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In part 1 (V. S. Dharodi and A. Das, J. Plasma Phys. 87 (02), 905870216 (2021)), we
simulated the individual dynamics of a bubble (a localized low-density region) and a
droplet (a localized high-density region) in a strongly coupled dusty plasma. We observed
that under the influence of gravity, the result of a pair of counter-rotating vorticity lobes
causes the bubble to rise and droplet to fall. With an interest to understand the hetero-
(bubble–droplet) interactions between them, we extend this study to their combined
evolution through the following two arrangements. First, both are placed side-by-side
in a row at the same height. We observe that the overall dynamics is governed by the
competition between the net vertical motion induced by gravity and rotational motion
induced by the pairing between two co-rotating inner vorticity lobes. In the second
arrangement, the vertically aligned bubble (below) and droplet (above) after collision
exchange their partners and subsequently start to move horizontally in opposite directions
away from each other. This horizontal movement becomes slower with increasing
coupling strength. For these arrangements, we consider varying the distance between
the fixed-size bubble and droplet, and varying the coupling strength. To visualize the
bubble–droplet interactions, a series of two-dimensional simulations have been conducted
in the framework of an incompressible generalized hydrodynamic viscoelastic fluid model.

Key words: dusty plasmas, strongly coupled plasmas, complex plasmas

1. Introduction

Rayleigh–Taylor (RT) instability occurs when an external force like gravity accelerates
a heavy fluid into a lighter one (Rayleigh 1900; Taylor 1950; Chandrasekhar 1981). Apart
from RT instability, buoyancy-driven (BD) instability is another form of gravity-driven
instability which is also associated with the density fluctuations in a medium. We have
introduced the BD situation by including a bubble as a localized low-density region and
a droplet as a localized high-density region compared with the fluid in which they are
placed. The BD instability determines whether an object sinks or floats in the fluid in
which it is immersed. Under the influence of gravity, a bubble has a tendency to float
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upwards while a droplet sinks against the surrounding fluid. Bubbles and droplets have
been studied separately (for example, see Shew & Pinton 2006; Gaudron, Warnez &
Johnsen 2015; Dollet, Marmottant & Garbin 2019 for bubbles and Dwyer 1989; Cristini
& Tan 2004; Zhu, Sui & Djilali 2008; Leong & Le 2020 for drops) and both together
(Mokhtarzadeh-Dehghan & El-Shirbini 1985; Chen et al. 2008; Tabor et al. 2011). An
understanding of the interaction of gas bubbles and liquid droplets with themselves or with
particles or with a colloid probe is desired for a wide range of applications, which include
the manufacturing of cosmetics and pharmaceuticals, oil recovery (Zhao et al. 2017),
printing and deinking, emulsion stability (Xie et al. 2017), foodstuffs such as ice cream
and mousse (Van Aken 2001), and in mineral flotation (Liu et al. 2002; Niewiadomski
et al. 2007). Recently, detailed experiments (Kong et al. 2019) and numerical simulations
(Zhang, Chen & Ni 2019) have been conducted to investigate the interactions between
a pair of bubbles rising side by side. Additionally, both homo- (bubble–bubble and
drop–drop) and hetero- (bubble–drop) interactions between air bubbles and oil droplets
have been measured using atomic force microscopy by Tabor et al. (2011). In the context
of a plasma medium, studies of bubbles and/or droplets under various conditions have
been carried out (Stenzel & Urrutia 2012; Arzhannikov et al. 2013; Wang et al. 2015;
Ning et al. 2021). In a dusty plasma laboratory, the density fluctuations related to the
bubble and/or droplet are mainly induced by laser pulses. Experimentally, the dynamics
of bubbles has been studied by Chu et al. (2003) and Teng et al. (2008). Chen, Chu & Lin
(2006) investigated bubble–bubble interactions. The spontaneous formation of bubbles,
drops and spraying cusps under the influence of thermophoresis has been reported by
Schwabe et al. (2009).

In part 1 of this investigation, we separately explored the dynamics of a bubble and
a droplet in the incompressible limit of strongly coupled dusty plasmas (SCDPs). We
observed that a falling droplet process is equivalent to a rising bubble because both had
symmetry in the spatial distribution. We described the SCDP using an incompressible
generalized hydrodynamic (i-GHD) fluid model (Kaw & Sen 1998; Kaw 2001). This
model treats SCDP as a viscoelastic (VE) fluid that characterizes the viscoelastic effects
through two coupling parameters: shear viscosity η and the Maxwell relaxation parameter
τm (Frenkel 1955). We observed that the rising of a bubble and falling of a droplet become
weaker with increasing coupling strength (ratio η/τm), which represents the viscoelastic
behaviour of the medium. In the present paper, to investigate the nature of interactions
between a bubble and a droplet, we have both together in the same fluid within the
framework of the i-GHD fluid model. We consider two arrangements: First, the droplet
and bubble are placed side by side in a row at the same height; Second, the bubble and
droplet are aligned in a column where the droplet is placed above the bubble. For these
arrangements, we consider varying the distance between the fixed-size bubble and droplet,
and varying the coupling strength which represents the viscoelastic nature of the medium.
To the best of our knowledge, the bubble–droplet interactions have been observed for the
first time in dusty plasmas, thus an experimental research effort is desirable to validate this
work.

This paper is organized in the following sections. In § 2, the basic model equations
are described and then are re-written in § 2.1 as a set of coupled equations for the
implementation of our numerical scheme. In § 3, to report the simulation results, first we
develop some qualitative understanding by using the model equations through schematic
diagrams for the considered bubble–droplet density profiles. For horizontally placed blobs,
the simulations are performed for three initial spacings: widely spaced (d � 2ac), medium
spaced (d>2ac) and closely spaced (d ≈ 2ac), where ac is the core radius. Next, the droplet
is placed above the bubble in a vertical column with a fixed initial spacing. The role
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Interaction between a rising bubble and a falling droplet 3

of coupling strength on the bubble–droplet density dynamics is depicted in the form of
transverse shear (TS) waves through the respective vorticity contour plots. To develop
a better physical insight into the dynamics of each phenomenon, the inviscid limit of
hydrodynamic (HD) fluids is also simulated for each case. Finally, in § 4, we conclude
the paper with a summary.

2. The numerical model and simulation methodology

The generalized hydrodynamic fluid model supports both the incompressible transverse
and compressible longitudinal modes. To study only the effect of transverse modes on
the bubble–droplet interaction and to avoid the coupling with the longitudinal mode,
we consider the incompressible limit of dusty plasmas. In the incompressible limit,
the Poisson equation is replaced by the quasineutrality condition and charge density
fluctuations are ignored. The dust fluid flow under gravity acceleration g is characterized
by a coupled set of continuity and momentum equations:

∂ρd

∂t
+ ∇ · (ρdvd) = 0, (2.1)

[
1 + τm

(
∂

∂t
+ vd · ∇

)]
[
ρd

(
∂vd

∂t
+ vd·∇vd

)
+ ρdg + ρc∇φd

]

= η∇2vd, (2.2)

respectively, and the incompressible condition is given as

∇·vd = 0. (2.3)

The derivation of these normalized equations has been discussed in detail in our earlier
papers (Dharodi, Tiwari & Das 2014; Dharodi et al. 2016) along with the procedure of
its numerical implementation and validation. Here, ρd = ndmd is the mass density of
the dust fluid, where nd is the number density of the dust fluid which is normalized
by its equilibrium value nd0 and md is the mass of the dust particle. The dust charge
density ρc = ndZd, Zd is the charge on each dust grain with no consideration of charge
fluctuation. The dust charge potential φd is normalized by KBTi/e. The parameters e, Ti
and KB are the electronic charge, ion temperature and Boltzmann constant, respectively.
The time, length and dust fluid velocity vd are normalized by the inverse of the dust plasma
frequency ω−1

pd = (4π(Zde)2nd0/md0)
−1/2, plasma Debye length λd = (KBTi/4πZdnd0e2)1/2

and λdωpd, respectively. In the HD limit i.e. τm=0, this model represents a simple
hydrodynamic fluid through the Navier–Stokes equation.

2.1. Simulation methodology
For the numerical modelling the above generalized momentum equation (2.2) is
transformed into a set of two coupled equations,

ρd

(
∂vd

∂t
+ vd·∇vd

)
+ ρdg + ρc∇φd = ψ, (2.4)

∂ψ

∂t
+ vd · ∇ψ = η

τm
∇2vd − ψ

τm
. (2.5)
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We consider a two-dimensional (2-D) system that lies in the xy plane, where the
x-coordinate is in the horizontal and the y is in the vertical. Thus the above variables
depend on x and y, i.e. ψ(x, y), vd(x, y) and ρd(x, y). The quantity ψ(x, y) is the strain
produced in the elastic medium by the time-varying velocity fields. The density gradient
and potential gradient are taken along the y-axis i.e. ∂ρd/∂y and ∂φd/∂y, respectively. The
acceleration g is applied opposite to the fluid density gradient i.e. −gŷ. We also assume
no initial flow i.e. vd0 = 0 at t = 0. With small perturbations; density, scalar potential and
dust velocity can be written as

ρd(x, y, t) = ρd0( y, t = 0)+ ρd1(x, y, t), (2.6)

φd(x, y, t) = φd0( y, t = 0)+ φd1(x, y, t), (2.7)

vd(x, y, t) = 0 + vd1(x, y, t), (2.8)

respectively. We then re-write (2.4) under the equilibrium condition, ρd0g = −ρc∂φd0/∂y
and using the above relations (2.6), (2.7) and (2.8).

∂vd

∂t
+ vd·∇vd + ρd1

ρd
g + ρc

ρd
∇φd1 = ψ

ρd
. (2.9)

By taking the curl of (2.9) and using the Boussinesq approximation (ρd0 � ρd1), the
contribution from ∇φd1 becomes zero i.e. ∇ × ∇φd1 = 0, and we get

∂ξz

∂t
+ (vd · ∇)ξz = 1

ρd0
∇ × ρd1g + ∇ × ψ

ρd
. (2.10)

Here, ξz(x, y) = ∇ × vd(x, y) is the vorticity, which is normalized by the dust plasma
frequency. The final numerical model equations in terms of variables x and y become

∂ρd

∂t
+ (vd · ∇)ρd = 0, (2.11)

∂ψ

∂t
+ (vd · ∇)ψ = η

τm
∇2vd − ψ

τm
, (2.12)

∂ξz

∂t
+ (vd · ∇)ξz = − g

ρd0

∂ρd1

∂x
+ ∂

∂x

(
ψy

ρd

)
− ∂

∂y

(
ψx

ρd

)
. (2.13)

We use the LCPFCT package (Boris et al. 1993) to numerically solve the above set
of coupled nonlinear equations (2.11), (2.12) and (2.13). This package is based on the
finite difference scheme associated with the flux-corrected algorithm. The velocity at
each time step is updated by using the velocity–vorticity relation ∇2vd = −∇ × ξ . This
velocity–vorticity relation has been solved by using the FISPACK package (Swarztrauber,
Sweet & Adams 1999). Both packages are FORTRAN subprograms. Throughout the
simulation studies, boundary conditions are periodic in the horizontal direction (x-axis)
and non-periodic along the vertical (y-axis) direction where the effects of perturbed
quantities die out before hitting the boundary of the simulation box. In each case, a grid
convergence study has been carried out to ensure the grid independence of the numerical
results.

In the HD limit i.e. τm=0, (2.12) has singularity. To avoid this singularity, we put τm = 0
in the generalized momentum equation (2.2) and then by taking the curl, under the same
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(a) (b)

FIGURE 1. The initial density profiles at time t = 0: (a) the droplet (left) and the bubble (right)
are placed at the same height, and (b) the droplet and the bubble are aligned vertically with the
droplet placed above the bubble. In the colourbar, letter H is the acronym of the high-density
region and L stands for the low-density region.

above considered conditions and assumptions, one gets the HD vorticity equation:

∂ξz

∂t
+ (vd · ∇)ξz = − g

ρd0

∂ρd1

∂x
+ η∇2ξz. (2.14)

Thus, for pure HD cases (τm = 0) we numerically solve the set of (2.11) and (2.14), where
the dust fluid velocity at each time step is updated by using the above velocity–vorticity
relation. It should be noted that the density evolution has been discussed in terms of
blob/blobs while vorticity evolution in terms of lobe/lobes.

3. Simulation results

To understand the bubble–droplet dynamics, we consider the two arrangements shown
in figure 1: Arrangement (A) in figure 1(a), the droplet (left) and bubble (right) are placed
in a row at the same height; Arrangement (B) in figure 1(b), the bubble (bottom) and
droplet (top) are aligned in a column. For both arrangements, the total density is ρd =
ρd0 + ρd1, where ρd0 is the background density and the net density inhomogeneity is given
by

ρd1 = ρ ′
d1 + ρ ′

d2. (3.1)

The Gaussian density inhomogeneity of the droplet centred at (xc1, yc1), with radius ac1, is

ρ ′
d1 = ρ ′

01exp
(−(x − xc1)

2 − ( y − yc1)
2

a2
c1

)
, (3.2)

and the Gaussian density inhomogeneity of the bubble centred at (xc2, yc2), with radius
ac2, is

ρ ′
d2 = −ρ ′

02exp
(−(x − xc2)

2 − ( y − yc2)
2

a2
c2

)
. (3.3)

Throughout the entire numerical simulations, g = 10, ρd0 = 5, ρ ′
01 = ρ ′

02 = 0.5 and ac1 =
ac2 = 2.0 are held constant. Thus, both the bubble and droplet have spatial symmetry and
spaced by distance d = √

(xc2 − xc1)2 + (yc2 − yc1)2.
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It would be good to develop some basic qualitative understanding about the
bubble–droplet evolution before reporting the simulation results. For an inviscid flow
(η = τm = 0), the vorticity equation (2.14) using (3.1), (3.2) and (3.3) becomes

∂ξz

∂t
+ (vd · ∇)ξz = 2g

ρd0
(x − xc1)ρ

′
d1 − 2g

ρd0
(x − xc2)ρ

′
d2. (3.4)

Here, the right-hand side represents the net vorticity of the combined bubble and droplet
arrangement. Under the influence of gravity, both terms depict the oppositely propagating
dipolar vorticities each having a pair of counter-rotating (or unlike-sign) lobes. The first
term acts like a buoyant force on the droplet and causes a vertical downward motion, while
the second acts like a buoyant force on the bubble and results in a vertical upward motion
(Dharodi & Das 2021).

For the arrangement (A), using the right-hand side of (3.4), figure 2(b) represents
the schematic images of vorticities, which correspond to the bubble–droplet density
profiles in figure 2(a). The curved solid arrows over the lobes represent their direction
of rotation while the net propagation is indicated by the vertical and curved dotted arrows.
In these schematic images, the spacing ‘d’ between a droplet and a bubble decreases
from left to right. From the figure it is observed that the overall dynamics is governed
by the competition between the rotational motions induced by the pairing between two
co-rotating inner vorticity lobes and the net vertical motion of two dipolar vorticities
(downward for the droplet and upward for the bubble) induced by gravity. To understand
this, first, let us discuss the case if the bubble and droplet are widely spaced (left of
panel a), the counter-rotating vorticity lobes related to the droplet (left of panel b) cause
a vertical downward motion (indicated by the vertical downward dotted arrow) while
those related to the bubble cause a vertical upward motion for the bubble (indicated by
vertical upward dotted arrow). Owing to large distance ‘d’, there is almost no interaction
between the rising bubble and falling droplet, so their dynamics would be mainly governed
by gravity i.e. the same as the individual cases. However, by decreasing the separation
distance (see the remaining panels from left to right) enhances the possibility of vorticity
pairing through the co-rotating inner lobes. This pairing leads to the merging process (Von
Hardenberg et al. 2000; Meunier, Le Dizès & Leweke 2005; Josserand & Rossi 2007)
which results in the rotation (counterclockwise) of the entire structure about a common
centre of rotation. Thus, this rotational effect is found to be proportional to the pairing
of the vorticity lobes. It is noted that, because we have the droplet on the left and the
bubble on the right, the net vorticity would rotate counterclockwise and vice versa. For
arrangement (B), the droplet is aligned above the bubble in a vertical column, as shown
in figure 1(b). As discussed above, the generated dipolar vorticity related to the bubble
causes a vertical upward motion but a vertical downward motion for the droplet. Thus, as
time progresses, the two oppositely propagating dipolar vorticities collide with each other
and then exchange their partners which results in two new dipolar structures that propagate
away from each other in an orthogonal direction to the initial propagation.

Thus far, under the influence of gravity, the merging of two co-rotating vortices and
convection of dipolar vorticity (two counter-rotating vortices) are the two major transport
phenomena. The above discussed dynamics is particularly true for an inviscid fluid where
no dissipation or source terms exist. The vorticity equation (2.10) or (2.13) for VE fluids in
addition to the gravity term includes an additional term ∇ × (ψ/ρd) on the right-hand
side. This term incorporates the TS waves emerging from the rotating lobes into the
medium (Dharodi et al. 2014, 2016). The speed of these waves (

√
η/τm) is proportional to

the coupling strength (η/τm) of the medium. For a fixed d, the effect of the VE nature on
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(a)

(b)

FIGURE 2. A schematic diagram of a droplet and a bubble placed in a row at the same height.
The spacing between them decreases from left to right: (a) the density profile; and (b) the
vorticity. The net propagation is indicated by the dotted arrows in (a,b) and the curved solid
arrows represent the direction of rotation of the lobes in (b).

the bubble–droplet interactions has been introduced through varying the coupling strength
of the medium. The bubble–droplet dynamics will be visualized through the numerical
simulations in detail in the subsequent sections.

3.1. Aligned horizontally
We consider a system of length lx = ly = 24π units with 512 × 512 grid points in both
the x and y directions. The system along the x-axis and y-axis is from −12π to 12π
units. The droplet and bubble are placed at the same height (yc1, yc2) = (0, 0). It is worth
noting at this point that the interaction between a bubble and a droplet depends, apart
from the nature of the medium, on their sizes i.e. ac1/ac2 (both have equal and fixed, ac =
ac1 = ac2 = 2.0), on their shapes (both are symmetric) and on the initial spacing between
them d = xc2 − xc1. Here, the simulations are performed for three spacings: widely
spaced (d � 2ac), medium spaced (d>2ac) and closely spaced (d ≈ 2ac). The separation
distances are d = 12 with (xc1, xc2) = (6.0,−6.0), d = 8 with (xc1, xc2) = (4.0,−4.0),
and d = 4.4 with (xc1, xc2) = (2.2,−2.2), for cases (i), (ii) and (iii), respectively. In each
case, the coupling strength has been introduced as the mild-strong (η = 2.5, τm = 20),
medium-strong (η = 2.5, τm = 10) and strong or strongest (η = 2.5, τm = 5), as well as
pure viscosity (η = 2.5, τm = 0).

3.1.1. Case (i): Widely spaced (d � 2ac)

Initially, the droplet (xc1 = −6.0) and bubble (xc2 = 6.0) are quite well-spaced (d =
12 � 2ac, ac = 2) without any overlap between the inner lobes of the vorticities. First,
let us understand the bubble–droplet dynamics for an inviscid fluid. Here, the absence of
any dissipative and source terms makes this combined evolution like an individual one.
In part I (Dharodi & Das 2021) of this investigation, we studied a rising bubble and a
falling droplet separately. We observed the falling droplet process is equivalent to the
rising bubble as they initially have axisymmetry in their density profiles. Owing to gravity,
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(a)

(b)

FIGURE 3. Time evolution of bubble–droplet density (a) and vorticity (b) for an inviscid fluid.
Both are separated by distance d = 12 units (d � 2ac). The dynamics of the rising bubble and
falling droplet are almost independent and evolve the same as the individual ones.

the initially circular density blobs change into crescent shapes. As time progresses, both
the bubble and droplet blobs break up into two distinct density blobs. The two blobs
of the bubble/droplet propagate upward/downward as a single entity leaving behind a
wake-like structure in the background fluid. Such observations are clearly evident from
the time evolution of the bubble–droplet density profile in figure 3(a). The reason for the
rising/falling bubble/droplet can be understood from the vorticity evolution in figure 3(b).
In figure 3(b), as the simulation begins, the buoyant forces are induced in the form of
two oppositely propagating dipolar vorticities each having two counter-rotating lobes. The
result is the vertical upward motion for the bubble, which appears to be independent to the
vertically downward motion of the droplet, as discussed in detail above.

Next, it would be interesting to see the bubble–droplet dynamics in SCDPs that are
depicted as VE fluids. The SCDPs, in addition to the forward motion, favour the radial
emission of TS waves into the ambient fluid from each rotating vorticity lobe. These
waves have the same symmetry of a lobe, and their speed is proportional to the coupling
strength (η/τm) of the medium (Dharodi et al. 2014, 2016). In other words, a medium
with stronger coupling strength would support the faster TS waves. The faster wave travels
a greater distance in the same amount of time and that results in a faster spreading of
the lobes. Thus, for the current horizontal arrangement, a medium with stronger coupling
strength shows a higher probability of vorticity interaction or pairing between two like-sign
inner lobes at an earlier time, which in turn would enhance the rotational effect in the
medium. In addition, the emerging TS waves from both the outermost lobes also help to
enhance this interaction by pushing the inner lobes towards each other. All this suggests
that the competition between the rotational strength of two inner like-sign vorticity lobes
arising from the lateral interaction and forward vertical motion of two dipolar vorticities
(unlike-sign lobes) owing to the gravity governs the net dynamics. In the subsequent cases,
only the coupling strength is changing through the elastic term τm for the fixed viscosity
η = 2.5.
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(a)

(b)

FIGURE 4. Time evolution of bubble–droplet density (a) and vorticity (b) for a viscoelastic fluid
with η = 2.5 and τm = 20. In comparison to the HD fluid (figure 3), there is a decrease in the
rising/falling rate of the bubble/droplet and an increase in the horizontal separation between the
lobes.

Let us start with the mild-strong case i.e. η = 2.5, τm = 20 which is shown in figure 4.
Similar to figure 3, here also the forward vertical motion arising from gravity dominates
over the lateral interaction. However, in addition, it is evident from figure 4(b) that there is
an emission of TS waves surrounding each of the vorticity lobes and no such waves exist
in figure 3(b). These waves cause the mutual pushing between unlike-sign lobes which in
turn enhance the separation between them with time. In addition to the lobes separation,
the TS wave reduces the strength of dipoles thereby reducing their propagation. The
relative observations of figures 4(a) and 3(a) clearly reflect the aforementioned fact. Next,
figure 5 shows the evolution of density (a) and vorticity (b) for the medium-strong coupling
strength η = 2.5, τm = 10. Also in figure 5(b), the forward vertical motion dominates over
the lateral interaction. However, owing to the higher coupling strength, the reduction in
forward motion and enlargement in the horizontal separation between the unlike-sign
dipoles are higher compared with the earlier case (figure 4; η = 2.5, τm = 20).

A VE fluid with a stronger coupling strength (η = 2.5, τm = 5.0) than the earlier cases
is shown in figure 6. This would support an even faster speed of the TS waves. Therefore,
this, in addition to slowing down the forward motion of lobes, will enhance the vorticity
exchange between the inner lobes at an earlier time. From figure 6(b), it is clearly evident
that the rotation between inner lobes owing to the merging process dominates over the
forward vertical motion. As time passes, the combined effect of motion under gravity and
the pairing of inner lobes causes the continuous stretching and spreading of the inner
lobes (see the second and third vorticity column). These inner lobes rotate around each
other for a while and merge into an elliptic vortex at later times (fourth vorticity column).
Here, because of the emission of TS waves, the rotating elliptic vortex grows in time and
merging occurs without the need of a third vortex (Kevlahan & Farge 1997). The outer two
lobes are gradually wrapped around the rotating elliptic vortex. This results in a confined
persistently rotating structure around a common centre. See the supplementary material
and movies available at https://doi.org/10.1017/S0022377821000684.
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(a)

(b)

FIGURE 5. Time evolution of bubble–droplet density (a) and vorticity (b) for a viscoelastic
fluid with η = 2.5 and τm = 10. Both the density blobs are separated by distance d = 12 units
(d � 2ac, ac = 2).

(a)

(b)

FIGURE 6. Time evolution of bubble–droplet density (a) and vorticity (b) for a viscoelastic
fluid with η = 2.5 and τm = 5. Both the density blobs are separated by distance d = 12 units
(d � 2ac, ac = 2). The rotation between inner lobes owing to the merging process dominates
over the forward vertical motion.

In figure 6(a), the initially circular density blobs change into crescent shapes. Owing to
the reduction in the vertical forward motion and enhancement in the transverse direction,
these crescent shapes get wider in the horizontal direction for a while and then transform
into curved structures with dumbbell-shaped edges (see the second density panel) unlike
in an inviscid fluid (figure 3a). Later, the merging/pairing between two inner blobs of
different densities form a centre vortex and separates it from two outer blobs (one from a
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(a)

(b)

FIGURE 7. Time evolution of bubble–droplet density (a) and vorticity (b) for pure viscous HD
fluid (η = 2.5; τm = 0). Here, owing to the viscous damping force, in the presence of gravity,
the density crescent structures are transformed into spirals with time.

bubble and one from a droplet). All this results in a tripolar structure (see the third density
panel) with two outer blobs revolving around the centre vortex like satellites. Finally, the
fourth density panel has a centre vortex with two rolling distinct density arms and both
the outer blobs spiral into one arm. This observation favours our recent study of spiral
waves in density heterogeneous VE fluids where the number of spiral arms is proportional
to the number of different densities that coexist (Dharodi 2020). This tripole is symmetric
as it does not move but merely rotates (van Heijst, Kloosterziel & Williams 1991). In the
supplement we include a movie to accompany the static images shown in figure 6.

To determine the pure viscous effect of viscosity on bubble–droplet dynamics, we also
simulated a pure viscous HD fluid (see the density evolution in figure 7 for η = 2.5; τm =
0) by using (2.11) and (2.14). In figure 7(b) the viscous effect is so strong over the gravity
effect that there is almost no forward vertical motion. The vorticity lobes spreading owing
to viscosity enhance the pairing between the like-sign inner lobes with time (Huang 2005)
and this, in turn, induces a regularly rotating flow at the centre. This reduction in the
vertical motion and strong rotating flow at the centre transforms the crescent density
blobs into two persistently rotating spirals with time, as shown in figure 7(a). Again,
this observation confirms that the number of spiral arms is proportional to the number
of different densities that coexist (Dharodi 2020).

Thus, the bubble–droplet dynamics are significantly affected by the presence of τm
which controls the viscous spreading of vorticity lobes through the existence of the
transverse mode in SCDPs.

3.1.2. Case (ii): Medium spaced (d>2ac)

At the start, the droplet (xc1 = −4.0) and bubble (xc2 = 4.0) are medium spaced (d =
8), two inner lobes of vorticities just touch each other. Here, the spacing is less than
the earlier widely spaced case (d = 12). Thus, there should be a higher probability of
interaction between a bubble and a droplet. Figure 8 displays the time evolution of the
density (a) and vorticity (b) profiles for an inviscid fluid. In the beginning, figure 8 shows
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(a)

(b)

FIGURE 8. Time evolution of bubble–droplet density (a) and vorticity (b) for an inviscid fluid.
Initially, the droplet and bubble have a small overlapping between the inner lobes. Both have
some interactions in the beginning but later start to evolve independently as separate ones with
some diversion from the vertical direction in comparison to the widely spaced HD case shown
in figure 3.

a small side-by-side overlapping between the inner lobes owing to some closeness between
them. Later, the forward motion (induced by gravity) of a bubble and a droplet dominates
over this transverse overlapping and results in them evolving independently as separate
ones with some diversion from the vertical direction compared with the earlier widely
spaced inviscid case (figure 3).

To visualize the effect of coupling strength, we start with the mild-strong coupling
case; η = 2.5, τm = 20 in figure 9. In figure 9(a,b) the merging process dominates over
the forward vertical motion and this results in the formation of a tripolar structure. For
the earlier widely spaced case (d = 12) the tripolar structure formed only for a strong
coupling strength (η = 2.5; τm = 5). Thus, the decreasing distance increases the pairing
between the bubble and droplet. Next, for the medium-strong case η = 2.5; τm = 10 in
figure 10(a,b), the formation of a tripolar structure takes place earlier compared with the
earlier case (η = 2.5, τm = 20). This tripolar structure has a smaller size and high rotation
speed. The smaller size means less area of convection of the fluid across the medium. The
rotating outer density blobs are also no longer circular. For the case of strong coupling
strength η = 2.5; τm = 5.0, figure 11, the reduction in vertical motion is higher and the
net structure rapidly merges into a tripolar. As time passes, the outer vorticity lobe arms
are spread out around the inner rotating elliptical vortex and smoothed out by the emerging
TS shear waves. Thus, more axial symmetric and confined structure formation takes place.

A comparative analysis of all the above cases shows that the confinement of the
vortex structures is proportional to the increasing coupling strength. Figure 12 shows
the evolution of the bubble–droplet density of a pure viscous fluid with η = 2.5; τm = 0.
Under the influence of gravity, in the absence of the TS wave, the crescent structures
transform into two regularly rotating spirals. These spirals are elongated vertically owing
to the gravitational force. The comparison of figures 12 and 7(a) shows that the medium
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(a)

(b)

FIGURE 9. Time evolution of bubble–droplet density (a) and vorticity (b) for a viscoelastic
fluid with η = 2.5 and τm = 20. Both are separated by distance d = 8.0 units (d>2ac, ac = 2).

(a)

(b)

FIGURE 10. Time evolution of bubble–droplet density (a) and vorticity (b) for a viscoelastic
fluid with η = 2.5 and τm = 10.

spaced blobs (d>2ac) show a higher rotation rate of spirals than widely spaced blobs
(d � 2ac).

3.1.3. Case (iii): Closely spaced (d ≈ 2ac)

To begin with, the droplet (xc1 = −2.2) and bubble (xc2 = 2.2) are placed close enough
(d = 4.4 ≈ 2ac) so that both the like-sign inner lobes of vorticity almost overlap with
each other to yield a tripolar vorticity structure. As the simulation begins, the overlapped
centre vortex starts to rotate counterclockwise and this results in the rotation of whole
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(a)

(b)

FIGURE 11. Time evolution of bubble–droplet density (a) and vorticity (b) for a viscoelastic
fluid with η = 2.5 and τm = 5. Both are separated by distance d = 8.0 units (d>2ac, ac = 2).

FIGURE 12. Time evolution of bubble–droplet density (a) and vorticity (b) for pure viscous HD
fluid (η = 2.5; τm = 0). The medium spaced blobs (d>2ac) show a higher rotation rate of spirals
than those of the widely spaced case d � 2ac (figure 7).

structure about a common centre even for an inviscid fluid, as shown in figure 13. This
rotating flow transforms the crescent-shaped density blobs into thin intertwining spirals as
shown in figure 14. Up to t ≈ 15, there is no significant difference in density profiles for
the simple fluid and VE cases. These common evolution features can be clearly seen up
to the second column of figures 15(a), 15(b), and 15(c) for varying relaxation parameters
τm = 20, 10 and 5, respectively; for the fixed viscosity η = 2.5. At a later stage, the density
configuration evolves quite differently for the inviscid fluid and VE fluid. In the case of the
inviscid fluid we observe two constantly rotating prominent crescent structures along with
faint spirals. However, in the VE fluid, the crescent structures and the spirals get mixed
owing to the emerging TS wave (see figure in the supplemental material). This results in
the absence of crescent structures and the whole structure evolves into spirals outward
away from the centre of rotation. Comparison of the last two columns from figure 15(a)
(η = 2.5; τm = 20), figure 15(b) (η = 2.5; τm = 10) and figure 15(c) (η = 2.5; τm = 5)
clearly confirms the earlier statement that the stronger coupling strength leads to a more
axial symmetric and confined structure formation. Again, for the viscous fluid, owing to
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FIGURE 13. Time evolution of bubble–droplet vorticity for an inviscid fluid corresponding to
figure 14.

FIGURE 14. Time evolution of bubble–droplet density for an inviscid fluid. Both are separated
by distance d = 4.4 units (d ≈ 2ac, ac = 2).

the closeness,figure 16 shows a higher rotation rate of spirals compared with the medium
spaced (figure 12a) blobs.

3.2. Aligned vertically
We now consider the second arrangement (B) where the droplet is placed above the bubble
in a vertical column (see figure 1b). Here, the coupling strength (η/τm) is the only varying
parameter. We have a system of length lx = ly = 12π units with 512 × 512 grid points in
both the x and y directions. The system along the x-axis and y-axis are from −6π to 6π
units. For this case the values of the parameters ac, xc, yc, ρ

′ for the droplet and bubble
are 2.0, 0.0, 4π, 0.5 and 2.0, 0.0, −4π, 0.5, respectively. For this configuration in contrast
to the previous case in figure 1(a), there is no rotation of density blobs. Here, the falling
droplet and rising bubble simply collide with each other during the course of evolution.
Figure 17(a) displays the evolution of this density configuration for the inviscid fluid.
It is evident from the figure that as these two structures evolve, they hit each other and
their blobs become separated. One blob from the bubble and one blob from the droplet
get paired with each other and subsequently move horizontally. Figure 18(a) shows the
evolution of the same density configuration for a VE fluid (η = 2.5; τm = 20). It is evident
from the figure that compared with the inviscid fluid, the horizontal propagation of the
structures is slower and vertical separation between density blobs is larger with time.
This horizontal reduction and vertical separation further increase with increasing coupling
strength, as shown in figure 19(a) (η = 2.5; τm = 5). Such dynamics can be understood in
terms of TS waves from the relative observations of figures 18(b) and 19(b).

We know from the above discussion that a stronger coupling strength of a medium
induces faster TS waves. The faster TS waves result in a larger mutual pushing between
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(a)

(b)

(c)

FIGURE 15. Time evolution of bubble–droplet density in viscoelastic fluids for fixed viscous
term η = 2.5; and varying coupling strength arising from changing relaxation parameter τm =
20, 10 and 5 in (a), (b) and (c), respectively. See supplemental material for the vorticity profiles
corresponding to these density profiles.

FIGURE 16. Time evolution of bubble–droplet density (a) and vorticity (b) for pure viscous HD
fluid (η = 2.5; τm = 0). The closely spaced blobs (d ≈ 2ac) show a higher rotation rate of spirals
than the medium spaced d>2ac (figure 12) case.

these unlike-sign vorticity lobes in the vertical direction and become separated vertically
with time. In addition to lobes separation, the emission of the TS wave reduces the strength
of dipoles thereby reducing their propagation. The relative observations of figures 18(b)
and 19(b) clearly reflect the abovementioned fact.
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(a)

(b)

FIGURE 17. Time evolution of bubble–droplet density (a) and vorticity (b) for an inviscid
fluid. Both are separated by distance d = 12 units (d � 2ac, ac = 2).

(a)

(b)

FIGURE 18. Time evolution of bubble–droplet density (a) and vorticity (b) for a viscoelastic
fluid with η = 2.5 and τm = 20.

Here, we restrict our study to this case only. However, other possible cases could be
explored by varying the initial spacing. Furthermore, the collision between vertically
aligned bubble and droplet with varying disparate strengths may lead to physical
phenomena like interpenetration or a more complex trajectory after collision.

4. Summary and conclusion

In part I (Dharodi & Das 2021) of this investigation, in addition to the Rayleigh–Taylor
instability, we simulated individual dynamics of a rising bubble and a falling droplet
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(a)

(b)

FIGURE 19. Time evolution of bubble–droplet density (a) and vorticity (b) for a viscoelastic
fluid with η = 2.5 and τm = 5.

in SCDP. We considered the SCDP as a viscoelastic fluid under the formalism
of the generalized hydrodynamic fluid model. Here, with an interest to understand
the interactions between a rising bubble and a falling droplet, we extend these
individual dynamics to their combined evolution through two arrangements. A series of
two-dimensional numerical simulations have been conducted.

In the first arrangement the bubble and droplet are manually placed side-by-side in a row
together at the same height for three different initial spacings: widely spaced (d � 2ac),
medium spaced (d>2ac), and closely spaced (d ≈ 2ac), where ac is core radius. To
demonstrate how the appearance of τm controls the viscous spreading of the vorticity
lobes, for each case, the coupling strength has been introduced as the mild-strong (η = 2.5,
τm = 20), medium-strong (η = 2.5, τm = 10) and strong or strongest (η = 2.5, τm = 5), as
well as pure viscosity (η = 2.5, τm = 0). It is observed that the net dynamics is governed
by the competition between the side-by-side attraction of two inner like-sign vorticity
lobes, owing to the merging process, and the vertical motion of two dipolar vorticities,
owing to gravity. In the case of widely spaced, the forward vertical motion of dipolar
vorticities dominates over the side-by-side attraction for the mild- and medium-strong
coupling, while for the strong coupling case the mutual attraction of vorticity lobes
dominates which results in a rotating tripolar structure. For the medium spaced case, a
rotating tripolar structure is found for all the three coupling parameters. The reduction in
the size of these structures is observed with increasing coupling strength. However, for an
inviscid fluid the forward vertical motion of dipolar vorticities is observed. For the closely
spaced case, the whole structure rotates for all the cases including the inviscid fluid. In the
second arrangement, the droplet is placed above the bubble in a vertical column with fixed
initial spacing. Here, in contrast to the previous case, there is no rotation of the bubble and
droplet. Under the influence of gravity, the crescent-shaped bubble and droplet hit each
other and their blobs become separated. One blob from the bubble and one blob from the
droplet get paired with each other and subsequently move horizontally. We observe that
their horizontal movement becomes slower with increasing the coupling strength of the
medium.
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It would be interesting to observe the homo-interactions between a pair of bubbles
rising or droplets falling side-by-side in homogeneous and heterogeneous background
density media. In a heterogeneous medium, the dynamics would be more complex as the
shear waves move slower in the denser side and faster in the lighter side (Dharodi 2020).
Furthermore, the collisional interactions between the vertically aligned bubble and droplet
of varying disparate strengths could be interesting, which may lead to the interpenetration
or more complex trajectory after collision.

Supplementary material and movies

Supplementary material and movies are available at https://doi.org/10.1017/S00223778
21000684. We include a movie to accompany the static images shown in figure 6. We also
include the time evolution of vorticity profiles corresponding to the density profiles shown
in figure 15(a–c).
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