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Abstract. Nonlinear z-independent solutions to a generalized Grad–Shafranov equa-
tion (GSE) with up to quartic flux terms in the free functions and incompressible
plasma flow non-parallel to the magnetic field are constructed quasi-analytically.
Through an ansatz, the GSE is transformed to a set of three ordinary differential
equations and a constraint for three functions of the coordinate x, in Cartesian
coordinates (x, y), which then are solved numerically. Equilibrium configurations
for certain values of the integration constants are displayed. Examination of their
characteristics in connection with the impact of nonlinearity and sheared flow
indicates that these equilibria are consistent with the L–H transition phenomenology.
For flows parallel to the magnetic field, one equilibrium corresponding to the H
state is potentially stable in the sense that a sufficient condition for linear stability is
satisfied in an appreciable part of the plasma while another solution corresponding
to the L state does not satisfy the condition. The results indicate that the sheared
flow in conjunction with the equilibrium nonlinearity plays a stabilizing role.

1. Introduction
For axisymmetric toroidal plasma equilibria, the force–
balance equation and Maxwell’s equations reduce to the
Grad–Shafranov equation (GSE) for the poloidal mag-
netic flux function ψ (Grad and Rubin 1958; Shafranov
1958). Analytical solutions to the GSE are obtained
by specifying the plasma pressure and poloidal current
functions of ψ, usually in such a way as to linearize
the resulting partial differential equation (e.g. Solovév
1968; Herrnegger 1972; Maschke 1972; Berk et al.
1981; Mc Carthy 1999; Weening 2000; Yavorskij et al.
2001; Atanasiu et al. 2004; Cerfon and Freidberg 2010;
Srinivasan et al. 2010). Analytical solutions to the GSE
are very useful for theoretical studies of plasma equi-
librium, stability and transport as well as benchmarks
for numerical codes (Mukhopadhyay 2000). Also, it has
been established in a variety of magnetic configurations
that sheared flows can reduce turbulence and produce
transport barriers, which under certain conditions can
extend to the whole plasma (e.g. Terry 2000). In view of
a fusion reactor, the spontaneous formation of transport
barriers, i.e. those driven by internal processes even
in the absence of external sources, is of particular
interest. For this reason among others, stationary equi-
libria with plasma flow have been extensively studied
on the basis of generalized GSEs (e.g. Mashke and
Perrin 1984; Clemente and Farengo 1984; Greene 1988;
Throumoulopoulos and Pantis 1996; Throumoulopoulos
and Tasso 1997, 2010, 2012; Goedbloed and Lifschitz
1997; Tasso and Throumoulopoulos 1998; Betti and

Freidberg 2000; Simintzis et al. 2001; Krasheninnikov
et al. 2002; Poulipoulis et al. 2005; Throumoulopoulos

et al. 2006, 2008, 2009; Apostolaki et al. 2008; Khater
and Moawad 2009; Kuiroukidis 2010; Kuiroukidis and

Throumoulopoulos 2011, 2012; Tsui et al. 2011; Shi
2011). In particular, although complex numerical codes

are extensively used to attempt simulations of the L–H

transition, certain equilibrium considerations in connec-
tion with this transition are helpful (e.g. Ilgisonis and
Pozdnyakov 2004; Solano 2004; Garcia and Giruzzi
2010; Tsui and Navia 2012).

The simplest known and widely used in various stud-

ies, analytical solution to the GSE, is the Solovév equilib-

rium (Solovév 1968). Extension of the original Solovév

solution, to include the possibility of sheared flows
appeared in Simintzis et al. (2001). In other extensions

additional free parameters were introduced to construct
configurations with fusion relevant plasma boundaries
and desirable values of confinement figures of merit as
the safety factor on magnetic axis (Cerfon and Freidberg
2010; Srinivasan et al. 2010; Throumoulopoulos and
Tasso 2012). Most of the solutions are associated with
pressure and current profiles, including up to quadratic
terms in the flux function ψ to linearize the result-
ing equation (Solovév 1968; Herrnegger 1972; Maschke
1972; Berk et al. 1981; Mc Carthy 1999; Weening 2000;
Yavorskij et al. 2001; Atanasiu et al. 2004; Cerfon
and Freidberg 2010; Srinivasan et al. 2010). Linear
equilibria with flow were constructed in (Clemente and
Farengo 1984; Mashke and Perrin 1984; Greene 1988;

https://doi.org/10.1017/S0022377812000918 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377812000918


258 Ap. Kuiroukidis and G. N. Throumoulopoulos

Throumoulopoulos and Pantis 1996; Goedbloed and
Lifschitz 1997; Throumoulopoulos and Tasso 1997, 2012;
Tasso and Throumoulopoulos 1998; Betti and Freidberg
2000; Simintzis et al. 2001; Krasheninnikov et al. 2002;
Poulipoulis et al. 2005; Throumoulopoulos et al. 2006,
2008; Apostolaki et al. 2008; Khater and Moawad 2009;
Kuiroukidis 2010; Kuiroukidis and Throumoulopoulos
2011, 2012; Tsui et al. 2011; Shi 2011,and references cited
therein). Also, the nonlinear translational symmetric
equilibria of ‘cat eyes’ and counter-rotating vortices
with flow parallel to the magnetic field were studied in
Throumoulopoulos et al. (2009) and Throumoulopoulos
and Tasso (2010). These nonlinear equilibria, however,
are periodic in one direction (x) and therefore the plasma
is not bounded along this direction.

In most of the above cases, the axisymmetric equi-
libria are obtained as separable solutions of GSE. A
novel non-separable class of solutions was found in
Kuiroukidis (2010) describing up-down symmetric
configurations with incompressible flows parallel to
the magnetic field and it was extended recently to
include asymmetric configurations (Kuiroukidis and
Throumoulopoulos 2011) and flows of arbitrary dir-
ection (Kuiroukidis and Throumoulopoulos 2012). For
non-parallel flows, the question of the stability is usually
not considered and this is partly due to the difficulty
of the subject and the absence of a concise criterion.
Few sufficient conditions for linear stability are available
only for parallel flows (Friedlander and Vishik 1995;
Vladimirov and Ilin 1998; Throumoulopoulos and Tasso
2007). In previous studies, we found that the stability
condition of Throumoulopoulos and Tasso (2007) is not
satisfied for the linear equilibria of Apostolaki et al.
(2008) and Throumoulopoulos and Tasso (2012) while
it is satisfied within an appreciable part of the plasma
for the nonlinear equilibria of Throumoulopoulos et al.
(2009) and Throumoulopoulos and Tasso (2010). This
led us to the conjecture that the equilibrium nonlinearity
may act synergetically with the sheared flow to stabilize
the plasma.

The aim of the present study is to construct certain
two-dimensional nonlinear up-down symmetric equilib-
ria with incompressible flow of arbitrary direction in
z-independent geometry. They are more pertinent to
a magnetically confined plasma than those of Throu-
moulopoulos et al. (2009) and Throumoulopoulos and
Tasso (2010) because the plasma is bounded on the
poloidal plane. Another reason for considering transla-
tional symmetry is the many free physical and geomet-
rical parameters involved in connection with the flow
amplitude, direction and shear, equilibrium nonlinearity,
symmetry and toroidicity. Thus, in the presence of non-
linearity, one first could exclude toroidicity. The study
is performed quasi-analytically through a non-separable
ansatz under which the GSE is transformed to a set
of three ordinary differential equations and a constraint
for three functions. The solutions give nested magnetic
surfaces and their characteristics are studied by means

of certain equilibrium quantities and confinement figures
of merit as the safety factor, electric field and E × B
velocity shear. Also, for parallel flows the linear stability
is considered by means of the aforementioned sufficient
condition (Throumoulopoulos and Tasso 2007). The res-
ults are in qualitative agreement with phenomenological
characteristics of an edge transport barrier, confirm
relevant scenarios (Terry 2000; Simintzis et al. 2001)
and support the above conjecture.

The organization of the paper is as follows. In the
first section, we briefly review the general setting for
the equations of incompressible flow with translational
symmetry together with the generalized GSE. In Sec. 2,
the proposed ansatz and the resulting equations are
presented, which then are integrated numerically. In
Sec. 3, we consider the solutions for certain values of
the various parameters and integration constants and
discuss the most important equilibrium properties. In
Sec. 4, the criterion for linear stability is applied to
the equilibria constructed for parallel flows. Section 5
summarizes the study and briefly proposes potential
extensions.

2. Translational symmetric equilibria
with flow

The equilibrium of a cylindrical plasma with incompress-
ible flow and arbitrary cross-sectional shape satisfies the
equation (Throumoulopoulos and Tasso 1997; Simintzis
et al. 2001)

(
1 −M2

p

)
∇2ψ− 1

2

(
M2

p

)′
|∇ψ|2 +

d

dψ

(
μ0Ps +

B2
z

2

)
= 0

(1)

for the poloidal magnetic flux function ψ. Here, Mp(ψ),
Ps(ψ), ρ(ψ) and Bz(ψ) are respectively the poloidal
Alfvén Mach function, pressure in the absence of flow,
density and magnetic field parallel to the symmetry
axis z, which are surface quantities. Because of the
symmetry, the equilibrium quantities are z-independent
and the axial velocity vz does not appear explicitly in
(1). Derivation of (1) is based on the following two steps.
First, express the divergence-free fields in terms of scalar
quantities as

B =Bz∇z + ∇z × ∇ψ,

μ0j = ∇2ψ∇z − ∇z × ∇Bz,

ρv = ρvz∇z + ∇z × ∇F,

and the electric field by E = −∇Φ. Second, project the
momentum equation, ρ(v · ∇)v = j × B − ∇P , and Ohm’s
law, E + v × B = 0, along the symmetry direction z, B
and ∇ψ. The projections yield four first integrals in the
form of surface quantities (two out of which are F(ψ)
and Φ(ψ)), Eq. (1) and the Bernoulli relation for the
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pressure

P = Ps(ψ) − 1

2μ0
M2

p (ψ)|∇ψ|2. (2)

Because of the flow, P is not a surface quantity. Also,
the density becomes surface quantity because of incom-
pressibility and M2

p (ψ) = (F
′
(ψ))2/(μ0ρ). Five of the

surface quantities, chosen here to be Ps, ρ, Bz, M
2
p and

vz , remain arbitrary.
Using the transformation

u(ψ) =

∫ ψ

0

[
1 −M2

p (g)
]1/2

dg,
(
M2

p < 1
)
, (3)

Equation (1) is transformed to

∇2u+
d

du

(
μ0Ps +

B2
z

2

)
= 0. (4)

Note that transformation (3) does not affect the mag-
netic surfaces, it just relabels them. Equation (4) is
identical in form with the static equilibrium equation.
In the present study, we assign the free-function term in
(4) as(

μ0Ps +
B2
z

2

)
= c0 + c1u+ c2

u2

2
+ c3

u3

3
+ c4

u4

4
,

(5)

where c0, c1, . . . , c4 are free parameters.

3. Proposed ansatz
We use (5) into (4), employ the ansatz

u =
N1(x)y

2 + f(x)D0(x)

y2 + D0(x)
, (6)

and equate the nominator of the resulting equation to
zero. From the y6 terms, we obtain (a prime denotes
derivative with respect to x)

N
′′

1 + c1 + c2N1 + c3N
2
1 + c4N

3
1 = 0. (7)

From the y0 terms, we obtain the constraint Cs = 0,
where

Cs = 2(N1 − f) + D0[c1 + c2f + c3f
2 + c4f

3] (= 0) .

(8)

The y4 and y2 terms, after rearrangement, yield

f
′′
+ 2(N1 − f)

(
D

′

0

D0

)2

− 8(N1 − f)

D0
+ c4(N1 − f)3 = 0

(9)

and

D
′′

0 + 2
(N

′

1 − f
′
)

(N1 − f)
D

′

0 + 2
(D

′

0)
2

D0
− 6

+ c3D0(N1 − f) + 3c4D0N1(N1 − f) = 0. (10)

Equation (7) is solved using the tanh method (Malfliet
2004), a method of solving nonlinear differential equa-
tions, which was also employed in Khater and Moawad
(2009). We have two solutions. The first is N1(x) =
a0 + a1 tanh(vx), where

c1 + c2a0 + c3a
2
0 + c4a

3
0 = 0,

c2 + c3(2a0) + c4(3a
2
0) = 2v2,

c3 + c4(3a0) = 0,

c4
(
a2

1

)
= −2v2, (11)

and the second is N1(x) = a0 + a1/cosh(vx), where

c1 + c2a0 + c3a
2
0 + c4a

3
0 = 0,

c2 + c3(2a0) + c4
(
3a2

0

)
= −v2,

c3 + c4(3a0) = 0,

c4
(
a2

1

)
= 2v2. (12)

4. Solutions and equilibrium properties

We have solved numerically (8)–(10). Using the first
of the solutions for N1, namely the tanh solution, we
obtained the equilibrium of Fig. 1. We have used a0 =
1.1, a1 = 2.5, v = 0.6 and in (5) c0 = 2.588, c1 = −0.638,
c2 = 0.302, c3 = 0.38, c4 = −0.115. The boundary flux
surface corresponds to ub = 0.11 while on the magnetic
axis ua = 0. The constraint was kept close to zero for the
whole of the integration process and we got an average
value of |Cs| equal to 0.10. Given the nonlinearity
and complexity of the method, this implies that the
solution is indeed acceptable. Simple quadratic fitting

x

y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 1. (Colour online) Equilibrium 1. The bounding flux
surface corresponds to ub = 0.11, with ua = 0, for the magnetic
axis. For this equilibrium the average value of |Cs| is 0.10.
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Figure 2. (Colour online) Equilibrium 2. The bounding flux
surface corresponds to ub = −0.05, with ua = 0, for the magne-
tic axis. For this equilibrium the average value of |Cs| is 0.10.

gives

f = 1.272x2 + 0.049x+ 0.001 and D0 = 1.488x+ 3.3.

Using the second of the solutions for N1, namely the
cosh solution, we obtained the equilibrium of Fig. 2.
We have used a0 = 1.0, a1 = −1.6, v = 1.15 and in
(5) c0 = 2.588, c1 = 0.289, c2 = 1.777, c3 = −3.099,
c4 = 1.033. The boundary flux surface corresponds to
ub = −0.05 while on the magnetic axis ua = 0. The
constraint was kept close to zero for the whole of the
integration process and the average value of |Cs| was
0.10. Simple quadratic fitting gives

f = −0.542x2 + 0.009x and D0 = 0.994x2 + 3.3.

Here instead of the velocity vz we have used the axial
Mach function, M2

z (u) = v2z /(B
2
z /(μ0ρ), and the approx-

imation M2
z ≈ M2

p = (F
′
)2/(μ0ρ) in relation to the

tokamak scaling Bp ≈ 0.1Bz and vp ≈ 0.1vz . In addition,
to completely construct the equilibrium we have made
the following choices:

M2
p =Cp(u− ub)

n(ua − u)m, (13)

Cp =Mpa

[
m(ua − ub)

m+ n

]−m [
n(ua − ub)

m+ n

]−n
,

M2
z =Cz(u− ub)

n(ua − u)m, (14)

Cz =Mza

[
m(ua − ub)

m+ n

]−m [
n(ua − ub)

m+ n

]−n
,

B2
z =B2

z0

[
1 − γ

(
1 − u

ub

)]
, (15)

ρ= ρa

(
1 − u

ub

)λ

, (16)

for the poloidal Mach function, axial Mach function,
axial magnetic field and density, respectively, with Bz0 =
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x

M 2
p

Mpa = 0.1

Figure 3. (Colour online) L–H transition-like Mach function
in connection with (13) with n = 1 and a maximum localized
at a distance from the boundary as large as one-tenth of the
minor radius.
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Figure 4. (Colour online) Typical diamagnetic axial magnetic
field profile normalized with respect to the value at the
magnetic axis in connection with (15).

2.24 T, ρa = 4 × 10−7 Kgr m−3, γ = 0.02, ua = 0,
ub = 0.11 W m2 (with the subscripts a and b indicating
the magnetic axis and boundary, respectively), λ = 0.5,
m = 9n and Mza = 1.1Mpa with various values of the
parameters Mpa and n. Here, (13) and (14) can describe
Mach functions localized in the edge plasma region in
connection with the L–H transition (in particular, flows
localized nearly in one-tenth of the exterior plasma will
be considered as shown in Fig. 3); (15) represents a
diamagnetic Bz(u) (Fig. 4). Then, (2) and (5) imply a
pressure peaked on axis (Fig. 5).

Furthermore, we have examined certain equilibrium
characteristics by means of the safety factor, magnetic
shear, axial current density, radial electric field and E×B
velocity shear, and found the following results.

https://doi.org/10.1017/S0022377812000918 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377812000918


Nonlinear translational symmetric equilibria 261

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
P0

Mpa = 0.1

Figure 5. (Colour online) Pressure profile at y = 0 for
Equilibrium 1 with P0 = 1.6 × 105 Pa.
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Figure 6. (Colour online) Safety factor for the solution of
Equilibrium 1.

1. The safety factor for both solutions shown in
Figs 6 and 7 is slightly affected by the flow. Also,
the flow slightly affects the magnetic shear given
by s(u) = 2(V/q)(dq/dV ), as can be seen in Fig. 8
for Equilibrium 1. A similar plot holds for Equili-
brium 2.

2. The radial electric field for the two solutions has
an extremum in the edge region which increases
with the flow (Figs 9 and 10). The position of the
extremum, however, is nearly unaffected by the flow.
These characteristics are indicative that the solutions
may be relevant to the L–H transition as discussed
in Simintzis et al. (2001), where a similar behavior
of the electric field was found (Fig. 3 therein).

3. The E × B velocity shear, which is believed to play
a role in the transitions to improved confinement
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5
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15

20

u

q
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Mpa = 0.1
Mpa = 0.5

Figure 7. (Colour online) Safety factor for the solution
of Equilibrium 2. Note that the outer boundary surface
corresponds to u = −0.05 while the magnetic axis to
u = −0.005.
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Figure 8. (Colour online) Magnetic shear for the solution of
Equilibrium 1. It is slightly affected by the presence of the
flow. A similar plot holds for Equilibrium 2.

regimes of magnetically confined plasmas, is given
by

ωE×B =

∣∣∣∣ ddr
[
E × B

B2

]∣∣∣∣ , (17)

where r is the length variable normal to the magnetic
surfaces. For Equilibrium 1 it is plotted in Fig. 11;
a similar plot holds for Equilibrium 2. Here, ωE×B
is increased by the flow in the edge region outer
from the local minimum while it remains nearly
unaffected in the central region. This is another
indication supporting the relevance of the solutions
to the L–H transition.
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Figure 9. (Colour online) Normalized electric field with respect
to E0 = 280 kVm−1 for the solution of Equilibrium 1. The
extremum of the electric field increases with flow; the position
of the extremum however is not significantly affected by it.
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Figure 10. (Colour online) Electric field for the solution of
Equilibrium 2. The extremum of the electric field increases with
flow; the position of the extremum however is not significantly
affected by it.

4. The flow makes the axial (‘toroidal’) current density
profile hollow as shown in Fig. 12 for Equilibrium 1.
(A similar jtor profile is found for Equilibrium 2.) The
larger the flow the stronger is the hollowness. Hollow
jtor profiles are usually related to the formation of
internal transport barriers in tokamaks. However, in
spite of this characteristic and the fact that ωE×B
becomes maximum on the magnetic axis (Fig. 11), it
is unlikely that the present equilibria are related to
internal transport barriers because the safety factor
is monotonically increasing from the magnetic axis
to the plasma edge (Figs 6 and 7). According to
observations in tokamaks, e.g. de Vries et al. (2009)
for Joint European Torus (JET) and Shafer et al.
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Figure 11. (Colour online) The E × B velocity shear, for the
solution of Equilibrium 1. It increases slightly with the presence
of flow in the edge region. A similar plot holds for Equili-
brium 2.
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Figure 12. (Colour online) Axial current density in MA as
a function of the flow parameter Mpa, for the solution of
Equilibrium 1. As the flow increases, a hollow profile in the
core of the equilibrium appears and it becomes larger for
larger values of the flow.

(2009) for Doublet III-D tokamak (D III-D), it
is the reversed magnetic shear that plays a role
in triggering the Internal Transport Barrier’s (ITB)
development. Also, as can be seen in Figs 6 and 7,
the flow makes the central q values lower.

5. Stability consideration

We now consider the important issue of the stability of
the solutions constructed in Sec. 4 with respect to small
linear magnetohydrodynamic perturbations by applying
the sufficient condition of Throumoulopoulos and Tasso
(2007). This condition states that a general steady state
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of a plasma of constant density and incompressible
flow parallel to B is linearly stable to small three-
dimensional perturbations if the flow is sub-Alfvénic
(M2 < 1) and A � 0, where A is given below by (18).
Consequently, using henceforth dimensionless quantities,
we set ρ = 1. Also, for parallel flows (v = MB), it holds
Mp ≡ Mz ≡ M. In fact, if the density is uniform at equi-
librium, it remains so at the perturbed state because of
incompressibility (Tasso and Throumoulopoulos 2012).
In the u space for axisymmetric equilibria, A assumes
the form

A= −ḡ2

⎡
⎣ (j × ∇u) · (B · ∇)∇u

+

(
M2

p

2

)′

|∇u|2(
1 −M2

p

)3/2

⎧⎨
⎩ ∇u · ∇(B2/2)

+ ḡ
|∇u|2(

1 −M2
p

)1/2

}]
(18)

with

ḡ :=
P

′
s (u) −

(
M2

p

)′
B2/2

1 −M2
p

.

The symbolic computation of A over a wide rage of
parametric values led to the following results:

1. Equilibrium 1 is not satisfied, since A < 0 every-
where, while Equilibrium 2 is satisfied in an appre-
ciable part of the plasma region. However, it is noted
that since the stability condition is necessary, A < 0
does not imply that an equilibrium is unstable. An
example of the sign of A for Equilibrium 2 is given in
the three-dimensional plot of Fig. 13. Also, profiles
of A in the middle-plane y = 0 for a static and a
stationary equilibrium are shown in Fig. 14.

2. Increase of Mpa makes A more positive in the edge
region as can be seen in the example of Fig. 14. A
similar impact on A has the flow shear parameter n
(13), as can be seen in Fig. 15, showing the profile
of δA = A(y = 0, n = 2) − A(y = 0, n = 1).

3. The equilibrium nonlinearity in connection with the
parameters c3 and c4 has a stabilizing effect in the
edge region as shown in the example of Fig. 16,
which plots the profile of the difference δA between
a nonlinear and a linear Equilibrium 2.

According to the above results and the belief that the
sheared flow is developed during the L–H transition, we
conjecture that a static Equilibrium 1 could correspond
to the L state and a stationary Equilibrium 2 with
E × B/B2 velocity shear to the H state. In a quasi-
static evolution approximation, the plasma could then
evolve through successive states with increased sheared
flow (increasing values of the parameters Mpa and Mza
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Figure 13. (Colour online) Stability function for the solution of
Equilibrium 2. For most part of the equilibrium it is positive
and assumes negative values only in the core of the equilibrium.
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Figure 14. (Colour online) Plot of the stability function A,
at y = 0, for the second equilibrium for non-zero values
of the nonlinearity parameters c3 = −3.099 and c4 = 1.033.
Increasing the flow parameter Mpa appears to improve stability
for most part on the middle-plane except for the center of the
equilibrium.

and most importantly increasing values of the shearing
parameters m and n).

6. Summary
Two classes of solutions of nonlinear two-dimensional
magnetohydrodynamic equilibria for bounded magnetic-
ally confined plasmas with sheared incompressible non-
parallel flows have been constructed in cylindrical (z-
independent) geometry. The equilibria hold for four
arbitrary surface functions which were chosen to be
the plasma density, axial Mach function, poloidal Mach
function and static pressure.

After assigning the free functions, a systematic ex-
amination of equilibrium quantities and confinement
figures of merit, as the safety factor, electric field and

https://doi.org/10.1017/S0022377812000918 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377812000918


264 Ap. Kuiroukidis and G. N. Throumoulopoulos

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

δ A

Figure 15. (Colour online) Plot of the deference δA = A(n = 2)
−A(n = 1) for c3 = −3.099, c4 = 1.033 and Mpa = 0.1
clearly indicating that the stability is improved (δA > 0) at
the external part of the middle-plane y = 0 as the flow-shear
parameter n increases. The dotted line represents the x-axis.
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Figure 16. (Colour online) Plot of the profile δA = A(c3 =
−3.099, c4 = 1.033) − A(c3 = c4 = 0) at y = 0 indicating that
the nonlinearity has a stabilizing effect (δA > 0) in the edge
region.

E × B velocity shear for a variety of parametric values,
implies that the equilibrium characteristics are qual-
itatively consistent with experimental evidence of the
L–H transition. In addition, application of a sufficient
condition for linear stability and parallel flow indicates
that one stationary equilibrium being potential stable
may describe the H state and another static equilibrium
not satisfying the stability condition the L state. In
addition, the equilibrium nonlinearity in conjunction
with the flow and the flow shear may play a stabilizing
role. Although understanding the physics of the L–H

transition remains incomplete, the results of the present
study may shed some light toward that goal.

Finally, it would be interesting trying to general-
ize these classes of solutions to up-down asymmetric
configuration with a lower x-point in connection with
the International Thermonuclear Experimental Reactor
(ITER) project by potentially extending the ansatz (6)
to include odd in y terms. Also, the study could be
extended to toroidal geometry in order to examine the
impact of toroidicity.
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