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An Inequality for Functions on the Hamming Cube
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We prove an inequality for functions on the discrete cube {0,1}n extending the edge-isoperimetric
inequality for sets. This inequality turns out to be equivalent to the following claim about random
walks on the cube: subcubes maximize ’mean first exit time’ among all subsets of the cube of the
same cardinality.
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1. Introduction

Isoperimetric inequalities play an important role in describing the geometry of ambient spaces
[2, 12]. This paper deals with one such space, the discrete cube {0,1}n. This is the graph with
2n vertices indexed by Boolean strings of length n, in which two vertices are connected by an
edge if they differ in one coordinate. The edge-isoperimetric inequality [8] for {0,1}n provides
a well-known example of a discrete isoperimetric inequality.

The edge boundary ∂A of a subset A ⊆ {0,1}n is the set of edges between A and its comple-
ment. The edge-isoperimetric inequality relates the cardinality of a set and that of its boundary:

|∂A| � |A| · log2

(
2n

|A|

)
. (1.1)

One of its implications is that a simple random walk in the cube does not stay for too long in any
given subset. This can be used to prove upper bounds on the mixing time of the walk [9].

This inequality can also be viewed as an inequality for characteristic functions on {0,1}n. For
a function g : {0,1}n → R, let the Dirichlet quadratic form of g be given by

E(g,g) = Ex ∑
y∼x

(g(x)−g(y))2.

† Research partially supported by ISF grant 1241/11 and BSF grant 2010451. Part of this work was done while the
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Here the expectation is taken with respect to the uniform probability measure on the cube. The
notation x ∼ y means that x and y are connected by an edge. Then (1.1) can be rewritten for
g = 1A as

E(g,g) � 2E(g2) · log2

(
E(g2)
(E|g|)2

)
. (1.2)

It is natural to look for inequalities for real-valued functions g on the cube generalizing (1.1).
One such inequality is the logarithmic Sobolev inequality [7]:

E(g,g) � Ent(g2) = E(g2 lng2)−E(g2) lnE(g2).

For g = 1A this becomes

|∂A| � |A| · ln
(

2n

|A|

)
,

recovering (1.1) up to a multiplicative factor of 1/ ln2. For a general real-valued function g, the
logarithmic Sobolev inequality has been observed [5, 11] to imply

E(g,g) � 2E(g2) · ln
(

E(g2)
(E|g|)2

)
. (1.3)

This extends (1.2), again up to a multiplicative factor of 1/ ln2.
It is useful to look for inequalities for general functions reducing to an isoperimetric inequality

with the correct constant in the special case of characteristic functions. Such an inequality would,
in particular, mean that the characteristic function of an isoperimetric set (that is, a set satisfying
an isoperimetric inequality with equality), or an ‘almost-isoperimetric’ set, is an optimal (or
nearly optimal) solution of a continuous extremal problem, and as such, might be expected to
have an interesting structure. We refer to [1] for an example of relevant work in continuous
analysis.

As observed in [5], the inequality (1.3) is in fact tight for general real-valued functions.
Therefore, to recover correct constants, we need to look for different extensions of (1.1). This
paper gives one example of such an inequality.

Theorem 1.1. Let A be a subset of {0,1}n and let g be a real-valued function on {0,1}n

supported on A. Then

E(g,g) � 2 · 1
2n · |A| log2

(
2n

|A|

)
·
(

∑
x∈A

|g(x)|
)2

. (1.4)

The dependence on g on the right hand side of this inequality is weaker than that in the
logarithmic Sobolev inequality, or that in (1.3). However, it does give the right constant. In fact,
substituting g = 1A recovers (1.1).

It turns out that (1.4) is equivalent to a statement about random walks in the cube. Let A be
a subset of {0,1}n. Let Y be a random variable defined as follows. Choose a uniformly random
point a ∈ A and consider the simple random walk in {0,1}n starting from a. Then Y measures
the time it takes the walk to exit A for the first time. We refer to EY as the mean first exit time of
A. This is a parameter of a subset A of the cube.
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The following claim is equivalent to Theorem 1.1.

Theorem 1.2. Subcubes maximize mean first exit time among all subsets of the cube of the same
cardinality. More precisely, for any subset A of {0,1}n,

EY � n
log2(2n/|A|) . (1.5)

If A is a subcube, this is an equality.

This paper is organized as follows. We show equivalence of Theorems 1.1 and 1.2 in Section 2.
Theorem 1.1 is proved in Sections 3 and 4. Some remarks on the structure of almost isoperimetric
sets are given in Section 5.

2. A random walk interpretation of Theorem 1.1

Inequality (1.4) is an inequality between two quadratic forms, which can be interpreted as a
matrix inequality. Let L = LA be the |A| × |A| matrix indexed by the vertices of A, with the
following entries: L(a,a) = n; and for a �= b, L(a,b) = −1 if a,b are connected, and 0 if not. Let
J := JA be the |A|× |A| all-1 matrix. Then, (1.4) is equivalent to

L � 1
|A| log2

(
2n

|A|

)
· J (2.1)

Here L � M means that L−M is a positive semidefinite matrix, that is, 〈Lu,u〉 � 〈Mu,u〉 for
any vector u.

The inequality (2.1) is of the form L � vvt for a vector v ∈ R
A. Note that if A is not the

complete cube (which we may assume, since otherwise the claims of both Theorems 1.1 and 1.2
are trivially true), the matrix L is non-singular. Therefore

L � vvt ⇔ I � (L−1/2v)(L−1/2v)t ⇔ 〈L−1/2v,L−1/2v〉 � 1 ⇔ 〈L−1v,v〉 � 1.

Let

r =
1
|A| log2

(
2n

|A|

)

and let 1 be the all-1 vector in R
A. Then (2.1) amounts to

〈L−11,1〉 � 1
r
. (2.2)

This inequality allows a random walk interpretation. Write L = n · I −E, where I is the identity
matrix and E is the adjacency matrix of the subgraph of {0,1}n induced by the vertices in
A. (Thus L is the ‘external’ Laplacian of the subgraph induced by A.) The matrix 1

n · E has
eigenvalues smaller than 1, and therefore we can write

L−1 =
1
n
·

∞

∑
k=0

Ek

nk
.
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The inequality (2.2) can be rewritten as

n
r

� n · 〈L−11,1〉 =
∞

∑
k=0

〈Ek1,1〉
nk

.

Let Y be a random variable defined as follows. Choose a uniform random point a∈A and consider
a simple random walk in {0,1}n starting from a. Then Y measures the first time the walk exits A.
Note that Ek(a,b) counts the number of paths of length k in A between a and b. Hence

1
nk

· ∑
b∈A

Ek(a,b)

is the probability that the random walk starting from a remains in A for the first k steps, and

〈Ek1,1〉
|A| ·nk

is the probability Y > k. Therefore, by (2.2),

EY =
∞

∑
k=0

P{Y > k} =
1
|A| ·

∞

∑
k=0

〈Ek1,1〉
nk

� n
|A| · r =

n
log2(2n/|A|) ,

proving (1.5).
Next, we verify that (1.5) holds with equality if A is a subcube, completing the proof of

Theorem 1.2. Let A be a d-dimensional subcube. Then

P{Y > k} =
dk

nk
,

and therefore

EY =
∞

∑
k=0

P{Y > k} =
∞

∑
k=0

dk

nk
=

n
n−d

=
n

log2(2n/|A|) .

One might consider the possibility that subcubes have a stronger property, namely that for
a walk of any length the probability to remain in a subcube is maximal among all sets of the
same size. This is true for walks of length 1, since subcubes have the smallest edge boundaries.
However, the following example shows this to be false already for walks of length 2.

Example. The number of length-2 walks inside the set A is

∑
a,b∈A

E2(a,b) = 〈E21,1〉 = 〈E1,E1〉 = ∑
x∈A

d2
x ,

where dx is the degree of x in the subgraph induced by A. Therefore, for a d-dimensional cube,
the number of such walks is 2d · d2. But, for a radius-1 ball of dimension 2d − 1 (that is, a star
with 2d vertices), this number is (2d −1)2 +(2d −1) = 2d · (2d −1), which is much larger.

3. Proof of Theorem 1.1

There are several simple assumptions we may and will make on the structure of the function g in
(1.4). First, we may assume g � 0, since replacing g with its absolute value preserves the right-
hand side of (1.4) and can only decrease its left-hand side. Second, we may assume the support
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of g is the whole set A, otherwise we may replace A with the support of g in (1.4), increasing the
right-hand side.

Next, consider the partial order on {0,1}n in which x � y if and only if xi � yi, i = 1, . . . ,n. A
function g on the cube is downwards monotone if g(x) � g(y) when x � y. We may assume the
function g in (1.4) to be monotone. This follows from two simple lemmas.

Lemma 3.1. Fix a direction 1 � i � n, and let f be a function obtained from g by a downward
shift in direction i. That is, for any pair of adjacent points x,y in the cube, with xi = 0 and yi = 1,
set

f (x) = max{g(x),g(y)} and f (y) = min{g(x),g(y)}.

Then

E( f , f ) � E(g,g).

Proof. This is a standard ‘shifting’ argument [3], more commonly applied in the special case of
g being a characteristic function. We will reduce the claim of the lemma to the two-dimensional
case, verifiable by a direct calculation.

For a point x ∈ {0,1}n and 1 � j � n, let x( j) denote the point adjacent to x in direction j. That
is, x( j)

k
= xk for any k �= j, but x( j)

j
�= x j. For a function h on the cube, and x uniformly distributed

in {0,1}n, set Δ j(h) = Ex( f (x)− f (x( j)))2 and note that E(h,h) = ∑n
j=1 Δ j(h).

Let f be obtained from g by a downward shift in direction i. Clearly Δi( f ) = Δi(g). We will
show that Δ j( f ) � Δ j(g) for all j �= i. The claim of the lemma will follow. Fix j �= i and assume,
for ease of notation, that j = n−1 and i = n.

For a function h on {0,1}n and for z ∈ {0,1}n−2, let hz be the restriction of h to the 2-
dimensional cube {x ∈ {0,1}n : xk = zk for 1 � k � n−2}. Observe that if z is uniformly distrib-
uted in {0,1}n−2, then Δk(h) = Ez Δk(hz), for k = n− 1,n. For any z in the (n− 2)-dimensional
cube, fz is a downward shift of gz in direction n. We will verify that Δn−1( fz) � Δn−1(gz). This
will imply, by averaging over z, that Δn−1( f ) � Δn−1(g).

Fix z ∈ {0,1}n−2, let g = gz, and f = fz. The only interesting case to consider, up to the
symmetries of the cube, is

g =
(

A b
a B

)
and hence f =

(
a b
A B

)
.

Here direction n is vertical, A > a and B > b. Direct calculation gives

Δn−1(g)−Δn−1( f ) =
1
2
· (B−b)(A−a) > 0,

completing the proof.

Lemma 3.2. Applying consecutive shifts in directions i = 1, . . . ,n to a function on the cube
produces a monotone function.
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Proof. Again, it suffices to verify this in the two-dimensional case. See [6], for example, where
this argument is applied in the special case of characteristic functions.

The proof of Theorem 1.1 proceeds by induction on the dimension. First, consider the base
case n = 1. There are two choices for |A|. If |A| = 1, we are in the Boolean case, in which (1.4)
is the usual edge-isoperimetry. If |A| = 2, the right-hand side in (1.4) is 0, and we are done.

Now we go to the induction step. The cube {0,1}n decomposes into two (n−1)-dimensional
subcubes. The first subcube contains all vectors with last coordinate 0, and the second contains
all vectors with last coordinate 1. The function g and the set A decompose according to their
restrictions to the subcubes:

g ↪→ (g0,g1), A ↪→ (A0,A1).

The induction step amounts to proving

E(g,g) =
1
2
· (E(g0,g0)+E(g1,g1))+‖g0 −g1‖2

2

�ind

1
2
·2 · 1

2n−1|A0|
log

(
2n−1

|A0|

)(
∑

x∈A0

g0(x)
)2

+
1
2
·2 · 1

2n−1|A1|
log

(
2n−1

|A1|

)(
∑

x∈A1

g1(x)
)2

+‖g0 −g1‖2
2

�?? 2 · 1
2n|A| log

(
2n

|A|

)(
∑
x∈A

g(x)
)2

.

In the expressions above, the Dirichlet forms and the �2 distance for functions gi on (n− 1)-
dimensional cubes are computed with respect to the uniform probability measure on these sub-
cubes.

Note that, by our assumptions on g, the set A is downwards monotone, since it is the support of
a monotone function g. This implies A1 ⊆ A0 (identifying the two subcubes in the natural way).
The expression we need to analyse allows an additional simplifying assumption on g. We may
assume g0,g1 to be constant on A1 and on A0 \A1 (and of course gi vanishes on Ac

i ; in particular
g1 is zero on A0 \A1). In fact, replacing gi with their averages on the corresponding subsets can
only decrease the left-hand side and does not change the right-hand side in the second inequality
above.

We proceed with the analysis, introducing some notation.

Notation

• Let s0 := ∑x∈A0
g0(x), s1 := ∑x∈A1

g1(x). Let t0 := |A0|, t1 := |A1|. We may and will assume
t1 > 0 and s1 > 0; otherwise the problem reduces to a lower-dimensional case.

• Let α be the value of g0 on A1 and let γ be the value of g0 on A0 \A1. Let β be the value of
g1 on A1.

• The ‘ f ’-notation. Let

f (t) = fn−1(t) :=
1
t

log2

(
2n−1

t

)
.
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Note that

(1) t1β = s1,

(2) t1α +(t0 − t1)γ = s0,

(3) ‖g0 −g1‖2
2 =

1
2n−1

· (t1(α −β )2 +(t0 − t1)γ
2)

With the new notation, the inequality to be verified for the induction step is

f (t0)s
2
0 + f (t1)s

2
1 +(t1(α −β )2 +(t0 − t1)γ

2) � 1
2
· f

(
t0 + t1

2

)
(s0 + s1)

2. (3.1)

Expressing β and γ as functions of si, ti and of α (dealing with the simple case t0 = t1 sep-
arately), the left-hand side of (3.1) is a quadratic in α with coefficients depending on si and ti.
Minimizing the left-hand side in α , we arrive, after some simple calculations, at the following
inequality we need to verify:

f (t0)s
2
0 + f (t1)s

2
1 +

(s0 − s1)
2

t0
� 1

2
· f

(
t0 + t1

2

)
(s0 + s1)

2. (3.2)

Next, let R = s0/s1. Inequality (3.2) transforms to a quadratic inequality in R:

f (t0)R
2 + f (t1)+

(R−1)2

t0
� 1

2
· f

(
t0 + t1

2

)
(R+1)2. (3.3)

We need to check P(R) := aR2 + bR + c � 0 with the coefficients a,b,c coming from (3.3). We
will, in fact, verify a � 0 and D = b2 − 4ac � 0, which will conclude the proof. We start with
some simple properties of the function

f (t) =
1
t

log2

(
2n−1

t

)
.

Lemma 3.3. The function f (t) is decreasing and convex for 0 < t < 2n−1. It satisfies the identity

f (β · t) =
1
β
· f (t)+

1
β

log
1
β
· 1

t
, (3.4)

for any t,β > 0.

Proof. Directly verifiable.

Corollary 3.4. Viewing inequality (3.3) in the form aR2 +bR+ c � 0, we have

a � 0.

Proof. It is easy to verify that

a =
2t0 f (t0)+2− t0 f ((t0 + t1)/2)

2t0
.
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By Lemma 3.3,

t0 f

(
t0 + t1

2

)
� t0 f

(
t0
2

)
= 2t0 f (t0)+2,

completing the proof.

It remains to verify the inequality 4ac � b2, which after some simplification reduces to

2t0 f (t0) f (t1)+2( f (t0)+ f (t1)) � t0 f

(
t0 + t1

2

)
( f (t0)+ f (t1))+4 f

(
t0 + t1

2

)
. (3.5)

4. Proof of inequality (3.5)

Renaming the variables x = t0 and y = t1, and recalling the constraints on t0 and t1, we need to
prove (3.5) for 1 � y < x � 2n−1. Rearranging, this is easily seen to be equivalent to

Δ(x,y) � x · ( f (x)− f (y))2

2x · ( f (x)+ f (y))+8
. (4.1)

Here

Δ(x,y) :=
f (x)+ f (y)

2
− f

(
x+ y

2

)
.

Note that Δ � 0 since f is convex.
We now substitute y = βx in (4.1), with 0 < β < 1, and expand using (3.4). We have

Δ(x,y) = Δ(x,β · x) =
f (x)+ f (β · x)

2
− f

(
1+β

2
· x

)

=
1
2
·
(

f (x)+
1
β
· f (x)+

1
β

log
1
β
· 1

x

)
−

(
2

1+β
· f (x)+

2
1+β

log
2

1+β
· 1

x

)

=
(1−β )2

2β (1+β )
· f (x)+

(
1

2β
log

1
β
− 2

1+β
log

2
1+β

)
· 1

x
.

As to the right-hand side of (4.1), we have

RHS(x,y) = RHS(x,β · x) =
x ·

(
1
β · f (x)+ 1

β log 1
β · 1

x − f (x)
)2

2x ·
(

f (x)+ 1
β · f (x)+ 1

β log 1
β · 1

x

)
+8

.

Taking z := x f (x),

Δ � RHS ⇐⇒ x ·Δ � x ·RHS ⇐⇒ Az+B � (Cz+D)2

Ez+F
,

where

z = x f (x) = log

(
2n−1

x

)
� 0

and A,B, . . . ,F depend only on β .
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Specifically,

A =
(1−β )2

2β (1+β )
,

B =
1

2β
log

1
β
− 2

1+β
log

2
1+β

,

C =
1−β

β
,

D =
1
β

log
1
β

,

E =
2+2β

β
,

F =
2
β

log
1
β

+8.

So, we need to show that

(Az+B)(Ez+F) � (Cz+D)2.

Observe that

AE = C2 =
(1−β )2

β 2
.

Therefore, this reduces to a linear inequality in z:

(AF +BE −2CD) · z � D2 −BF.

This holds for all non-negative z if and only if

AF +BE � 2CD,

BF � D2.

Hence, the problem is reduced to two univariate inequalities in β . We will prove them in the next
two lemmas.

Lemma 4.1. For 0 < β < 1 we have AF +BE � 2CD.

Proof. Simplifying and rearranging, this inequality reduces to

(1−β )2

β (1+β )
· log

1
β

+
1+β

β
· log

1
β

+4
(1−β )2

1+β
� 4log

2
1+β

+2
1−β

β
· log

1
β

and hence to

β
1+β

· log
1
β

+
(1−β )2

1+β
� log

2
1+β

,

which is the same as

β log
1
β

+(1−β )2 � (1+β ) log
2

1+β
.
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The derivative of

g(β ) = β log
1
β

+(1−β )2 − (1+β ) log
2

1+β

is

log
1+β

2β
−2(1−β ).

This is a convex function, which means it can vanish in at most two points in the interval (0,1]. In
addition, g′ is positive close to 0 and it vanishes at 1. Taking into account the boundary conditions
g(0) = g(1) = 0, this means that g first increases from 0 at zero and then decreases to 0 at one,
that is, it is non-negative.

Lemma 4.2. For 0 < β < 1 we have BF � D2.

Proof. We need to prove(
1

2β
log

1
β
− 2

1+β
log

2
1+β

)
·
(

2
β

log
1
β

+8

)
� 1

β 2
log2 1

β
.

Simplifying and rearranging, this reduces to

(1+β ) · log
1
β

� log
2

1+β
· log

1
β

+4β · log
2

1+β
,

which is the same as

(β + log(1+β )) · log
1
β

� 4β · log
2

1+β
.

As in the preceding lemma, the function

g(β ) = (β + log(1+β )) · log
1
β
−4β · log

2
1+β

vanishes at the endpoints. We will (again) claim it increases from 0 at zero and then decreases
from the maximum point to 0 at one, and is therefore non-negative on the interval.

As before, it will suffice to show that g′ is convex, is positive at the beginning of the interval,
and vanishes at 1. We have

ln2 ·g′(β ) =
(

1+
1

ln2 · (1+β )

)
· ln 1

β
− ln2 ·β + ln(1+β )

ln2 ·β −4ln
2

1+β
+

4β
1+β

.

It is easy to verify that g′ is positive for small positive β and that g′(1) = 0. It remains to check
g′ is convex. Taking another two derivatives, we have

ln2 ·g′′′(β ) =
(

1
β 2

+
3

ln2
·
(

1
β 2(1+β )

+
1

β (1+β )2

)
+

2
ln2

· ln(1/β )
(1+β )3

)

−
(

4
(1+β )2

+
8

(1+β )3
+

2
ln2

· ln(1+β )
β 3

)
.

To show that this is non-negative, we multiply by β 3(1+β )3 and verify

β (1+β )3 +
3

ln2
·β (1+β )(1+2β )+

2
ln2

·β 3 ln
1
β

� 4β 3(1+β )+8β 3 +
2

ln2
·(1+β )3 ln(1+β ).
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We show a stronger inequality (removing the third summand on the left):

β (1+β )3 +
3

ln2
·β (1+β )(1+2β ) � 4β 3(1+β )+8β 3 +

2
ln2

· (1+β )3 ln(1+β ).

Note that (1 + β ) ln(1 + β ) � 2ln2 ·β , by convexity of (1 + β ) ln(1 + β ) on [0,1]. Substituting
and simplifying, it suffices to show that

(1+β )3 +
3

ln2
· (1+β )(1+2β ) � 4β 2(1+β )+8β 2 +4 · (1+β )2.

Since 3/ln2 � 4 and β 2 � β 3 for 0 � β � 1, it suffices to prove the quadratic inequality

1+3β +3β 2 +4(1+β )(1+2β ) � 15β 2 +4 · (1+β )2.

Simplifying, this reduces to the trivial statement

7β +1 � 8β 2.

5. Nearly isoperimetric sets and their eigenvalues

Fix a small parameter ε > 0. A set A is nearly isoperimetric if it satisfies the isoperimetric
inequality (1.1) almost as an equality, that is,

|A| log2

(
2n

|A|

)
� |∂A| � (1+ ε) · |A| log2

(
2n

|A|

)
. (5.1)

We would like to understand the structure of nearly isoperimetric sets and, in particular, their
possible similarity to subcubes.

This discussion is closely related to stability of isoperimetric inequalities. A stability-type
result shows that a nearly isoperimetric set is close (in an appropriate metric) to a genuinely
isoperimetric set. Such a result is proved in [4]. Let δ be at most a small constant, and let A be a
set satisfying (5.1) with

ε =
δ

log2(2n/|A|) .

Then there is a subcube C such that

|AΔC| � O

(
δ

log(1/δ )
· |A|

)
.

In this section we look at eigenvalues and eigenvectors of the Laplacian L (equivalently, of the
adjacency matrix E) of a subgraph induced by an almost isoperimetric subset A of the cube. If
A is a subcube, the induced subgraph is regular, of degree log2 |A|. This means that the minimal
eigenvalue of the Laplacian L is log2(2

n/|A|) and the corresponding eigenvector is the all-1 vector
1. We show in Corollary 5.2 below that if ε ′ is at most a small constant and

ε =
ε ′

2n
· log2(2

n/|A|),

then the subgraph induced by a set A satisfying (5.1) is nearly regular, with the degrees of almost
all the vertices close to log2 |A|.
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Similar arguments can be used to show that even for ε as large as a small constant, most of the
spectral mass in the expansion of 1 in an eigenbasis of L is concentrated around the eigenvalue
log2(2

n/|A|) (we will not go into details). At the other end of the scale, for a very small

ε � 1
n · log2(2n/|A|) ,

we can derive stability-type results in the sense of [4] (via a result of Keevash [10] on stability of
the Kruskal–Katona inequality). Since this is weaker than the results in [4], we omit the details
here as well.

We start with some notation. Let |A| = m, and let λ1 � λ2 � · · · � λm be the eigenvalues of E.
The eigenvalues of L are n−λ1 � n−λ2 � · · · � n−λm. Let v1, . . . ,vm be an orthonormal basis
of eigenvectors, and let 1 = ∑m

i=1 αivi be the expansion of the constant-1 function 1 in this basis.
Note, for future use, that ∑m

i=1 α2
i = 〈1,1〉 = |A|.

The inequality (2.2) translates to

m

∑
i=1

α2
i

n−λi
� 1

r
=

|A|
log2(2n/|A|) . (5.2)

Note that the edge boundary of A is given by

|∂A| = 〈L1,1〉 =
m

∑
i=1

α2
i (n−λi).

Therefore the nearly isoperimetric property (5.1) is equivalent to

|A| log2

(
2n

|A|

)
�

m

∑
i=1

α2
i (n−λi) � (1+ ε) · |A| log2

(
2n

|A|

)
.

Consider the probability distribution on [m] given by pi = α2
i /|A|, and let f : i �→ n− λi be

a positive function on [m]. Computing expectations according to p, we have E
1
f ·E f � 1 + ε .

Intuitively, this should mean f is concentrated with respect to p. In the next lemma we state this
formally.

Lemma 5.1. Let g be a strictly positive-valued function on a finite domain satisfying

E
1
g
·Eg � 1+ ε.

Then

E(g−Eg)2 � ε ·Eg · ‖g‖∞. (5.3)

Proof. We have

E

(
(g−Eg)2

g

)
= (Eg)2 ·E

(
1
g

)
−Eg = Eg ·

(
Eg ·E

(
1
g

)
−1

)
� ε ·Eg.

Therefore

E(g−Eg)2 � E

(
(g−Eg)2

g

)
· ‖g‖∞ � ε ·Eg · ‖g‖∞.
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Corollary 5.2. Let A satisfy (5.1) with

ε =
ε ′

2n
· log2

(
2n

|A|

)
,

where ε ′ � 1. Fix a parameter 0 � δ � 1. Choose uniformly at random an element x ∈ A and let
dout(x) be the number of neighbours of x outside A. Then

P

{
(1−δ ) · log2

(
2n

|A|

)
� dout(x) � (1+ ε)(1+δ ) · log2

(
2n

|A|

)}
� 1− ε ′

δ 2
.

In particular, the subgraph induced by A is almost regular, similar to the isoperimetric case.

Proof. We use the notation above. Consider the random variable dout(x), for x uniformly dis-
tributed in A. We have

Edout(x) =
|∂A|
|A| =

1
|A| 〈L1,1〉 =

m

∑
i=1

α2
i

|A| (n−λi) = E f .

Similarly, E(d2
out) = E( f 2). Therefore, by Chebyshev’s inequality and Lemma 5.3,

P

{∣∣∣∣dout(x)−
|∂A|
|A|

∣∣∣∣ � δ · |∂A|
|A|

}
= P

{
|dout(x)−Edout| � δ ·Edout

}

� Var(dout)
δ 2 · (Edout)2

=
Var( f )

δ 2 · (E f )2
� ε · ‖ f‖∞

δ 2 ·E f
� ε ′

δ 2
.

In the last inequality we used the easy fact ‖ f‖∞ � 2n. The claim follows.
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