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We consider the homogenization of parabolic systems with Dirichlet boundary
conditions when the operators and the domains in which the problems are posed vary
simultaneously. We assume the operators do not depend on t. Then we show that the
corrector obtained in a previous paper for the elliptic problem still gives a corrector
for the parabolic one. From this result, we easily obtain the limit problem in the
parabolic case.

1. Introduction

In a previous paper [1], we studied the asymptotic behaviour of the solutions of the
nonlinear Dirichlet system (see also [10] for the linear case and M = 1),

—divay,(z,Du,) = f in D'(Qn),}

1.1
w, € Wy (2,)M. (L)

Here, {2,, is an arbitrary sequence of open sets contained in a fixed open bounded set
2 C RN and a, is a sequence of Carathéodory functions that define monotone oper-
atorsin Wol’p(Q)M and are uniformly bounded and elliptic (see the exact hypotheses
on a, in definition 2.1). We proved in [1] that, taking a as the homogenized limit
of ay, there exist u in the set M (£2) of non-negative Borel measures that vanish
on the sets of Cp-capacity zero and a p-Carathéodory function F : 2 x RM — RM
that satisfies similar properties to a,, such that, for every f € W*Lp/(Q)M, the
solutions of (1.1) (extended by zero outside £2,,) converge weakly in Wy ?(2)M to

the solution u of
u e WyP(2)M,

/a(mDu):Dvdx—l—/ F(z,u)vdu = (f,v), (1.2)
Q

9]
Yo € WP ()M,
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When p is Radon, this problem can be written in the distributional sense as

—diva(z,Du) + F(z,u)p = f in D'(2)M,
uewhr (Q)M .
The new term is the ‘strange term’ of Cianorescu and Murat [5], which usually
appears in the homogenization of Dirichlet problems in perforated domains. A cor-
rector of Du,, i.e. an approximation in the strong topology of LP(£2, M ;. ), it is
also obtained in [1].

The goal of the present paper is to show how these results can be used to solve
the parabolic homogenization problem

Orty, — divay, (z, Duy) = f  in D'(2, x (0,T))M,
w, € LP(0,T; Wy P (£2,)M), (1.3)
Un(z,0) =0 in §2,.
For this purpose, we show that the corrector for the elliptic problem is still a

corrector for the parabolic one. This will imply that the limit problem of (1.3) can
be written as

we LP(0,T; Wy P ()M N LE(2)M), u(z,0) = 0 in 2,
(Opu, v) —|—/ a(z,Du) : Dvdz —|—/ F(z,u)vdu = (f,v) in D'(0,T), (1.4)
2 2
Yo e Wyt ()M nLE ()M,

where a, F' and p are the same as those that appear in the elliptic case. Indeed,
as in [1,10], we consider a more general problem than (1.3). For this, we remark
that if, following Dal Maso and Mosco [8], we consider the sequence of measures
pn € ME(£2) defined by

By ] oo i C(BN(2\2,)) >0,
n(B) = 0 i Cp(BN(£2\2,)) =0 VB C {2 Borel,

then (1.3) is equivalent to (1.4) with @ = a,, u = p, and F(x,s) = |s|P~2s. So,
instead of problem (1.3), we consider the homogenization problem

up € LP(0,T; Wy P(2)M N L2, (2)™), u,(2,0) =0 in £2,

(Ostip, v) —|—/ an(z,Duy) : Dvdz —|—/ Fp(z,up)vdp = (fn,v) 15

Q 0 . (1.5)

in D'(0,7),
Vv e Wy P()M nLE ()M,
and we prove that the limit is still (1.4), i.e. in this form, the structure of the
problem does not vary by homogenization.
We finish this introduction with some bibliographical references.

To the homogenization of the elliptic case, we refer to [11,14,15] when 2, is
fixed, and to [2-9,18] when a,, does not vary. As we mentioned above, the cases
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where (2, and a,, vary simultaneously are studied in [10] for the linear problem
and [1] for the monotone one.

For the parabolic problem, we refer to [15] and the references in it when the
domains do not vary and to [19] when the operators are fixed. The case where
the operators and the domains vary simultaneously has been studied in [16,17],
assuming that the variations hold in a periodic way.

2. Notation

For M, N € N, we denote by M ;«n the space of M x N real matrices. The scalar
product of two matrices A, B € M ;«n will be denoted by A : B.

We represent by 2 C RV a bounded open set and by Qr, R > 0, the cylinder
Qr =1 x[0,R].

For a measure p in {2, we denote by LZ(Q, RM) 1 < p < +0o0, the usual Lebesgue
spaces relatives to the measure p. If i is the Lebesgue measure, we write LP(§2, RM).

For a normed space X, z € X, 2’ € X' (the dual space of X), we denote by
(2, z) the duality product between z’ and x.

For every A C {2 and p € (1,400), we denote by C,(A, 2) the C),-capacity of A
(in £2), which is defined as the infimum of

/ |Vul? dx
2

over the set of functions u € Wol’p(()) such that u > 1 a.e. in a neighbourhood of A.

We say that a property P(z) holds Cp-quasi everywhere (abbreviated as q.e.)
in a set E if there exists N C E with C,(N, {2) = 0 such that P(z) holds for all
z€FE\N.

A function u : 2 — RM is said to be Cp-quasi continuous if, for every ¢ > 0,
there exists N C (2, with C,(N, 2) < ¢, such that the restriction of u to 2\ N
is continuous. It is well known that every u € WP(£2)" has a C,-quasi contin-
uous representative (see [12,13,20], etc.). We always identify v with its Cp-quasi
continuous representative.

We denote by ME(2) the class of all non-negative Borel measures that vanish
on the sets of Cp-capacity zero and satisfy

wu(B) = inf{u(A) : A Cp-quasi open, B C A C 2},
for every Borel set B C f2.

DEFINITION 2.1. We denote by a, : 2 XM v — Muyxn a sequence of Cara-
théodory functions and we define

anX/\/l M><N_>MM><N and anQX/Vl M><N></Vl M><N_>MM><N

by
an(z,8) = an(z,§): & VEEMpyxn ae xz€

and

an(r,81,&) = (an(r,&1) — an(w,&2)) : (&1 — &) V&1,6 € Myxny ae. x € £2.
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The sequence a,, is supposed to satisfy the following properties.
There exists p > 2, such that

(i) an(z,0) =0Vn e Nae. z € (2
(ii) there exists @ > 0 such that
an(z,&1,82) = ol — &P VneEN V6,6 e Myxn ae z €2y (21)

(iii) there exist v > 0, o € (0,1] and r € L'(§2) such that

|an(m7§1) - an(m7£2)|
<A(r(@) + n (@, &) + an(z, ) P71 Pay (2, &1, 62)77
Vn €N Vfl,fg E Myxn a.e.x € (2
(2.2)
REMARK 2.2. Hypotheses (i), (ii) and (iii) imply the following.
(iii") There exist 4/ > 0 and ' € LP(£2) such that
|an(m7§1) - an(m7£2)|
<A (@) + 6| + el g — G|/ )

Vn € N V£1:£2€MM><N a.e.x € ().
(2.3)

In particular, we have the following.
(iv’) There exist 3 > 0 and h € L (£2) such that

lan(z,6)| < h(z) + BIEP™Y VneEN VEEMpyxn ae z€.  (24)
Reciprocally, if we assume (i), (i) and (iii’), then a,, satisfy (iii) with constants 7,

¢ and a function 7. We remark that & = 0/(p — o) only coincides with o for p = 2
and o = 1.

REMARK 2.3. Hypothesis (i) can be replaced by a,(-,0) belongs to L¥'(£2). In this
case, it is enough in the following to replace a,, by a,, defined by

an(z,8) = ap(z,§) —ap(z,0) VneN VEe My N ae z€ 2

DEFINITION 2.4. We consider a sequence of measures p1,, € M (£2) and a sequence
of functions F,, : 2 x RM — RM guch that F,.(-,s) is p,-measurable for every
s € R™. Analogously to a,,, we define

Fp: QxRM = RM and F,: 2 xRM xRY - RY
by
F.(x,s) = Fp(z,8)s Yn€N VseRM p,-ae z€

and

Fo(z,s1,82) = (Fa(z,s1) — F(x,52)) (51 — s2)
Vn €N Vsy,s0 € RM i -ae z € 0.
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The sequence Fj, is assumed to satisfy
Fp(z,0)=0 VneN pp-ae. x € £2, (A)
Fo(x,51,52) > als; —s3/P VneN Vs, s0 €RM pp-ae. z€ (B)

and

|Fn(x7sl) - Fn(x732)| < py[ﬁ‘n(xﬂsl) + Fn(x7 32)](p7170)/p|pn(x7 81, 32)|U/p

Vn €N Vsy,s0 € RM i -ae z € 0.
(C)

REMARK 2.5. Analogously to a,, hypotheses (A), (B), (C) imply that there exists
~" > 0 such that
|Fu(w,51) = Fu(a,s2)| </ (Is1] + |so)PE170/ @75y — |7/ (07)

Vs1,80 € RM  pp-ae.z €2 VneN (C)

and

there exists § > 0 such that |F,(z,s)| < 8|s|P~*
Vs eRM  p-ae.z €2 VYneN. (D)

REMARK 2.6. Our results can easily be extended to p € (1,2), but we prefer to
remain with the case p > 2 to simplify the exposition. In this case, hypotheses (ii)
and (B) must be replaced by

|§1 — &ofP

an(@,&1,82) 2 e e

Vn € N Vfl,fg EMyxn ae z€f

and

. |51 — s2fP

M
Fn(l’781,32) P> am Vn €N Vsi,s90 €R ln-a.e. T € (2.

respectively.

In order to write shorter expressions, we do not specify the dependence in z of a,,
and F,,. For example, we write a,,(Du) to mean a,(z, Du(z)) and F, (u) to mean

We denote by C' a generic constant that only depends on p, N, v and g and can
change from one line to another one.

3. Preliminary results

We start this section by recalling some results for the stationary homogenization
problem. The following definition was introduced in [7,10].

DEFINITION 3.1. We define w,, as the solution of the problem
wy € WyP(2) N L5, (92),
/ |V, |P~2Vw, Vv dz —|—/ Jwn [P~ 2wp dpy, = / vdz, (3.1)
¢ ¢ ¢
Vv € WyP(R2) N LE(02).
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The main properties we need about w,, are given by the following result (see [4,
7,9]).

PROPOSITION 3.2. The sequence wy, is non-negative Cy-g.e. in 2 and its norm in
Wy (2) N L®(2) N LY (82) is bounded. So, extracting a subsequence if necessary,
there exists a non-negative function w € Wy (£2) N L°°(2) such that w, converges
weakly to w in Wy P(2) and weakly-+ in L>(£2). The convergence is also strong
in Wy U(£2), 1 < q < p. Moreover, there exists a measure p € M5(£2) such that,
analogously to w,, w satisfies

w € Wy (2) N LA(1),
/ |Vw[P~2VwVo dx—l—/ |w|P~2wv dp :/ vdx, (3.2)
[0 o o
Vv € WyP(£2) N LE(2).
The sequences w.,, n, the function w and the measure u satisfy the following.
(a) The space {wyp : ¢ € D(2)} is dense in Wy (£2)N LE(£2).

(b) For every v € D(£2), we have

([ 9P ass [ ool du) = [ [9wopass [ oor

(c) For every sequence u, € Wy™*(£2) N LY, (£2) that converges weakly to a func-
tion u in Wy (£2), and such that lunllLr, (o) is bounded, we get that u belongs
to Wy () N LE(£2) and

/|Vu|pdx+/ |u|pdu<liminf(/ |Vun|pdm+/ |un|pdun>.
7 7 n—oo \J @ 7

From proposition 3.2 (a), it is easy to prove the following result.

COROLLARY 3.3. Assume that w,, defined by (3.1) converges weakly to w and define
by proposition 3.2. For every u € LP(0,T;Wy*(2)M N LA (M) such that
dyu € LY (0,T; (Whr ()M N LE(2)M)'), there exists ¥, € D((0,T) x £2) such that
Wiy, and wdy,, converge to u and dyu in LP(0,T; WyP (2)M ﬂLZ(Q)M) and
LP(0,T; (Wi (2)M n LE(2)M)'), respectively.

With respect to the homogenization problem
U, € Wyt ()M N LB (2)M,
/ an(Duy,) : Dvdm+/ F(un)vdpn = (fn,v), (3.3)
¢ ¢
Ve Wyt ()M n Lk (2)M,

the following result is given in [1] (see also [10] for the linear problem).
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THEOREM 3.4. Assume that w, defined by (3.1) converges weakly in Wo* (£2) to w,
and define i as the measure given by proposition 3.2. Then there exits a subsequence
of n, still denoted by n, a Carathéodory function a : 2 xM iy — Myxn and
a function F : 2 x RM — RM such that, for every sequence f, that converges
strongly in W*Lp/(Q)M to a distribution f, the solution w, of (3.8) converges
weakly in Wol’p(Q)M to the unique solution u of

ue WyP(@)MnLe ()M,
/ a(Du) : Dvdx —|—/ Fu)vdu = (f,v), (3.4)
2

2
Vo € Wy P ()M n LE(2)M.

Moreover, the functions a and F, and the measure p, respectively, satisfy (i), (i),
(iii) and (A), (B), (C) of the previous section with the same constants «, v and o
and the same function r. The function a does not depend on u,, or F,,. In particular,
it coincides with the function that appears in the homogenization of (3.8) when u,
is zero.

The following result, which will be used later, was also obtained in [1].

ProprosITION 3.5. Consider the subsequence of n given by theorem 3.4. Then there
exists a constant C > 0 such that, for every sequence fl, f2 that converge to two
distributions f', f2, respectively, in W=7 ()M | the solutions ul, u2 of (3.3) with
fn replaced by fl and f2, respectively, satisfy

limsup/ |D(ul —u? — a2 + @) do
Q

(p—1—0)/(p—0) 1/(p—o)
< (/ (|ut] + |u?])P dx) (/ lut — u?|P du) , (3.5)
Q Q

where u', u® are the solutions of (3.4) with f replaced by f' and f2, respectively,
and i, u2 the solutions of

1

@ e W),

/ a(Da!) : Dvdz = / a(Du') : Dvdz, i=1,2,
7 7

Yo € WP ()M,

4. Homogenization

In this section we use the results stated in § 3 to realize the homogenization of (1.5).
The main result of the present paper is next theorem.

THEOREM 4.1. Let n be the subsequence of n given by theorem 3.4 and consider the
measure (1 and the functions a and F that appear in this theorem. Then, for every
sequence f, that converges strongly to a distribution f in LP (0,T; W*Lp/(Q)M),
the solution u, of (1.5) converges weakly in LP(0,T; Wy (£2)M N LE(2)M) to the
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unique solution u of the problem
we LP(0,T; Wy P ()M LA (2)M), u(2,0) = 0 a.e. x € 0,
(Opu, v) —|—/ a(Du) : Dvdx —|—/ F(u)vdu = (f,z) in D'(0,7) (4.1)
¢ ¢
Vv e WP ()M n LE(2)M,
Proof. Let us show the result in several steps.

STEP 1. We consider f,, f and u, as in the statement of theorem 4.1. Using u,, as
a test function in (1.5), we deduce

/|un(T)|2d:E—|—/ |Dun(:ﬂ7t)|pdmdt—|—/ [t ()P dpn, dt
2 Qr T

T /
<cénnww L dt.

w12 (02)

So, extracting a subsequence if necessary and taking into account proposition 3.2 (c),
we deduce that there exists u € LP(0,T; W, P(2)M N L2 (£2)M) such that u, con-
verges weakly to u in L?(0,T; Wy P (2)M).

When we prove that u is the solution of (4.1), we will deduce by uniqueness, so
it is not necessary to extract any subsequence.

STEP 2. We prove that dyu belongs to L (0, T; (WhP(2)M N LZ(Q)M)'). For this
purpose, we consider ¢ € D(Qr)™. Then we take w, ¢ as a test function in (1.5).
Since the norms of a, (Du,) and F,,(u,) are bounded in L? (0, T; L? (£2,)™) and
LP (0, T; Lﬁ;(Q)M), respectively, we get

/ U Ot (wp ) dadt = / an(Duy) : D(wyp) dzdt

—|—/ Fn(un)wncpdundt—/ (frn,wnep) dt

T

< M”wnw”LP(O7T;W01’17(QTL)I\/IOLZTL(Q)I\/I), (4.2)

where M is a positive constant that does not depend on n. Using the fact that u,
converges weakly to u in LP(Qr)™ and

[V(wep)|? dzdt + / lwel|P dpdt,

Qr T

(4.3)

which is an easy consequence of proposition 3.2 (b), and the Lebesgue dominated
convergence theorem, we can pass to the limit in (4.2) to deduce that

/ IV(wnw)IpdwdH/ lwnepl? dpndt —
T Qr

/ udy(we) dzdt < M”wgp”LP(O7T;W&’p(Q)1\/IﬁLﬁ(Q)1\/I) Vo € ,D(QT)M‘

T

Since {wy : ¢ € D(Qr)M} is dense in LP(0,T, W, P (2)M n L2 (£2)M), we conclude
that d;u belongs to L¥ (0, T; (WhP(2)M n LE(2)M)").
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STEP 3. We consider a sequence v, € D(Qr)M such that w,, and d;(wi,,)
converge to u and diu in

LP(0, T; Wy ()M n LE()M)  and LY (0,T; (WP ()M n LE (M),

respectively. Such sequences exists by corollary 3.3. Then, for n, m € N, we define
T € LP(0, T; WP (2)M N LP(£2)M) as the solution of

G (t) € WP ()M N LB (2)M,
/ (D, (t)) : Dv dx—l—/ Fo (G, n(t))vdpsy,
2 2

+ m/ﬂ[ﬂmn(t) — Wy () v dz =0,

Yo e WoP()MnLk ()M ae te(0,T).

STEP 4. Let us prove some properties of . Taking @, n — wptn, as a test
function in (4.4), the properties of a,, and F,, easily imply that

[ 1Dt dz [ i) i
e} 2
2

o( [ o as+ [ 1Vl s+ [ om0 au

a.e. t € (0,7).
(4.5)

Thus, for a.e. t € (0,T) and every m € N, there exists a subsequence of n (which
depends on ¢ and m) such that iy, ,(t) converges weakly in W, ?(£2)™. But, using

theorem 3.4, we conclude that it is not necessary to extract such a subsequence and
that, defining @, € L?(0,T; Wy* (2)M N LP(£2)M) as the solution of

i (t) € Wo (M 0 LE()Y,

/Qa(Dﬁm(t)):DvdaH—/ F (@, (t))vdp

(4.6)
+ m/ [ () — Wy (B)]v dz = 0,
Vv e WP (2)M N LE (82, RM) a.e. t € (0,7),
we have
T (1) = T (t)  in Wy P(2)M (4.7)

for every m € N and a.e. t € (0,7). In particular, by the Rellich-Kondrachov
compactness theorem,

Umon(t) = Um(t) in LP(Q)M VYmeN ae.t€(0,7), (4.8)
and thus

/ [T, n ()P dzz — / lim (t)Pdz Vm €N ae. t€ (0,7).
2 2
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By (4.5) and the Poincaré inequality, we also have
[ttt <o [ @l s [ 9ml des [ ol a, ).
Q Q Q Q

Since h(z) € L (£2), the norm of w, in Wy?(£2)N L% (£2) is bounded and ¢,
belongs to D(§2), we deduce that, for every m € N, the second term of this inequality
is bounded independently of n and ¢t. So we can apply the Lebesgue convergence
theorem to deduce that

/ iy nl? dzdt — [ [iiy]? devdlt,
T Qr

which implies that
U = Uy, 0 LP(Qr) Vm € N. (4.9)

Using (4.7) and the Lebesgue convergence theorem as above, we have
T — U in LP(0, T3 Wy P (2)M). (4.10)
Using the properties of a and F, it is also easy to check that
G — u in LP(0, T; Wy P(2)M 1 LB (2)M). (4.11)
On the other hand, defining ,, , € LP(0, T; W1P(£2)M) as the solution of
T nt) € W (2),

/ an (Dl n(t)) : Dvde :/ a(Diy(t)) : Dvdx, (4.12)
7 7

Yo € WyP ()M ae. t €(0,T),
we deduce by (3.5) that

lim sup /Q | D (G (t) = Umyn (1) = U, (£) + U o (7)) |P da

n—oo

) C(/”(mm(m : lam(r)')pd“fw)/(m} (/Q i (1) — il ()P du>1/(“)
(4.13)

for every m € N ace. t,r € (0,7).

Taking tm,n(t) — @mn(r) as a test function in the difference of the problems
satisfied by @, p(t) and @y, »(r), passing to the limit in n and using the properties
of a,, and a, we also deduce that there exits [ € LP({2) such that

lim sup (/Q | D (T (£) = U (7)) P dm)

(p—1-0)/(p—0)
< C’(/Q(l(x) + [ D (t)] + [ D (r)])? dx)

X ( /Q |D(ﬁm(t)—ﬂm(r))|pdm>l/(pU) (4.14)
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for every m € N a.e. t,r € (0,T). From (4.9), (4.13) and (4.14), we conclude that

lim sup (/Q | D (@ 7 (t) = G ())|P da + /Q [T, (t) = Ui, (7)]P dun>

(p—1-0)/(p—0)
< C’(/Q(l(m) + | Dy, (t)] + | Dty (r)])? dm)

X (/Q | D (i (£) = g (r))|? dx>1
" C(/Q(Wm(t)l + [ (7)])? du>(p10>/<pa>

x ( /Q |ﬁm(t)—ﬂm(r)|pdu>1/(pg) (4.15)

/(p—o)

for every m € N a.e. t,r € (0,7).

STEP 5. Let us now prove that, for every R < T', we have

lim sup lim sup (/ | D (tn, (£) = ()P dmdt—l—/ [, (£) = T (£) [P dundt> =0.

m— o0 n—oo R R
(4.16)

We consider ¢ € C1[0,T] such that ¢ = 1in [0, R], { = 0in [$(R + T),T), ¢ decreas-
ing. For 0 <t < 2(R+1T),0<s < 3(T — R), we take (uy(t) = tm,n(t + ))¢(t) as
a test function in the difference of (1.5) and (4.4), and get

T
/O (Optun, (), U, (t) = U (t + 8))C(¢) dadt
+ / p (Dup (t), Dy o (t + 5))¢(¢) dadt
+ / Ey(n (t), @i (t + 8))C(t) dupdt

-m [am,n(t + S) - wnwm(t + 8)]
X (U, (£) = Um,n(t + $))C(t) dzdt
T
- / Fu0), tn(t) — (£ + ))C(0) . (4.17)

Integrating with respect to s between zero and 1/m, multiplying by m and denoting

1/m
Umn(t) = m/ Um,n(t + 5) ds,
0

the above inequality gives
T ~
/ (Opun, (), un (£) = Um,n (t))C(t) dadt
0

/m
+ am/ol /T |D(tp (t) = T, (t + 5))[PC(t) dedtds
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1/m
+am / / | () = T, n (t + 8)|PC(t) dundtds
0 T

1/m
—m2 U s) —w s
/O /T[ ot 4 ) — Wnthm (¢ + 5)]
% (tn() — it + 5))C(¢) dardtds

T ~
S / (fn(t), un(t) = tim,n())C(t) dt.
0
(4.18)

Let us now pass to the limit in (4.18), first in n and then in m.
For the first term of (4.18), we use

T
/O (Brtin ()t (£) — o (1)) (1) It

:_%/Q |un (£)12¢ (¢) dadt

T

m | Un () (am,n (t + %) - am,n(t)> C(t) dzdt

+ / U () Ui (£)C (8) dadt.  (4.19)

T

Taking into account the weak lower semicontinuity for the weak convergence in
L?(Q7) of the function

v— — lv|2¢(t) daxdt
Qr
and (4.9), we easily get from this equality that

T ~
liminf/O (Opun, (), un (t) = tm, o (t))C(t) dadt

n—oo

> -1 /Q RECRIOE

wm ul(t) (am (t + %) - am(t)> ¢(t) dadt
+/ ()l ()¢ (t) dadt,  (4.20)

T

where we have denoted
5 1/m
U, (1) :m/ U (t + 5) ds.
0
For the second and third terms of the left-hand side of (4.18), we use

/ | D (tn, (£) = T, (2))|P dadt —|—/ [tn, (£) = Tmn (8)|P dpupndt

R R

1/m
< C’m/o / D (un(t) — i (£ + $))IPC (1) drdtds
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1/m
+ Cm/ / |D (g (t + 8) — . (1)) |PC(t) dadtds
0 T
1/m
+Cm / / () = i (£ + 8)[PC (1) dptndids
0 T
1/m
+ Cm/ / [T (t+ S) = Um,n (8)|PC(t) dpndids.
0 T
(4.21)

Taking into account (4.15) and (4.5), we can apply the Lebesgue dominated con-
vergence theorem to deduce

1/m
lim sup (/ / | D (T (t + 8) = Uy (8))|PC(2) dzdtds
0 T

n—oo

1/m
+ / / |am,n(t+s)—am,n(t)wdung(t)dtds)

1/m (p—1-0)/(p—0)
C’/ / (/ | D, ( t+s)|—|—|Dum()|)pdm>

y ( / D (i (t + 5) — ()P dx)l/(pg) dtds

+C/1/m/ (/ | (£ + 8)| + | (¢ )|)pdm>(plg)/(pg)

« ( /Q i (4 5) — i ()7 du>1/(pg) dtds
(4.22)

for every m € N.
For the fourth term of (4.18), we use (4.9), which implies

n—oo

1/m
lim / [, (t + 8) = Wathm (t + 8)](Un(t) = U n(t + 5))((t) dedtds

’ 1/m
=/O / [l (t + 8) — Wi (t + 8)](w(t) = Um(t + 5))¢(t) dedtds
(4.23)

for every m € N and every € > 0.
Using (4.20), (4.21), (4.22), and (4.23), we can pass to the limit in (4.18) in n to
obtain

1

-1 /Q )¢ () daat
+m o u(t) (am (t + %) — am(t)> ¢(t)dzdt + / ) w(t) Ty, (£)C' () dadt
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+ lim sup (/ | D (tn,(t) = G, (1)) P dadt
R

+/ [t (£) = T, ()P dundrt>
R

—m? /1/m / ) [T (t 4 8) — Wi (t+ 8)](w(t) — T (t + 5))¢(2) dadt

1/m (p—1-0)/(p—0)
C’m/ / (/ | Dty (t 4 8)| + | Dt (t )|)pdx>

« ( / |D(ﬁm(t+s)—ﬂm(t))|pdm>1/(p ” duds

1/m (p—1-0)/(p—0)
—|—C’m/ /(/ |umt+s)|+|um()|)pdu>

1/(p—o)
« ( / fiim (£ + 5) — ﬂm(t)|pdu> dtds
2

T
4 / U u(t) — i (DG () dt (4.24)
0

for every m € N. Let us now pass to the limit in (4.24) when m tends to infinity.

First, we remark that equation (4.11) implies that Uy, converges to u in
LP(0,T; Wy (2)M N LF(£2)M), and then it is easy to check that the third term
in the left-hand side of (4.24) tends to fQT u(t)?¢’(t) doedt and that the right-hand
side of (4.24) tends to zero. For the fifth term on the left-hand side of (4.24), we
use that ., satisfies (4.6) and (4.11), then we get

1/m
m2/0 /T[ﬁm(t+s) — wom(t + )] () — m(t + 5))C (1) dadds
e 2) o2
- /Ol/T F(am (t+ %)) (u(t) - am(t+ %))C(t) dudtdr

It remains to pass the limit in the second term of (4.24). We use
m u(t) (ﬂm (t + i) - ﬁm(t)> ¢(t) dadt
Qr m
=m u(t) (ﬂm(t—i—l) — Wihyy, (t—l—i))C(t) dzdt
Qr m m
+m u(t) (wz/;m (t + l) - wz/Jm(t)> ¢(t) dadt
Qr m

+m | W(t) (Wi (£) — i (£))C(£) ddt. (4.25)
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Using (4.6) as above, the first and third terms of the right-hand side of (4.25)
tend to zero. For the second term, we have

m ul?) (wwm (t + %) - wz/zm(t)>C(t) dadt

_ /Ol/Twatz/;m (t+%>((t)u(t) dedtdr. (4.26)

So, since wdy iy, converges to dyu in L¥' (0, T; (WHP(2)M N LE(2)M)'), we get
1 T
m u(t) (ﬂm (t—l——> —ﬂm(t)>C(t) dxdt—>/ (u';u)C(t) dt
Qr m 0
_ —%/ ()¢ () dad.

Thus, from (4.24), we conclude (4.16).

STEP 6. To finish the proof of theorem 4.1, all that is left to show is that u sat-
isfies (4.1). For ¢ € D(Q7)M, we take w,¢ as a test function in (1.5). Then we
get

—/ unwnatcpdmdt—i—/ an(Duy,) : D(wyp) dedt
T T

T
[ Fatwn)wag dindt = [ (oo dode. - (4.27)
T 0
Since w,, converges weakly in I/VO1 P(2) to w, we have

—/ Uy Wy Opp dadt — — w0y (we) dedt
T Qr

and

T T
0 0

From step 5 and the properties of a,, and F;,, we have

nhﬂrgo (/ an(Duy,) : D(w,e) dxdt—l—/

T T

= lim lim (/ an (Dl n) : D(wpep) dxdt—l—/ Fn(ﬁm,n)wngodundt)

m—0o0 N—00
T T

but taking wye as a test function in (4.4), and using (4.10), (4.11) and (4.6), we

get
lim lim (/ an (Dl ) : D(wnep) dxdt—l—/ Fo (,n ) wnep dundt>
m—00 N—00 T T

:/ a(Du) : D(wyp) dxdt—l—/ F(u)we dudt.
Qr

T
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Thus we deduce that

/ (Oru, we) dt+/ a(Du):D(wgp)dxdt—i—/ F(u)wgpdudt:/OT(f,wgo)

T T T

for every ¢ € D(Q7)M. In order to show that u is the solution of (4.1), since
the space {we : ¢ € D(Q7)M} is dense in LP(0, T, Wy *(2)M N LE(2)M), it only
remains to prove the condition u(z,0) = 0 in {2. To this end, we take u, as a test
function in (1.5) in Q@ for s > 0. We get

%/Q|un(s)|2dx:—/OS/Qa(Dun(t)):Dun(t)dmdt
[ P @ama+ [ Ga0.00)a

Integrating this inequality in s between 0 and ¢, we get

[ P asas == [ [ aDu(0): Dunle)e — 0 doa
- ) | Plun®)ua)(e = ) dpte

/ (alt) un(£)) (e — £) . (4.28)

By step 5, it is easy to check that

nhﬂrgo (/OE /Q an, (Dun(t)> : Duy (t)(e — t) dadt
/0 /Q F,(u un (t)(e — 1) dundt>
= mlgnoo nhi& /OE /Q an, (Dum n( > Ditpy, (1) (e — t) dzdt
[ i @)inn(oe -1 dundt)
:/OE/Qa(Du(t ) : Du(t)(e — t) dxdt+/ / t)(e —t)dudt.

So we can pass to the limit in (4.28) to conclude that

//|u )2 dzds < hnniloléf/a/ [, (s)|* dzds
= ——/ / (Du(t)) : Du(t)(e —t) dadt
——/ / t)(e —t) dpdt

+1 / (e — (£ (8), u(t)) dt,

€ Jo
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which implies that

/|um0|2dx—hm //|ums|2dmds—0

This completes the proof of theorem 4.1. O

REMARK 4.2. We have also proved in theorem 4.1 that

Duy, ~ Dity,  in LP(0,T; Wy P (2)M).

This means that we can obtain a corrector for the parabolic problem from the
corrector given in [1] for the elliptic one.
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