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SUMMARY
We present a 3D reconstruction method using brightness and camera motion estimation for regis-
tering local colon structure in colonoscopy. The proposed method is based on reverse projection
from 2D fold contours to 3D space, motion estimation from 3D reconstructed points between neigh-
boring frames, and model registration to reconstruct the fold structure. On the synthetic colon, the
average percentages of the reconstructed depth error and circumference error are about 14.2% and
15.2%, respectively. The accuracy is enough for the navigation and control in capsule robot. This
work demonstrates that the proposed method is superior to the methods using single-frame-based
brightness intensity.

KEYWORDS: 3D reconstruction; Motion estimation; Colon fold contours; Model registration.

1. Introduction
In the past 10 years, colorectal cancer is one of the most common cancers in the world. The death
rate of colorectal cancer accounts for 15% of cancers, which is only lower than that of lung cancers.1

It has been recognized that adenoma-type polyps may become cancerous. If the polyps that cause
colorectal cancer can be detected and removed, the occurrence of colorectal cancer can be effectively
prevented. At the same time, if colorectal cancer can be detected at an early stage, the cure rate will
be more than 90%. So medical experts recommend that early screening is essential to the people over
40 years old, for whom with family history of cancer the screening should be done 10 years earlier.

Optical colonoscopy is the main method to examine and detect intestinal lesions nowadays. The
method consists of introducing an instrument called endoscope which has a light source and a camera
mounted on it to observe the internal mucosa of the colon. During traditional flexible colonoscopy,
images generated by the camera on the head of the endoscope are displayed on a monitor for real-
time analysis by the endoscopist. During the insertion phase of colonoscopy, the endoscopist adjusts
the angle by controlling the operation handle at the end of the endoscope to align the head of the
endoscope with the intestinal tract, so that the endoscope can be inserted into the intestine smoothly.2
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Because the end of the flexible endoscope is rigid and large size, it may cause pain to patients, or
even intestinal perforation.

There is a recent trend on developing active systems for endoscopy which aim at providing more
flexible control to the colonoscopy by external driving force. One kind of the active endoscopes is
called capsule endoscope, which has a shape and size similar to capsule pill. Because of its smaller
size, a smooth operation can be performed by the endoscopist during the procedure of colonoscopy
using the capsule endoscope with function of navigation.3 Although the endoscopist has a general
concept about the possible shape of the colon, the certain shape and structure of a specific patient’s
colon can vary widely from this general concept. Therefore, the endoscopist does not have prior
knowledge of a specific patient’s colon structure before colonoscopy. Capsule endoscope only has a
monocular camera which results in missing depth information of colon structure during colonoscopy,
so it is necessary to reconstruct 3D structure of colon based on images for navigation of colonoscopy.

Existing 3D reconstruction methods for general objects such as multi-view stereo,4, 5 structure
from motion (SfM)6–8 and shape from shading (SfS)9–12 determine the 3D structure of objects from
2D images of surface view of objects. Multi-view stereo is to generate 3D objects using 2D images
from multiple cameras. Because capsule endoscope has only one fish-eye camera, reconstruction
from stereo views is not feasible for our situation. SfM is to find correspondence of the feature points
between images to estimate the relative motion between the object and the camera, then the 3D shape
of the object is calculated. There is a limitation of the method that the target object must be rigid,
which makes it difficult for SfM method to perform well in colonoscopy. SfS is to estimate the surface
normals of the target object by observing it under different lighting conditions, it is based on the fact
that the amount of light reflected by a surface is dependent on the orientation of the surface in relation
to the light source and the observer to compute the shape of the object surface. But these existing
work focus on colon surface reconstruction using SfS,13 this does not meet our target to reconstruct
the real-time local 3D colon structure for the endoscopist indicating the navigation path. Recently,
3D colon reconstruction techniques using Convolutional neural network and deep learning have have
been proposed.14–16 They train a model by a large number of tagged images that observes sequences
of images and aims to explain its observations by predicting camera motion and colon structure, but
the demanding samples are not easy to obtain in our application. So 3D shape reconstruction of local
colon structure from images for navigation and real-time control is the problem that we need to solve.

This paper addresses a reconstruction method to estimate colon folds depth based on brightness
intensity and optimize the results based on camera motion estimation. The accuracy of depth estima-
tion based on our method is higher than that based on brightness intensity only,17 which is a good
exploration in the similar applications. First, we present a lumen detection method that can be used
for a wide range of endoscopic images. Then, we can obtain colon fold segments in the endoscopic
images by edge detection method18 and fit these segments to closed contours. Reverse projection
model based on camera intrinsic parameters can be established to project 2D coordinate of points
on the fold contour to 3D space, as been done in the work.17 Camera motion matrix is calculated
by two consecutive frames of images with common fold contours, which are tracked by optical flow
algorithm. Finally, local 3D reconstruction structure can be transformed to global coordinate system
by using optimal camera motion matrix to reduce mean square error. Figure 1 shows the flow chart
of the reconstruction method. Compared with existing SfM and SfS methods, the proposed method
can reconstruct 3D shape of colon structure, which is more suitable for navigation. Meanwhile, com-
pared with reconstruction method based on single frame, the accuracy of reconstruction result could
be improved effectively.

2. Depth Estimation Based on Brightness

2.1. Lumen detection
In order to build imaging model of appearance of the lumen, we draw a graphical scheme of how
colonoscopy image is generated. As illustrated in Fig. 2, the amount of light falling on the colon
surface decreases approximately by the square of the distance between the light source and the point
of surface. The farthest parts from the light source such as lumen are poorly lighted, which character-
izes the lumen center as the dark region of the image. The image is segmented by rectangles of size
n × n based on the idea that the region of lumen is connected and closed. In order to decide whether
two adjacent rectangles belong to the same region only the gray value of their center points is used. If
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Fig. 1. Flow chart of the reconstruction method based on brightness and camera motion.

Fig. 2. Imaging model of appearance of the lumen based on illumination.

the gray value difference is less than or equal to the tolerance ε which can be adjusted, the rectangles
are merged into one region. If g1 and g2 are two gray values to be examined, they are merged into the
same region. Hence, we have Eq. (1).

|g1 − g2| ≤ ε (1)

In the candidate regions, those regions that do not conform to the characteristics of lumen such as
those with regions of no lumen shape feature and no holes are rejected. We define that the shape
feature is named as structure factor F, it can be obtained according to (2).

F = 1

A

∑ (
‖p − pi‖ − 1

A

∑
‖p − pi‖

)2

(2)

In Eq. (2), A is the area of the region, p is the center coordinate of the region, and pi is the point
in the contour of region. F means deviation distance between the contour of the region and center
of the region. Because of lumen shape similar to circular, F is not greater than the setting threshold
fTh. We determine the lumen region that has minimal mean gray value of region from the rest in
the smoothed image (Fig. 3(c)) using a gaussian kernel to filter noise. Figure 3(b) shows the result
of merged regions, the selected result from merged regions is the lumen region marked as the red
contour in Fig. 3(d).

2.2. Fold contour extraction and fitting
Because of the problems of occlusions among folds and specular reflection of light source, contours
obtained by edge detection algorithm are discontinuous and incomplete. Meanwhile, the noise gen-
erated on the imaging causes false edges. The remaining edges are grouped into a set after filtered to
remove the tiny ones. To connect all the contours belonging to the same fold in the set, we design an
identification method as shown in Fig. 4(b): The central point o of lumen can be known by calculat-
ing the center of lumen region obtained in the previous step. The contour l1 will be selected from the
set if the distance between the central point and it is shortest. The other contour l2 will be selected
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Fig. 3. (a) Colonoscopy image. (b) Merged regions. (c) Smoothed gray image (a). (d) Lumen region.

with the shortest distance from endpoints of l1 to its endpoints in the set. Then, the two endpoints
from l1 and l2, respectively, are marked p1 and p2. If the angle θ0 formed by the connection line of
p1o and the connection line of p2o, the angle θ1 formed by the connection line of p1o and the tangent
line of the point of p1, the angle θ2 formed by the connection line of p2o and the tangent line of the
point of p2 are all less than θm, and the distance dp1p2 between p1 and p2 is less than λ, where θm

and λ are parameters that can be set in specific applications, it is considered that the two contours l1
and l2 belong to the same fold. That means the two contours are merged if they fulfill the following
condition in Eq. (3), 0 ≤ p ≤ 1 is the weighting factor.

dp1p2

λ
∗ p + max{θ0, θ1, θ2}

θm
∗ (1 − p) < 1 (3)

Then two endpoints p1 and p2 are smoothly connected to shape one contour. If the synthesized con-
tour is not closed, it could be treated as l1 to continue the step above until the set is empty. Figure 4
shows the results of each step of the extraction and fitting process.

2.3. 3D reconstruction of fold contours
The imaging model of the camera can be established by obtaining the matrix of intrinsic parameter
from camera calibration.19 With the given imaging model, the pixels on the fold contours in the image
are projected to 3D space along the light ray passing through optical center. As illustrated in Fig. 5,
the pixel of point u can be projected into 3D space vector vu by reverse imaging model. As long as
the depth information du of the pixel of point u is calculated, the 3D coordinates (x(vu), y(vu), z(vu))

of it can be obtained according to (4).

⎧⎨
⎩

x (vu)= du ∗ x (u) sinδu/ru

y (vu)= du ∗ y (u) sinδu/ru

z (vu)= du ∗ cosδu

(4)
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Fig. 4. (a) Colonoscopy image. (b) Sketch of two fold contour segments. (c) Result of edge detection. (d)
Completed fold contours.

(x(u), y(u)) is 2D coordinates of the pixel u in the image; δu is the angle between the reverse projec-
tion vector and the axis of Z; and ru is the Euclidean distance from the pixel u to the image center.
To compute the value of δu, we assume that the camera follows the equidistance projection. Then we
can obtain Eq. (4) as follows:20

δu = ru/f (5)

where f is focal length of the lens, let R0 be the image diameter, which is the maximum value of ru.
According to Fig. 5, when ru is at the maximum, δu is also at the maximum, the value is half of the
ψ , and ψ is field of view angle of the camera. Thus, f = 2R0/ψ , we can obtain Eq. (6).

δu = ru ∗ψ/2R0 (6)

For estimation of depth from brightness intensity, we assumed that the colon surface is Lambertian
except at specular spots. According to Lambertian cosine law,21, 22 at the same slant angle, the surface
further away from the camera is darker than the one closer to the camera. At the same distance
from the camera, the surface with more slant angle is darker than the one with less slant angle. For
calculating the depth information du of the pixel u in 3D space, Eq. (7) is as follows:

du = C (1 − wu + wucos (arcsin (δu) (1 − hu)))

iu
(7)

In Eq. (7), C is a constant, wu is the normalized distance between the pixel u and the brightest
nonspecular reflection spots in the fixed region along the normal direction of the pixel, and 0 ≤ wu ≤
1; hu is normalized height of the fold contour where the pixel u is located. Along the perpendicular
direction of the tangent line of the fold contour on the pixel u, the normalized value of the difference
between the average gray value of the 10 neighboring pixels of u inside the contour and the average
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Fig. 5. Imaging model of colonoscopy.

gray value of the 10 neighboring pixels of u outside the contour is calculated, and the result is
assigned to hu; iu is the gray value of the pixel u. Finally, we can calculate the 3D coordinates vu

from vertex u(x(u), y(u)) on a fold contour of an input image. This process will be applied to all the
points on each fold contour.

3. Depth Optimization Based on Camera Motion
Because the real colonoscopy does not fully obey Lambertian cosine law, the estimation error of the
depth information is obvious. In order to improve the accuracy of estimation of depth information, we
present a method to achieve the optimal estimation by registering 3D points set of the corresponding
fold contours among multiple frames to obtain the corresponding transformation matrix, which is
used for minimizing the function of mean square error. The first image is used as a reference, and
the target image is selected from the second image in turn, and the fold contours are extracted from
the reference and the target. Optical flow is calculated to obtain movement vector between the two
images.23–25 We calculate the optical flow as the minimizer of a suitable energy functional. In general,
the energy functional has the following form:

{E (w)= ED (w)+ αES (w) (8)

where w = (u, v, 1) is the optical flow vector field to be determined, ED(w) denotes the data term,
ES(w) denotes the smoothness term, and α is a regularization parameter that determines the smooth-
ness of the solution. Taking into account the below assumptions: constancy of the gray values and the
spatial gray value derivatives between corresponding pixels in consecutive images and preservation
of discontinuities in the flow field. Equation (8) can be written as

E (w)= ∫ ϕs
(|f (x + w)− f (x)|2 + γ |∇2f (x + w)− ∇2f (x)|2) drdc

+ α ∫ ϕs
(|∇2u (x)|2 + |∇2v (x)|2) drdc (9)

here, ϕs
(
s2

) = √
s2 + ε2 is a linear penalty function with ε= 0.001, which provides the desired

preservation of edges in the movement in the flow field to be determined, α is the regularization
parameter, and γ is the gradient constancy weight. Using movement vector w, the corresponding
fold contours of the two images can be determined. In the reference image, the extracted contours
are labeled in order. If there is a common fold contour between the reference and the target, it will
be labeled as 1 in the reference and the target, then considering the third image as the target frame,
we repeat the previous step to estimate movement vector. If there is the fold contour in the target
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Fig. 6. Experimental platform for simulating camera motion.

which belongs to the same contour labeled as 1# in the reference, the corresponding contour in the
third image is also labeled as 1#, and so on. The contours with the same label are selected from the
reference and the target to obtain the corresponding 3D points set of reconstructed fold contours. The
corresponding 3D points set with the same contours in the reference and the target are put into two
point set (Qx,Qy,Qz) and (Px, Py, Pz), respectively, then movement matrix � is obtained by solving
the Eq. (10).

MIN =
∑

i

∥∥∥∥∥∥∥

⎛
⎜⎝

Qx

Qy

Qz

1

⎞
⎟⎠ − �∗

⎛
⎜⎝

Px

Py

Pz

1

⎞
⎟⎠

∥∥∥∥∥∥∥

2

(10)

where � is 4×4 matrix, its expression can be written as

� =
[

R t
01×3 1

]
(11)

In Eq. (11), R is 3×3 rotation matrix, and t is 3×1 translation matrix. Finally, we apply the above
method of 3D model registration to multi-frame images, that is, from the reference and the second
image as the target to calculate movement matrix �0, from the reference and the image n as the target
to calculate movement matrix �n−2. In the set of movement matrices {�0, . . . ,�n−2} obtained by
model registration, the optimal movement matrix is obtained by the Eq. (12).

�G = min

∥∥∥∥∥∥∥

⎛
⎜⎝

Qx

Qy

Qz

1

⎞
⎟⎠ − �i ∗

⎛
⎜⎝

Px

Py

Pz

1

⎞
⎟⎠

∥∥∥∥∥∥∥

2

(12)

The reconstructed point set P can be obtained from the following Eq. (13):

P = �G ∗ PR (13)

PR is the reconstructed point set for reference frame.

4. Experimental Results
In order to be useful for validating our algorithm of 3D reconstruction, the experimental platform
with a synthetic colon model is built as illustrated in Fig. 6. There is a 3-DoF motor-controlled
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Table I. Depth and circumference of reconstructed results based on single image.

Ground truth (mm) Reconstructed result (mm) Absolute difference (mm)

Depth Circf Depth Circf Depth Circf

1# 53 301 45 271 8 30
2# 69 270 57 226 12 44
3# 90 284 73 225 17 59

MAD 12.3 44.3

Table II. Camera motion estimation results based on image sequence.

Ground truth Reconstructed result Absolute difference

Trans (mm) Trans (mm) Trans
Rotat (deg) Rotat (deg) Rotat

1# (0,0,5) (0,0,4.2) 16%
Video (0,2.0,0) (0,1.74,0) 13%
2# (0,0,10) (0,0,8.1) 19%
Video (0,0,2.0) (0,0,1.69) 15.5%
3# (0,0,5) (0,0,4.1) 15.5%
Video (0,2.0,1.0) (0,1.62,0.83) 18%
4# (0,0,10) (0,0,7.9) 21%
Video (0,1.0,2.0) (0,0.81,1.64) 18.5%

sliding rail on the platform, which can precisely control the pitch angle, the yaw angle, and the
translation distance of the camera. The resolution of the image that camera acquires is 960×720
pixels. The software is developed in C++ with OpenCV3.0 and rendered in OpenGL4.0. We evaluated
the effectiveness of our method on estimating the reconstructed colon structures based on brightness
intensity and the optimal reconstruction result based on camera motion (BAMforshort).

Because there are no real 3D data of the synthetic colon during the experiment, we manually
measured the depth of folds and the fold circumference ground truth from the outside of the syn-
thetic colon. Although the measurements taken from the outside of the synthetic colon could be
different from those taken from the inside of the synthetic colon, these measurements are attain-
able. We selected a straight section of the synthetic colon that has four obvious colon folds to give
good results for evaluation. We use the mean absolute difference of measurements (MAD for short)
between the reconstructed result and the ground truth for evaluation. The 0# fold is selected to con-
firm the physical scaling factor that gave the least MAD against the ground truth and scaled the
three folds in the reconstructed model to the ground truth using the same scaling factor, which is to
scale the reconstructed model in relative units to in millimeters. Table I shows the evaluation results
for reconstruction based on brightness intensity from a single image in the selected straight section.
The average depth MAD and circumference MAD on the synthetic colon are 12.3 and 44.3 mm,
respectively.

For the evaluation of the influence of camera motion transformation to reconstructed result, we
recorded four pieces of video with 45, 51, 49, and 55 frames, respectively. In these videos, the camera
takes the 3-DoF movements, which are accomplished by controlling the sliding rail. Table II shows
that the average percentage of translation error and rotation error on the synthetic colon are 18.5%
and 16.3%, respectively.

Table III shows the reconstruction result of the fold contours in Table I by using estimated camera
motions matrix to register local models. We observed a better accuracy of reconstructed fold contours
in the synthetic colon than the result that was reconstructed from a single image. Furthermore, the
reconstruction result of the fold contours with higher accuracy of motion estimation is better. The
average depth MAD and circumference MAD to the same fold contours in Table I on the synthetic
colon that reconstructed from 1# video are 9 and 42 mm, respectively. The same parameters from
2# video and 3# video are 10.3 and 43.6 mm, 11 and 44.3 mm. Only the result from 4# video is
worse than the reconstruction result based on s single image. The average percentage of the depth
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Table III. Depth and circumference of reconstructed results based on multi-frame motion
estimation from 1# to 4# videos.

GT. 1# video 2# video 3# video 4# video
(mm) (mm) (mm) (mm) (mm)

Dep Cir Dep Cir Dep Cir Dep Cir Dep Cir

1# 53 301 48 271 48 270 45 269 46 265
2# 69 270 61 230 59 228 60 227 56 223
3# 90 284 76 228 74 226 74 226 70 229

MAD 9 42 10.3 43.6 11 44.3 13.3 46

GT. denotes ground truth.
Dep denotes depth, Cir denotes circumference.

Fig. 7. (a) One of input image; (b) 3D reconstructed fold contours; (c) front view of rendered model; (d) side
view of rendered model.

error is about 17.4% in the reconstructed result based on single image, and the error is about 14.2%
in the reconstructed result based on multi-frame motion estimation. And the average percentage of
the circumference error is about 15.5% in the reconstructed result based on single image, the error is
about 15.2% in the reconstructed result based on multi-frame motion estimation. Figure 7 shows an
example of reconstruction on a sequence of images from a synthetic colon where some colon folds
have cylindrical shape.

SfM is also a motion-based technique that can be potentially explored to reconstruct the colon
surface.

Table IV shows comparison to reconstruction results of depth between SfM and BAM. Because
of more optimization iterations, the average accuracy of results based on SfM is improved by about
1.5% from 1# video and 2# video compared with BAM. However, the reconstruction time of BAM is
about 0.3 s, and SfM takes more than five times of the time. In 3# video and 4# video, fold occlusion
and specular reflection make feature points for 3D reconstruction based on SfM insufficient, which
result in failures. However, BAM can still obtain satisfying reconstruction in these cases. Figure 8
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Table IV. Reconstructed results of depth based on SfM and BAM from 1# to 4# videos.

GT.(mm) 1# video 2# video 3# video 4# video

Dep SfM BAM SfM BAM SfM BAM SfM BAM

1# 53 49 48 48 48 – 45 – 46
2# 69 62 61 61 59 – 60 – 56
3# 90 76 76 77 74 – 74 – 70

MAD 8.3 9 8.6 10.3 – 11 – 13.3
Times(s) 1.53 0.28 1.61 0.31 – 0.33 – 0.31

GT. denotes ground truth.
Dep denotes depth. – denotes no results.

Fig. 8. (a) One of input image; (b) 3D reconstruction based on SfM; (c) 3D reconstruction based on BAM.

shows reconstructed result of SfM is a sparse point cloud with large number of noise points and can-
not provide visual colon structure in a straightforward way, while results of BAM show 3D position
of fold contours. The reconstructed result based on BAM is more suitable for navigation. In addition,
in capsule endoscopy, camera motion is not constant, and the number of prominent feature points
between images is usually insufficient, which makes it quite difficult for existing SfM methods to
perform well.

To evaluate the performance of BAM in biological intestinal environment, we applied our method
to the pig’s colon. A section of pig’s colon was fixed on the platform, some air was injected into
the colon to expand the internal space of it (simulating the endoscopic scenarios). Then the cap-
sule endoscopy recorded video during movement. Because the ground truth value of the pig’s colon
structure information is unknown, we compare visually the image of our reconstructed result with
the captured image to evaluate BAM. Figure 9 shows that rendered model is similar to the captured
image, which suggests that the proposed method is suitable for the colon reconstruction with real
endoscopic images.
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Fig. 9. (a) Image of real pig’s colon; (b) 3D reconstructed fold contours; (c) front view of rendered model; (c)
side view of rendered model.

5. Conclusions
The 3D reconstruction of the colon structure is useful for several applications, such as navigation
path and helping in computer-aided diagnosis. This paper has described a reconstruction method of
colon structure based on camera motion from image sequence for screening colonoscopy. We regis-
tered 3D points set of the corresponding closed fold contours between multiple frames to obtain the
corresponding transformation matrix and calculated the reconstruction result by the matrix. For the
evaluation of the reconstruction result, we compared the reconstruction result with a single image
and the result with image sequence. The average percentage of the depth error is reduced by 3.2%
in the image sequence, and the circumference error which represents the accuracy of surface recon-
struction is also reduced by 0.3%. We also compared the reconstructed result with that based on SfM,
the difference between the depth errors is not significant, but SfM takes more than five times of the
consuming time, even if the results can be achieved, as long as BAM. At the same time, BAM also
achieves good reconstruction result in the pig’s colon. The results show that the method is superior
to the one using single-frame-based brightness intensity. So the proposed method is effective and
feasible to 3D reconstruction of the colon structure in colonoscopy.
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