. Do and Pan21,22 proposed OFBCs for a unicycle-type mobile
robot at the torque level using a coordinate transformation to cancel the velocity cross terms in WMR
dynamics. However, the model uncertainties are ignored in the design of the controller in mentioned
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works. Park et al.23 proposed an adaptive OFBC for a nonholonomic WMR, including the actuator
dynamics using the dynamic surface control (DSC) approach. However, determining the regression
matrix and satisfying the “linearity in the parameters” assumption in their proposed method is a
time-consuming and tedious task. In addition, they ignore the nonparametric uncertainties in the
design of the controller. In the previous work of the author,24 a passivity-based OFBC is proposed for
the tracking control of a nonholonomic WMR, including actuator dynamics using the DSC approach.
In spite of the effectiveness of the proposed algorithm, its tracking performance degrades for large
initial tracking errors due to actuator saturation. Guechi et al.25 proposed OFBC based on a nonlinear
predictor for unicycle-type mobile robot. However, their work is only focused on designing the OFBC
in the presence of delayed measurements and ignores the WMR dynamic model.

To the best of the author’s knowledge, most of the presented works, including OFBCs,21–25 assume
that WMR actuators are able to accept every level of voltage signals and generate the necessary level
of torque signals. From a practical viewpoint, the generated control signals may make the actuators
go beyond their natural capabilities and their saturation may not be avoidable. This, in turn, may
result in poor tracking performance of the proposed controller. Furthermore, long-term saturation
may lead to serious physical damages, i.e. thermal or mechanical failures of WMR actuators. One
solution to alleviate this problem is the bounding of the closed-loop error variables by applying
saturation functions and normalization techniques to the designing of tracking controller. By using
these techniques, the stabilization and tracking of nonholonomic WMRs with input saturation are
addressed in Huang et al.26 and Su and Zheng.27 However, the availability of velocity measurements
is essential for their proposed controllers.

According to the above-presented literature review, the problem of designing a saturated OFBC
(SOFBC) for a nonholonomic WMR has not yet been solved and is the subject of this paper. This
means that the developed controller in this paper is the first SOFBC design to solve the trajectory-
tracking problem of nonholonomic WMRs in the presence of actuator saturation and in the absence
of velocity measurements. For this purpose, a suitable set of output equations is defined which
transforms the kinematic and dynamic models of nonholonomic WMRs to a new second-order input–
output model. This model helps the designer to directly take the advantage of robotic manipulators
control schemes.28 Many previous works have utilized kinematic and dynamic models to separately
design kinematic and dynamic controllers based on backstepping or DSC techniques.6–9,12–16,21–23

Unfortunately, such techniques complicate the design procedure of an SOFBC based on the previous
models of WMR. Compared with previously proposed OFBCs21–25 for nonholonomic WMRs, the
proposed observer-based controller of this paper utilizes saturation functions to effectively reduce
the risk of actuator saturation. It makes the mobile robot track a desired trajectory with less control
energy and more acceptable tracking performance. This feature is specifically helpful for the amount
of battery usage in autonomous mobile robotic systems. The proposed controller is applied to a
nonholonomic WMR and simulation results are provided to show the efficacy of the controller. A
comparative simulation study is also presented to compare the proposed SOFBC with the previous
works. This study shows that the proposed SOFBC of this work cope well with actuator constraints
when the initial tracking errors are large and WMR actuators are subjected to saturation. As a result
of the above-presented discussions, the contributions of this work are clearly expressed.

The remainder of this paper is organized as follows. In Section 2 the kinematic and dynamic models
of the nonholonomic robotic systems are briefly reviewed. The control problem definition and some
mathematical preliminaries are presented in this section. In Section 3 a saturated OFB tracking
controller is designed based on the passivity property of the nonholonomic robotic system. The
Lyapunov-based stability analysis is applied to prove that all signals in the resulting closed-loop system
are bounded, and tracking errors and state estimation errors are semi-globally uniformly ultimately
bounded (SGUUB). In Section 4 a simulation study is presented to evaluate the effectiveness of the
proposed controller for a nonholonomic WMR. Conclusions are given in Section 5.

2. Preliminaries and Problem Statement

2.1. WMR kinematics and dynamics
Consider a class of electrically driven WMR systems subjected to m nonholonomic constraints which
is described by the following dynamics21–24:
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q̇ = S(q) v(t) = s1(q) v1 + · · · + sn−m(q) vn−m, (1)

M1v̇(t) + C1(q, q̇) v(t) + Dmv + G1(q) + τd1(t, q, q̇) = B1(q)τa, (2)

where q = [q1, q2, . . . , qn]T denotes a vector of n generalized coordinates, S(q) ∈ �n×(n−m) is the
kinematic matrix, v(t) = [v1(t), v2(t), . . . , vn−m(t)] T is a vector of pseudo-velocities of the system,
M1(q) ∈ �(n−m)×(n−m) is a symmetric positive definite inertia matrix, C1(q, q̇) ∈ �(n−m)×(n−m) is
the centripetal and Coriolis matrix, Dm ∈ �(n−m)×(n−m) denotes damping matrix, G1(q) ∈ �(n−m) is
the vector of gravity effects, τd1(t, q, q̇) ∈ �(n−m) denotes bounded unstructured uncertainties such
as friction and unmodeled dynamics, B1(q) ∈ �(n−m)×(n−m) is the input transformation matrix, and
τa ∈ �(n−m) is the vector of actuator inputs. To consider the actuator voltage input as the control
input, it is assumed that the robot is actuated by n − m brushed DC motors with mechanical gears.
By recalling the actuator dynamic equation from Shojaei and Shahri24 and ignoring the inductance
of armature circuit1 similar to ref. [20], the following transformation between the torque and voltage
inputs is obtained:

τa = Ka1 ua − Ka2X1v , (3)

where Ka1 = diag[ka11, ka12, . . . , ka1(n−m)], Ka2 = diag[ka21, ka22, . . . , ka2(n−m)], and ka1i =
(nikτi/rai) and ka2i = ni kbika1i , i = 1, 2, . . . , n − m, ni denotes the gear ratio, kτi is the torque
constant of the motor, rai denotes the armature resistance, kbi is the back electromotive force (EMF)
constant, X1 ∈ �(n−m)×(n−m) is a transformation matrix that transforms wheel velocities to pseudo-
velocities vector, and τa and ua ∈ �(n−m) denote the torque and voltage input vectors respectively.
After substituting Eq. (3) in Eq. (2), one obtains

M1(q)v̇(t) + (C1(q, q̇) + Ka2B1(q)X1(q)) v(t) + Dmv(t) + G1(q) + τd1(t, q, q̇) = Ka1B1(q) ua,

(4)

where τd1(t, q, q̇) = D1v(t) + D2sgn(v(t)) + d(t), and the reader is referred to remark 1 in ref. [24]
for the definition of τd1 ∈ �n−m, D1, D2 ∈ �(n−m)×(n−m), and d(t) ∈ �n−m.

Notations. Throughout this paper, λmax(•) (λmin(•)) denotes the largest (smallest) eignevalue of
a matrix. ‖x‖ :=

√
xT x is used as the Euclidean norm of vector x ∈ �n, while the norm of matrix

A is defined as the induced norm ‖A‖ :=
√

λmax(AT A). The matrix In denotes the n-dimensional
identity matrix. To facilitate the subsequent control design and stability analysis, the following
notations are also used: s ′(η) = diag[s ′

1(η1), . . . , s ′
n(ηn)] and s(η) := [s1(η1), s2(η2), . . . , sn(ηn)]T ,

where η = [η1, η2, . . . , ηn]T ∈ �n, diag [•] denotes a diagonal matrix, si(•), i = 1, . . . , n and
s ′
i(•), i = 1, . . . , n are saturation functions and their derivatives, respectively, which are defined later.

Property 1. M1(q) is a symmetric and positive-definite matrix which is upper and lower
bounded such that λm1‖x‖2 ≤ xT M1(q)x ≤ λM1‖x‖2 ∀q, x ∈ �n, and 0 < λm1 ≤ λM1 < ∞, where
λm1 := min

∀q∈�n
λmin(M1(q)) and λM1 := max

∀q∈�n
λmax(M1(q)).

Property 2. The following upper bounding functions are valid for the presented kinematic and
dynamic models of nonholonomic systems:

‖S(q)‖ ≤ λS, ‖C1(q, q̇)‖ ≤ λC1 ‖v‖ , ‖B1(q)‖ ≤ λB1, ‖X1(q)‖ ≤ λX1,

‖Dm‖ ≤ λDm
, ‖G1(q)‖ ≤ λG1, ‖τd1‖ ≤ λτ1 + λτ2 ‖v‖ , ∀q, q̇ ∈ �n, ∀ v ∈ �n−m, (5)

where λS, λC1, λB1, λX1, λDm
, λτ1, λτ2, and λG1 are positive scalar constants.

1 The reader is referred to remark 1 in ref. [20] for the validity of this assumption.
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2.2. Reduced model of a nonholonomic WMR
For the controller design purposes in the next section, it is assumed that there exist the following
smooth output equations:

y = h(q) = [h1(q), h2(q), . . . , hn−m(q)]T , (6)

where y ∈ �n−m is a new position variable. By differentiating the output Eq. (6) and substituting Eq.
(1), one gets

ẏ = J (q) v, (7)

where J (q) := Jh(q)S(q) ∈ �(n−m)×(n−m), which is assumed to be invertible, and Jh(q) :=
∂h(q)/∂q.24 By following model derivation in Shojaei and Shahri,24 the following reduced
formulation of nonholonomic WMRs is obtained:

M2(q)ÿ + C2(q, ẏ)ẏ + X2(q)ẏ + G2(q) + τd2(t, q, ẏ) = B2(q) ua, (8)

where

M2(q) = K−1
a1 J−T (q)M1(q) J−1(q),

C2(q, ẏ) = K−1
a1 J−T (q)(C1(q, S(q)J−1(q)ẏ) − M1(q) J−1(q)J̇ (q) )J−1(q),

X2(q) = K−1
a1 J−T (q)(Ka2 B1(q)X1(q) + Dm + D1)J−1(q),

G2(q) = K−1
a1 J−T (q)G1(q), B2(q) = J−T (q)B1(q),

τd2(t, q, ẏ) = K−1
a1 J−T (q)(D2sgn(J−1(q)ẏ) + d(t)).

This representation of a nonholonomic WMR is essential for controller development in the next
section. The following properties are valid for the model in Eq. (8).

Property 3. M2(q) is a symmetric and positive-definite matrix which is upper and lower bounded
such that λm2‖x‖2 ≤ xT M2(q)x ≤ λM2‖x‖2 ∀q ∈ �n, ∀x ∈ �n−m, and 0 < λm2 ≤ λM2 < ∞ where
λm2 := min

∀q∈�n
λmin(M2(q)) and λM2 := max

∀q∈�n
λmax(M2(q)).

Property 4. Matrix Ṁ2 − 2 C2 is skew symmetric, i.e.

xT (Ṁ2(q) − 2 C2(q, ẏ))x = 0, ∀ q ∈ �n, ∀ ẏ, x ∈ �n−m. (9)

Property 5. The centripetal-Coriolis matrix satisfies the following relationship:

C2(q, x1)x2 = C2(q, x2)x1, ∀ q ∈ �n, ∀ x1, x2 ∈ �n−m. (10)

Property 6. Based on property 2, there exists positive scalar constants λJ , λC2, λG2, λτd2 and λB2

such that

‖J (q)‖ ≤ λJ , ‖C2(q, ẏ)‖ ≤ λC2 ‖ẏ‖ , ‖G2(q)‖ ≤ λG2,

‖τd2(t, q, ẏ)‖ ≤ λτd2 , ‖B2(q)‖ ≤ λB2, ∀q ∈ �n, ∀ ẏ ∈ �n−m. (11)

Property 7. The matrix X2(q) in Eq. (8) satisfies λx2‖x‖2 ≤ xT X2(q)x ≤ λX2‖x‖2 ∀ x ∈ �n−m,
and 0 < λx2 ≤ λX2 < ∞, where λx2 := min

∀q∈�n
λmin(X2(q)) and λX2 := max

∀q∈�n
λmax(X2(q)).

2.3. Mathematical preliminaries
The following control objective is addressed in this paper.

Definition 1. Given a smooth bounded reference trajectory yd (t) = h(qd (t)) : [0, ∞) → �n,

which is generated by an associated timing law, the control objective discussed in this paper is to
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design an SOFBC law for the uncertain nonholonomic WMR system given by Eqs. (1), (2), and (3)
such that (i) it makes the tracking errors, e(t) := y(t) − yd (t), uniformly ultimately bounded in the
presence of structured and unstructured uncertainties; (ii) it does not require measurements of the
velocity signals; and (iii) it alleviates the actuator saturation problem in order to avoid poor tracking
performance.

Definition 2. Given a positive constant Mi , a function si : � → � : ξ → si(ξ ) is said to be a
saturation one with bound Mi if it is locally Lipschitz, nondecreasing, and satisfies the following: (i)
ξsi(ξ ) > 0, ∀ξ �= 0; and (ii) |si(ξ )| ≤ Mi, ∀ξ ∈ �. A strictly increasing continuously differentiable
function satisfying the above definition has the following properties.

Lemma 1. Let si : � → � : ξ → si(ξ ) be a strictly increasing, continuously differentiable
saturation function with bound Mi , k1 and k2 be positive constants, and s ′

i : ξ → dsi/dξ . Then
the following properties can be proved:

(i) y[si(x + y) − si(x)] > 0, ∀y �= 0, ∀x ∈ �.
(ii) lim|ξ |→∞ s ′

i(ξ ) = 0.
(iii) s ′

i(ξ ) is positive and bounded, i.e. there exists a constant s ′
iM ∈ (0, ∞) such that 0 < s ′

i(ξ ) ≤
s ′
iM, ∀ξ ∈ �.

(iv) s2
i (k1ξ )/(2k1s

′
iM ) ≤ ∫ ξ

0 si(k1r)dr ≤ k1s
′
iMξ 2/2, ∀ξ ∈ �.

(v)
∫ ξ

0 si(kr)dr > 0, ∀ξ �= 0.

(vi)
∫ ξ

0 si(kr)dr → ∞ as |ξ | → ∞.
(vii) |si(k1x + k2y) − si(k2y)| ≤ s ′

iMk1|x|, ∀x, y ∈ � and |si(x) − si(x − y)| ≤ s ′
iM |y|, ∀x, y ∈

�.
(viii) |si(k1x)| ≤ s ′

iMk1|x|, ∀x ∈ �.
(ix) From item (viii), it follows that |si(x)|2 ≤ s ′

iM |x||si(x)| = s ′
iMx si(x), ∀x ∈ �.

(x) From item (iv), it follows that s2
i (ξ ) ≤ s ′2

iMξ 2, ∀ξ ∈ �.
(xi) From item (iii), it is concluded that ‖s ′(η)‖ ≤ s ′

MM, ∀η ∈ �n, where s ′
MM := λmax(s ′

M ) and
s ′
M = diag[s ′

1M, . . . , s ′
nM ].

Proof. See Aguinaga-Ruiz et al.30

Following assumptions are essential to meet the control objectives in this paper:

Assumption 1. Measurements of output vector y ∈ �n−m are available in real-time.

Assumption 2. The desired trajectory yd (t) is chosen such that yd (t), ẏd (t), and ÿd (t) are all
bounded signals in the sense that supt≥0 ‖yd‖ < Bdp, supt≥0 ‖ẏd‖ < Bdv , and supt≥0 ‖ÿd‖ < Bda ,
where Bdp, Bdv , and Bda are bounded constants.

The reader is also referred to assumption 3 in Shojaei and Shahri.24

3. SOFBC Design and Analysis

3.1. Saturated output feedback tracking control law
In this section a trajectory tracking controller is designed based on the control objective defined in
Definition 1. For this purpose, define the observation error as z := y − ŷ and consider the following
definitions:

ẏr := ẏd − � s(ŷ − yd ) = ẏd − � s(e − z), (12)

r1 := ẏ − ẏr = ė + � s(e − z), (13)

ẏo := ˙̂y − � s(z), (14)

r2 := ẏ − ẏo = ż + � s(z), (15)
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where � = λIn−m ∈ �(n−m)×(n−m) with λ > 0. By substituting Eq. (13) in Eq. (8) and applying
Property 5, one obtains

M2(q)ṙ1 = −C2(q, ẏ)r1 − X2r1 + B2ua − C2(q, ẏr )r1 + ξ, (16)

where ξ = −M2(q)ÿr − C2(q, ẏr )ẏr − X2ẏr − G2(q) − τd2(t, q, ẏ) denotes the uncertain nonlinear-
ities, which may be bounded as ‖ξ‖ ≤ ρ(ẏr , ÿr ) = G(ẏr , ÿr )θ by using Properties 3 and 6, where
G(ẏr , ÿr ) = [ 1 ‖ẏr‖ ‖ẏr‖2 ‖ ÿr‖ ]. Then the following tracking controller is proposed:

ua = B−1
2 (q)(−K1 s(ẏo − ẏr ) − K2 s(e − z)

−K2 s(z) − ρ̂(ẏr , ÿr ) s(νρ̂(r1 + r2)/εt )), (17)

where K1, K2 ∈ �(n−m)×(n−m) are positive-definite diagonal gain matrices, ρ̂(ẏr , ÿr ) = G(ẏr , ÿr )θ̂
is the estimate of the upper bounding function ρ(ẏr , ÿr ), and θ̂ ∈ �4 is updated by the following
adaptation rule with σ -modification32:

˙̂θ = 
 GT (ẏr , ÿr ) ‖ r1 + r2‖ − 
 σ (θ̂ − θ0), (18)

where 
 = γ I4 denotes the adaptation gain, σ ∈ �4 is a positive-definite diagonal matrix, and θ0 ∈ �4

is a priori estimate of the parameters. Motivated by Arteaga and Kelly,33 the following nonlinear
saturated observer is introduced to estimate the velocity vector:

˙̂y = ˙̂yo + � s(z) + kd s(z), (19)

¨̂yo = ÿr + kd�s ′(z(t))s(z(t)), (20)

where kd ∈ � is the observer gain and is a positive real constant. Equation (7) can be applied
to compute the velocity estimates as v̂ = J−1(q) ˙̂y. Considering the definition of ẏr in Eq. (12),
ÿr is available for the observer definition. The initial conditions for the observer are chosen as
˙̂yo(0) = −(�s(z(0)) + kds(z(0))), ŷ(0) = y(0), z(0) = 0, and ˙̂y(0) = 0.

3.2. Closed-loop error dynamic analysis
Considering that r1 − r2 = ẏo − ẏr from Eqs. (13) and (15), and substituting Eq. (17) into Eq. (16),
the closed-loop system dynamics may be achieved as

M2(q)ṙ1 = −C2(q, ẏ)r1 − X2r1 − K1s(r1 − r2) − K2 s(e − z)

−K2 s(z) − ρ̂s(νρ̂(r1 + r2)/εt ) − C2(q, ẏr )r1 + ξ, (21)

where one may write the following upper bound for C2(q, ẏr )r1:

‖C2(q, ẏr )r1‖ ≤ ζ1 ‖x‖ + ζ2 ‖x‖2 , (22)

where ζ1, ζ2 ∈ � are some positive bounding constants and x ∈ �4(n−m) is defined as

x = [
sT (e − z), sT (z), rT

1 , rT
2

]T
. (23)

Since from Eq. (19) one can write ¨̂y = ¨̂yo + � s ′(z)ż + kd s ′(z)ż, it is straightforward to show that
Eqs. (19) and (20) are equivalent to ṙ1 = ṙ2 + kd s ′(z)r2, which together with Eq. (21) and Property
5 yield the following observer error equation:

M2(q)ṙ2 = −C2(q, ẏ)r2 − kdM2(q) s ′(z)r2 − K1s(r1 − r2) − K2 s(e − z)

− K2 s(z) − ρ̂s(νρ̂(r1 + r2)/εt ) + χ2 + ξ, (24)
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Fig. 1. A detailed block diagram of the proposed saturated output feedback control system.

where

χ2 = C2(q, ẏr + r1)r2 − C2(q, r1)(2ẏr + r1) − X2r1. (25)

From Eqs. (12)–(15), Lemma 1, and Properties 6 and 7, the following upper bound for χ2(e, z, r1, r2)
is obtained:

‖χ2‖ ≤ ζ3 ‖x‖ + ζ4 ‖x‖2 , (26)

where ζ3, ζ4 ∈ � are some positive bounding constants. Figure 1 shows a block diagram of the
proposed SOFBC system.

3.3. Stability analysis
The stability of the proposed saturate OFB tracking controller is summarized by the following
theorem.

Theorem 1. Consider the reduced model of the nonholonomic wheeled mobile robot, which is
given by Eq. (8). Given a bounded continuous desired trajectory under Assumptions 1 and 2, if gains
of SOFBC in Eqs. (17)–(20) are chosen to satisfy the following conditions,

λmin(K2�) > 0.5k2 maxλ + k2 max, (27)

λx2 > s ′
MMk1 max + 0.5k2 max + 0.5(ζ1 + ζ2), (28)

λmin(kdM2 s ′(z)) > 2s ′
MMk1 max + k2 max + 0.5(ζ3 + ζ4), (29)

where ki max = λmax(Ki), i = 1, 2, then the SOFBC guarantees that all signals in the closed-loop
system are bounded and the tracking and observation errors are SGUUB and exponentially converge
to small ball containing the origin whose radius can be made arbitrarily small. Moreover, the following
region of attraction can be made arbitrarily large to include any initial conditions by selecting the
control gains large enough,

RA =
{

ϑ ∈ �4(n−m)+4

∣∣∣∣∣ ‖ϑ‖ <

√
2αm − (ζ1 + ζ3)

(ζ2 + ζ4) min{λυ/λx, 0.5λmax(
−1)/λx}

}
, (30)
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where ϑ = [υT , θ̃T ]T , υ = [(e − z)T , zT , rT
1 , rT

2 ]T , θ̃ = θ − θ̂ denotes the vector of parameters
estimation error, αm is a positive gain-dependent parameter, ζi, i = 1, . . . , 4 are defined by Eqs.
(22) and (26), x ∈ �4(n−m) was defined in Eq. (23), and λx, λυ will be defined later.

Proof. Consider the following Lyapunov function candidate:

V (t) =
n−m∑
i=1

k2i

∫ ei−zi

0
si(r) dr + 1

2
rT

1 M2(q)r1 +
n−m∑
i=1

k2i

∫ zi

0
si(r) dr + 1

2
rT

2 M2(q)r2 + 1

2
θ̃ T 
−1θ̃ .

(31)
By utilizing item (iv) of Lemma 1, one may verify that Eq. (31) can be bounded as follows:

n−m∑
i=1

k2is
2
i (ei − zi)/(2s ′

iM ) + 1

2
λm2 ‖r1‖2 +

n−m∑
i=1

k2is
2
i (zi)/(2s ′

iM ) + 1

2
λm2 ‖r2‖2 + 1

2
λmin(
−1)‖θ̃‖2

≤ V (t) ≤ 1

2
max{k21s

′
1M, . . . , k2ns

′
nM} ‖e − z‖2 + 1

2
λM2 ‖r1‖2 + 1

2
max{k21s

′
1M, . . . , k2ns

′
nM} ‖z‖2

+ 1

2
λM2 ‖r2‖2 + 1

2
λmax(
−1)

∥∥θ̃
∥∥2

, (32)

which can be expressed as follows:

λx ‖x‖2 + 0.5λmin(
−1)‖θ̃‖2 ≤ V (t) ≤ λυ ‖υ‖2 + 0.5λmax(
−1)
∥∥θ̃

∥∥2
, (33)

where λx = min{λks,min, λm2/2}, λυ = max{λks,max, λM2/2},

λks,min = 1

2
min{k21/s

′
1M, . . . , k2(n−m)/s

′
(n−m)M}, λks,max = 1

2
max{k21s

′
1M, . . . , k2(n−m)s

′
(n−m)M},

and λm2 and λM2 are defined in Property 3. From the above inequality and items (v) and (vi) of Lemma
1, it is clear that V (t) is positive definite, radially unbounded, and decrescent. By differentiating Eq.
(31) along Eqs. (13), (15), (21), and (24), using Property 4 and the fact that ˙̂θ = − ˙̃θ , we have

V̇ (t) = sT (e − z)K2(ė − ż) + rT
1 M2ṙ1 + 0.5rT

1 Ṁ2r1 + sT (z)K2ż

+ rT
2 M2ṙ2 + 0.5rT

2 Ṁ2r2 − θ̃ T 
−1 ˙̂θ

= −sT (e − z)K2� s(e − z) − sT (z)K2� s(z) − rT
1 X2r1

− kdr
T
2 M2(q) s ′(z)r2 − rT

1 K1s(r1 − r2) − rT
2 K1s(r1 − r2)

+ sT (e − z)K2� s(z) − rT
1 K2 s(z) − 2rT

2 K2 s(e − z)

− ρ̂(r1 + r2)T s(νρ̂(r1 + r2)/εt ) − rT
1 C2(q, ẏr )r1 + rT

2 χ2

+ rT
1 ξ + rT

2 ξ − θ̃ T 
−1 ˙̂θ. (34)

After rearrangement, Eq. (34) is written as follows:

V̇ (t) ≤ − sT (e − z)K2� s(e − z) − sT (z)K2� s(z) − rT
1 X2r1

− kdr
T
2 M2(q) s ′(z)r2 + rT

1 K1(s(r1) − s(r1 − r2)) − rT
1 K1s(r1)

+ rT
2 K1(s(r1) − s(r1 − r2)) − rT

2 K1s(r1) + ‖K2�‖ ‖s(e − z)‖ ‖s(z)‖
+ ‖K2‖ ‖r1‖ ‖s(z)‖ + 2 ‖K2‖ ‖r2‖ ‖s(e − z)‖ + ‖r1‖ ‖C2(q, ẏr )r1‖ + ‖r2‖ ‖χ2‖
− ρ̂(r1 + r2)T s(νρ̂(r1 + r2)/εt ) + (r1 + r2)T ξ − θ̃ T 
−1 ˙̂θ. (35)
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By substituting the adaptive law in Eq. (18) into inequality (35), one obtains

V̇ (t) ≤ − sT (e − z)K2� s(e − z) − sT (z)K2� s(z) − rT
1 X2r1

− kdr
T
2 M2(q) s ′(z)r2 + ‖K1‖ ‖r1‖ ‖s(r1) − s(r1 − r2)‖ − rT

1 K1s(r1)

+ ‖K1‖ ‖r2‖ ‖s(r1) − s(r1 − r2)‖ + ‖K1‖ ‖r2‖ ‖s(r1)‖ + ‖K2�‖ ‖s(e − z)‖ ‖s(z)‖
+ ‖K2‖ ‖r1‖ ‖s(z)‖ + 2 ‖K2‖ ‖r2‖ ‖s(e − z)‖ + ‖r1‖ ‖C2(q, ẏr )r1‖ + ‖r2‖ ‖χ2‖
− ρ̂(r1 + r2)T s(νρ̂(r1 + r2)/εt ) + ‖r1 + r2‖ ‖ξ‖ − θ̃ T GT (ẏr , ÿr ) ‖ r1 + r2‖
+ θ̃ T σ (θ̂ − θ0). (36)

By considering items (vii), (viii), and (ix) of Lemma 1, and recalling the upper bounds on ‖ξ‖,
‖C2(q, ẏr )r1‖, and ‖χ2‖, one gets

V̇ (t) ≤ − λmin(K2�) ‖s(e − z)‖2 − λmin(K2�) ‖s(z)‖2 − λx2 ‖r1‖2

− λmin(kdM2 s ′(z)) ‖r2‖2 − λmin(K1)/s ′
MM ‖s(r1)‖2

+ s ′
MM ‖K1‖ ‖r1‖ ‖r2‖ + s ′

MM ‖K1‖ ‖r2‖2 + s ′
MM ‖K1‖ ‖r1‖ ‖r2‖

+ ‖K2�‖ ‖s(e − z)‖ ‖s(z)‖ + ‖K2‖ ‖r1‖ ‖s(z)‖ + 2 ‖K2‖ ‖r2‖ ‖s(e − z)‖
+ ζ1 ‖r1‖ ‖x‖ + ζ2 ‖r1‖ ‖x‖2 + ζ3 ‖r2‖ ‖x‖ + ζ4 ‖r2‖ ‖x‖2

+ ‖r1 + r2‖ G(ẏr , ÿr )θ − θ̃ T GT (ẏr , ÿr ) ‖ r1 + r2‖
− ρ̂(r1 + r2)T s(νρ̂(r1 + r2)/εt ) + θ̃ T σ (θ̂ − θ0), (37)

where s ′
MM was defined by item (xi) of Lemma 1. By considering Young’s inequality,14 since

2s ′
MM ‖K1‖ ‖r1‖ ‖r2‖ ≤ s ′

MMk1 max ‖r1‖2 + s ′
MMk1 max ‖r2‖2 ,

‖K2�‖ ‖s(e − z)‖ ‖s(z)‖ ≤ 0.5k2 maxλ ‖s(e − z)‖ 2 + 0.5k2 maxλ ‖s(z)‖2 ,

‖K2‖ ‖r1‖ ‖s(z)‖ ≤ 0.5k2 max ‖r1‖ 2 + 0.5k2 max ‖s(z)‖2 ,

2 ‖K2‖ ‖r2‖ ‖s(e − z)‖ ≤ k2 max ‖r2‖ 2 + k2 max ‖s(e − z)‖2 ,

one may write inequality (37) as follows:

V̇ (t) ≤ − λmin(K2�) ‖s(e − z)‖2 − λmin(K2�) ‖s(z)‖2 − λx2 ‖r1‖2

− λmin(kdM2 s ′(z)) ‖r2‖2 − λmin(K1)/s ′
MM ‖s(r1)‖2

+ (0.5k2 maxλ + k2 max) ‖s(e − z)‖ 2 + (0.5k2 maxλ + 0.5k2 max) ‖s(z)‖2

+ (s ′
MMk1 max + 0.5k2 max) ‖r1‖2 + (2s ′

MMk1 max + k2 max) ‖r2‖2

+ 0.5(ζ1 + ζ2) ‖r1‖2 + 0.5(ζ3 + ζ4) ‖r2‖2 + 0.5(ζ1 + ζ3) ‖x‖2

+ 0.5(ζ2 + ζ4) ‖x‖4 + ‖r1 + r2‖G(ẏr , ÿr )θ̂

− ρ̂(r1 + r2)T s(νρ̂(r1 + r2)/εt ) + θ̃ T σ (θ̂ − θ0). (38)

By recalling the fact h‖ x‖ − xTh s(νh x/εt ) ≤ nεt , ∀x ∈ �n, h ∈ �, εt > 0 from refs. [20, 31],
inequality (38) may be expressed as follows:

V̇ (t) ≤ − α1 ‖s(e − z)‖2 − α2 ‖s(z)‖2 − α3 ‖r1‖2 − α4 ‖r2‖2

− λmin(K1)/s ′
MM ‖s(r1)‖2 + 0.5(ζ1 + ζ3) ‖x‖2 + 0.5(ζ2 + ζ4) ‖x‖4

+ (n − m)εt + θ̃ T σ (θ̂ − θ0), (39)
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where αi, i = 1, . . . , 4 are defined as

α1 = λmin(K2�) − 0.5k2 maxλ − k2 max,

α2 = λmin(K2�) − 0.5k2 maxλ − 0.5k2 max,

α3 = λx2 − s ′
MMk1 max − 0.5k2 max − 0.5(ζ1 + ζ2), (40)

α4 = λmin(kdM2 s ′(z)) − 2s ′
MMk1 max − k2 max − 0.5(ζ3 + ζ4).

The control gains must be chosen such that αi > 0, i = 1, . . . , 4, which, in turn, result in the
conditions in Eqs. (27)–(29). By completing the squares on the last term of inequality (39), it is
written as follows:

V̇ (t) ≤ − (αm − 0.5(ζ1 + ζ3) − 0.5(ζ2 + ζ4) ‖x‖2) ‖x‖2

− μσ (1 − 0.5/κ2)‖θ̃‖2 + γ (t), (41)

where x ∈ �4(n−m) is defined by Eq. (23) and αm = min{α1, α2, α3, α4}, γ (t) = 0.5μσκ2||θ − θ0||2 +
(n − m)εt (t), μσ =

√
λmin(σT σ ), and κ ∈ � is a positive constant such that κ >

√
2/2. Hence, if αm

is chosen such that

αm > 0.5(ζ1 + ζ3) + 0.5(ζ2 + ζ4) ‖x‖2 , (42)

then inequality (41) can be expressed as

V̇ (t) ≤ −cm ‖x‖2 − μσ (1 − 0.5/κ2)‖θ̃‖2 + γ (t), (43)

where cm ∈ � is some positive constant. Inequality (43) can be expressed as follows:

V̇ (t) ≤ −c ‖η(t)‖2 + γ (t), (44)

where c = min{cm, μσ (1 − 0.5/κ2)} is also some positive scalar constant, and η(t) ∈ �4(n−m)+4 is
given by η = [xT , θ̃T ]T . Thus, provided that the conditions in Eqs. (27)–(29) and (42) are satisfied,
V̇ (t) is strictly negative outside the compact set �η = {η(t) | 0 ≤ ‖η(t)‖ ≤ √

γ /c}. This means that
V (t) is decreasing outside the set �η, which results in the following inequality:

V (t) ≤ V (0) ≤ λυ ‖υ(0)‖2 + 0.5λmax(
−1)
∥∥θ̃ (0)

∥∥2 ∀t ≥ 0, (45)

where the upper bound on V(t) in inequality (33) is used. From inequalities (45) and (33), one has

‖x‖2 ≤ λυ/λx ‖υ(0)‖2 + 0.5λmax(
−1)/λx

∥∥θ̃ (0)
∥∥2

. (46)

Therefore, a sufficient condition for inequality (42) is given by

αm > 0.5(ζ1 + ζ3) + 0.5(ζ2 + ζ4)(λυ/λx ‖υ(0)‖2 + 0.5λmax(
−1)/λx‖θ̃ (0)‖2). (47)

This means that the region of attraction in Eq. (30) can be made arbitrarily large to include any initial
condition by selecting the control gains large enough. Hence, ‖η(t)‖ is SGUUB. By considering the
properties of saturation functions, this result implies that e(t) − z(t), z(t), r1(t), r2(t), θ̃(t) ∈ L∞,

which results in e(t) ∈ L∞. The above discussion means that the tracking errors, state estimation
errors, and parameter estimation errors are SGUUB. Therefore, by considering Eqs. (13) and (15),
one concludes that ė(t), ż(t) ∈ L∞. As a result, considering Eqs. (6) and (7), the control law in Eq.
(17), and Assumption 2, one gets q(t), v(t), v̂(t), θ̂(t), ua(t) ∈ L∞. This completes the proof. �
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3.4. Remarks
Remark 1. Considering the definition of ẏr (t) in Eq. (12) and the observer definition in Eqs. (19)
and (20), the signal ÿr = ÿd − � s ′(ŷ − yd )( ˙̂y − ẏd ) is available for the computation of ρ̂(ẏr , ÿr ) in
the proposed controller in Eq. (17).

Remark 2. It should be noted that the resulting internal dynamics of the WMR input–output
model in Eq. (8) depends on the output choice in Eq. (6). The effectiveness of an inverse dynamic
controller, which is designed based on Eq. (8), hinges upon the stability of such internal dynamics.
Yun and Yamamoto34 investigated the stability properties of the internal dynamics of a nonholonomic
WMR for the case of look-ahead control method. The look-ahead control takes the coordinates of
a reference point in the front of a mobile robot as the output equation. By designing a nonlinear
controller, the reference point can follow any desired trajectory. They showed that the internal
dynamics is stable when the WMR is commanded to move forward, but it is unstable when it
moves backward. Based on the presented stability results on the internal dynamics of WMRs in
Yun and Yamamoto34, the look-ahead control strategy is adopted in this paper to choose suitable
output equations. Otherwise, it is necessary to analyze the stability of the resulting internal dynamics
for every new set of output equations in Eq. (6) chosen by the designer. The proposed method is
applicable to different types of WMRs, including differential, synchro, and Ackermann drive robots
by choosing a suitable set of output equations.

Remark 3. In order to make the proposed controller in Eq. (17) and the adaptive law
in Eq. (18) independent from velocity measurements, the term r1 + r2 is substituted by
r̂1 + r̂2 := ˙̂y − ẏd + � s(ŷ − yd ) + � s(z). In fact, if the gains are set large enough, the
approximation r1 + r2 = r̂1 + r̂2 is satisfied. The interested reader is referred to Arteaga and
Kelly33 for a similar discussion.

Remark 4. The conditions in Eqs. (27)–(29) in Theorem 1 present sufficient conditions for the
stability of the closed-loop system as the result of the conservative Lyapunov-based stability analysis.
One may find less restrictive sufficient conditions on control gains in the stability proof.

Remark 5. The controller–observer parameters �, K1, K2, kd , 
, σ , and θ0 may be tuned to
adjust the convergence rate c and the size of ultimate bound γ /c. For example, the following tuning
rules can be deduced from the above stability analysis which help the user to properly adjust control
parameters: (i) considering Eq. (40), the larger values of �, K2, and kd increase c and decrease the
size of the ultimate bound γ /c; (ii) smaller values of σ decrease the value of γ and consequently
leads to smaller ultimate bound γ /c; (iii) the time function εt (t) in saturation-type controller s(•) in
Eq. (17) may be tuned to compromise between the final tracking accuracy and smoothness of the
control signal. The controller in Eq. (17) may be made smoother by choosing a larger value for εt (t).
However, larger value of εt (t) increases the value of γ (t) in inequality (44), which may result in a
larger ultimate bound γ /c.

4. A Simulation Study

4.1. Control of a nonholonomic differential drive WMR
A differential drive WMR has one of the most popular locomotion systems with nonholonomic
constraints in mobile robotics whose planar configuration is shown by Fig. 2. This type of WMR
can change its direction by changing the relative angular velocities of its active wheels, which are
located on either side of the WMR body. The active wheels are two conventional fixed wheels on a
single common axle and are motorized separately. Two passive castor wheels are also placed in the
rear and front of the WMR to maintain its equilibrium. According to Fig. 2, the center of mass of the
robot is located in PC = (xC, yC). The point P0 = (xO, yO) is the origin of the local coordinate frame
that is attached to the robot body and is located at a distance d from PC . The point PL = (xL, yL) is
a virtual reference point on x-axis of the local frame at a distance L (look-ahead distance) of PO .4

If the generalized coordinate vector is selected to be q = [xO, yO, ϕ]T , one velocity constraint is
obtained as ẏO cos ϕ − ẋO sin ϕ = 0. Thus, we define pseudo-velocities of the nonholonomic robot
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Table I. Kinematic and dynamic parameters of nonholonomic differential drive WMR and their attributed
values for the simulation.

Parameter Description Value

r Radius of driving wheels 0.1 m
2b Distance between two wheels 0.6 m
d Distance of point PC from point PO 0.05 m
L Distance of point PO from point PL 0.15 m
mc Mass of platform without driving wheels and rotors of DC motors 10 kg
mw Mass of each driving wheel plus the rotor of its motor 0.2 kg
Ic Moment of inertia of platform without driving wheels and rotors of motors

about a vertical axis through PC

3 kg m2

Im Moment of inertia of each wheel and motor rotor about a wheel diameter 0.006 kg m2

Fig. 2. Planar configuration of a nonholonomic WMR.

as v(t) = [v1(t), v2(t)]T , in which v1 and v2 denote the linear and angular velocities of the robot
respectively. According to the notation introduced in Section 2, the following kinematic and dynamic
matrices may be obtained4,20:

S(q) =
⎡
⎣ cos ϕ 0

sin ϕ 0
0 1

⎤
⎦ M1(q) =

[
m 0
0 I

]
, C1(q, q̇) =

[
0 mcdϕ̇

−mcdϕ̇ 0

]
, (48)

X1 =
[

1/r b/r

1/r −b/r

]
, B1 = XT

1 , Dm = 0, G1(q) = 0,

where m = mc + 2mw and I = Ic + 2Im + mcd
2 + 2mwb2. Tables I and II show definitions of WMR

parameters for simulation. Different sources of uncertainties exist in the WMR model, some of which
are listed as follows: (i) the uncertain values of the kinematic, dynamic, and actuator parameters
of the WMR; (ii) the unmodeled dynamics of the passive castor wheels; (iii) the wheel slippage,
Coulomb and viscous frictions; (iv) nonidealities of the mechanical parts of the WMR; (v) additive
measurement noise; and (vi) unwanted bounded disturbances, such as external forces. To follow the
controller design procedure which is given in previous sections, the following output variables are
chosen to track the desired trajectory based on look-ahead control method (n − m = 2)4,18:

y = [h1(q), h2(q)]T = [xO + L cos ϕ, yO + L sin ϕ]T . (49)

This choice of output equations is necessary to guarantee the existence of inversion of matrix J (q)
in Eq. (7) for the design of the proposed controller. By considering Eqs. (8), (48), and (49) and simple
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Table II. Motor parameters and their attributed values for the simulation.

Parameter Description Value

ra Motor armature resistance 5 �

la Motor armature inductance 0.1 �-s
kτ Motor torque constant 0.2 oz-in/A
kb Back EMF constant 0.02 V/rad/s
n Gear box ratio 48
ka1 Motor constant which depends on motor parameters 1.92
ka2 Motor constant which depends on motor parameters 1.84

numerical computations, one has

M2 = K−1
a1

[
m cos2 ϕ + I/L2(1 − cos2 ϕ) 0.5(m − I/L2) sin(2ϕ)

0.5(m − I/L2) sin(2ϕ) I/L2 cos2 ϕ + m(1 − cos2 ϕ)

]
, (50)

C2 = K−1
a1

[ −0.5ϕ̇ sin(2ϕ)(m − I/L2) mϕ̇ cos2 ϕ + I/L2ϕ̇ sin2 ϕ + mCdϕ̇/L

−mϕ̇ sin2 ϕ − I/L2ϕ̇ cos2 ϕ − mCdϕ̇/L 0.5ϕ̇ sin(2ϕ)(m − I/L2)

]
.

(51)

A simple analysis shows that the matrices M2 and C2 satisfy the structural properties presented in
Section 2.24

4.2. Simulation results
This section presents some numerical simulations to illustrate tracking performance, robustness,
and power consumption of the proposed controller for a WMR subjected to both parametric
and nonparametric uncertainties. All of the simulations are carried out using MATLAB software.
Kinematic and dynamic models and actuator dynamics of WMR are considered to simulate a more
realistic robot. Gaussian white noise is also added to the output measurements using randn(•)
function to simulate a localization system. The real values of WMR parameters, depicted in Tables I
and II, are chosen to match with a real mobile robot. All simulations are performed based on Euler
approximation with a time step of 20 ms. It is assumed that inertia and actuator parameters are
unknown. The following model is chosen to simulate nonparametric uncertainties such as friction,
unmodeled dynamics, and disturbances:

τd1(t) = 0.8I2v + 0.5 I2sgn(v) + [10 sin(0.05 t), 10 sin(0.05 t)]T . (52)

The following desired trajectory is selected to evaluate the controller performance:

yd = [yd1(t), yd2(t)]T ,

yd1(t) = xg + R sin(c1ωrt) + R cos(c2ωrt), (53)

yd2(t) = yg + R sin(c2ωrt) + R cos(c1ωrt),

where (xg, yg) = (2.5 m, 5.5 m), R = 2 m, ωr = 0.05 rad/s, and c1 = 2 and c2 = 1 are the
parameters of the desired trajectory. In this simulation, the following controller parameters achieve
a satisfactory tracking performance: K1 = 50 I2, K2 = 100 I2, λ = 2.2, kd = 10, εt (t) = 1, 
 =
diag[1, 1, 0.25, 1], σ = 0.005, and θ0 = 0. However, one may take Remark 5 into account to choose
control parameters to obtain a more desirable tracking performance. A hyperbolic tangent function is
applied as a saturation function to evaluate the proposed controller. The control signals are saturated
within |uai | ≤ 24 V, i = 1, 2 to simulate the actuator saturation. The initial postures (the position
and orientation) of the WMR are set to xO(0) = 15.0 m, yO(0) = 12.0 m, and ϕ(0) = −π/6 rad for
this simulation. The other initial conditions are selected as z(0) = 0, ˙̂y(0) = 0, θ̂ (0) = [1, 0, 0, 0]T .
In addition, it is assumed that the WMR is initially at rest. Simulation results, including the WMR
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Fig. 3. (Colour online) (a) X–Y plot of the desired trajectory and WMR trajectory for the proposed controller, (b)
output tracking errors, (c) the control signals, and (d) the estimated parameters of the upper-bounding functions
of uncertain nonlinearities.

trajectories, output tracking errors, control signals, and the estimated parameters of the upper bounding
function of uncertain nonlinearities are illustrated in Fig. 3.

As shown in the figure, the proposed SOFBC forces the WMR to track the desired trajectory
without actuator saturation. Further simulations show that the proposed SOFBC successfully copes
with the trajectory-tracking problem even for large initial tracking errors in the presence of model
uncertainties, actuator constraints, and only position measurements. This will comparatively be
studied in the next section.

4.3. Comparative studies
4.3.1. Qualitative comparisons. In this section, it is of interest to compare the proposed SOFBC with
previously proposed controllers. In order to evaluate the effectiveness of the proposed SOFBC, an
OFBC similar to that of Shojaei and Shahri24 is considered as follows:

ua = B−1
2 (q)(−K1(ẏo − ẏr ) − K2(e + z) − (r̂1 + r̂2)ρ̂2/(ρ̂ ‖ r̂1 + r̂2‖ + εt (t))), (54)

where ρ̂(ẏr , ÿr ) = G(ẏr , ÿr )θ̂ , θ̂ is updated by Eq. (18) and the observer definition is given by

˙̂y = ˙̂yo + �z + kdz, (55)

¨̂yo = ÿr + kd�z. (56)

Scenario 1: The control parameters of the controller in Eq. (54) are chosen as K1 = 0.5 I2,
K2 = 0.5 I2, λ = 0.5, and kd = 10. The parameters of the adaptive robust control term for both
controllers are also set to 
 = 0.1diag[1, 1, 0.1, 1], σ = 0.001, εt (t) = 10, and θ0 = 0. The
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Fig. 4. (Colour online) Comparison of the proposed SOFBC and OFBC of ref. [24] given by Eq. (54). Scenario 1:
(a) X–Y plot of the desired trajectory and WMR trajectory for both controllers, (b) output tracking errors, (c)
control signals. Scenario 2: (d) X–Y plot for both controllers, (e) output tracking errors, and (f) control signals.

proposed SOFBC gains and other simulation parameters are the same as previous simulation. The
initial posture of the WMR are set to xO(0) = 50 m, yO(0) = 20 m, and ϕ(0) = −π rad. The WMR
trajectories, output tracking errors, and control signals are illustrated in Figs. 4(a)–(c). As shown
in this figure, the proposed controller in Eq. (17) provides a smoother transient response than the
controller in Eq. (54). Compared with the proposed controller in Eq. (17), generated signals of the
controller in Eq. (54) are saturated during the tracking. This situation is even deteriorated for very
large initial tracking errors.

Scenario 2: A very large initial posture, xO(0) = 500 m, yO(0) = 100 m, ϕ(0) = −π rad, is chosen
to compare both controllers again. Control gains are selected as scenario 1. The simulation results
are provided by Figs. 4(d)–(f). As shown in this figure, the proposed controller in Eq. (17) makes
the WMR track smoothly the desired trajectory without actuator saturation. While the controller in
Eq. (54) leads to actuator saturation, which, in turn, results in a poor tracking performance for the
WMR. In practice, the actuators cannot tolerate such control signals, and the tracking performance is
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Fig. 5. (Colour online) Comparison of the proposed SOFBC and controller of ref. [13] for scenario 1: (a) position
tracking errors, and (b) control signals.

highly degraded. Note that the actuator saturation and the control chattering may be reduced for the
controller in Eq. (54) by reducing the control gains, but selection of small gains for the controller in
Eq. (54) remarkably degrades the closed-loop performance in comparison with the proposed SOFBC
in this paper.

According to the presented comparative studies in refs. [23, 24], the proposed OFBCs in refs. [21,
22, 23] show very poor tracking performances in the presence of nonparametric uncertainties in Eq.
(52). As a result, one can definitely infer the superiority of the SOFBC proposed in this paper.

To further investigate the performance of the proposed SOFBC, a traditional adaptive robust
backstepping controller is designed based on the ref. [13] for comparison with the proposed SOFBC
in Eq. (17). The proposed controller in ref. [13] is designed based on the kinematic controller of
ref. [3], which is recommended by many studies according to ref. [13]. The simulation conditions,
including robot parameters, desired trajectory, and model uncertainties, are carefully adapted to the
presented scenarios in this paper. The details are omitted here due to limited space and the interested
reader is referred to ref. [13] for controller equations and parameters. Figure 5 shows the tracking
errors and control signals of the proposed SOFBC and the controller in ref. [13] for scenario 1.
In Fig. 5, one can see the superiority of the proposed SOFBC in this paper from the viewpoint of
transient response and power consumption. The proposed controller of ref. [13] completely fails to
follow the desired trajectory in scenario 2, not illustrated here.

4.3.2. Quantitative comparisons. For a fair comparative study of the controllers in quantity, the
following performance indexes are defined as in ref. [35]:

� The following root mean square (rms) of the tracking error is used to evaluate the average tracking
performance:

rms(ej (t)) =
√

(1/Tf )
∫ Tf

0
|ej (t)|2dt, j = 1, 2, (57)

where Tf denotes the total running time and ej represents the tracking error for jth output.
� The following rms of control signals is used to evaluate the amount of control efforts, which, in

turn, is used to measure the amount of control power consumption:

rms(uaj (t)) =
√

(1/Tf )
∫ Tf

0
|uaj (t)|2dt, j = 1, 2. (58)

� eM,j = maxt{|ej (t)|}, j = 1, 2, the maximum absolute value of the tracking error, is used to assess
the transient performance of controllers.

� ef,j = maxTf −TL≤t≤Tf
{|ej (t)|}, j = 1, 2, the maximum absolute value of the tracking error during

the last TL seconds, is used as an index of measure of final tracking accuracy of controllers (in this
simulation, TL = 5 s).
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Table III. The quantitative comparative study of controllers in refs. [13, 24] and the proposed SOFBC of this
paper.

Output feedback control24 State feedback control13 Proposed SOFBC

Performance index Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

rms(e1(t)) (m) 65.6 1813.3 85.25 2217 111 1935.5
rms(e2(t)) (m) 39.9 666.2 72.15 473.5 17.8 189.1
rms(ua1(t)) (V) 10,946 5 × 1010 568 3 × 106 48 104.5
rms(ua2(t)) (V) 4694 4.8 × 1010 142 3 × 106 45.8 103.1
rms(uas1(t)) (V) 74.9 169.7 127.2 169.7 48 104.5
rms(uas2(t)) (V) 72.8 169.7 113.4 169.7 45.8 103.1
eM,1 (m) 45.35 495.3 45.5 495 45.3 495.3
eM,2 (m) 17.08 191.4 24.8 93 12.50 92.5
ef,1 (m) 0.06 0.09 0.08 126.9 0.07 0.06
ef,2 (m) 0.07 0.11 0.08 7 0.09 0.08
Overall performance Efficient Efficient Efficient Inefficient Efficient Efficient
Power consumption Very high Inefficient High Inefficient Low Low

Table III demonstrates the numerical values of the above performance indexes, which compare the
controllers from the viewpoint of overall performance and power consumption. It can be seen that the
amount of control efforts, i.e. rms(uaj (t)), and saturated control, i.e. rms(uasj (t)), for the proposed
SOFBC is remarkably smaller than that of the proposed controllers in refs. [13, 24]. The proposed
SOFBC also shows a better transient performance compared with other controllers. However, the
controllers try to outperform in the average tracking performance and final tracking accuracy. The
qualifications of all the controllers are depicted in the last two rows of the table. A significant
conclusion from Table III is that the proposed SOFBC is more effective than the previous works for
large initial tracking errors considering the actuator saturation problem.

5. Conclusions
In this paper the trajectory tracking control problem of uncertain nonholonomic mobile robotic
systems has been addressed. Based on the second-order input–output model of nonholonomic systems,
a saturated OFBC is designed such that it makes the tracking errors SGUUB in the presence of actuator
saturation, structured and unstructured uncertainties, and without measurement of velocity signals.
The main feature of the proposed controller is that it mitigates the actuator saturation, which, in turn,
improves the transient performance for large initial tracking errors in the trajectory-tracking problem.
The Lyapunov-based stability analysis is utilized to show semi-global uniform ultimate boundedness
of tracking and sate estimation errors. The proposed controller has been applied to trajectory tracking
control of a differentially driven nonholonomic WMR. A comparative simulation study has been
presented which shows that the proposed controller is more efficient than previous works for the sake
of actuator saturation and better transient response. In the subsequent researches, the experimental
evaluation of the proposed SOFBC on a real WMR is taken into account to support the presented
theories and simulation results.
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