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Abstract
Experiments should be designed to facilitate the detection of experimental measurement error. To
this end, we advocate the implementation of identical experimental protocols employing diverse
experimental modes. We suggest iterative nonparametric estimation techniques for assessing the
magnitude of heterogeneous treatment e�ects across these modes. And we propose two diagnostic
strategies—measurement metrics embedded in experiments, and measurement experiments—that help
assess whether any observed heterogeneity reflects experimental measurement error. To illustrate our
argument, first we conduct and analyze results from four identical interactive experiments: in the lab; online
with subjects from the CESS lab subject pool; online with an online subject pool; and online with MTurk
workers. Second, we implement a measurement experiment in India with CESS Online subjects and MTurk
workers.

Keywords: experimental design, measurement error, Bayesian estimation, causality, counterfactual
analysis, heterogeneous e�ects

1 Introduction
There is considerable concern across the social sciences with the fragility of estimated treatment
e�ectsand their reproducibility (Maniadis, Tufano,andList 2014; Levitt andList 2015;OpenScience
Collaboration 2015). Short of outright fraud, experiments do not replicate either because of knife-
edge treatment e�ects (Gelman 2013) or experimental measurement error. Some of this concern
has focused on the appropriateness of di�erent experimental modes (Chang and Krosnick 2009;
Camerer 2015; Levitt and List 2015; Coppock 2018). In this essaywedemonstrate that experimental
designs that incorporate diverse experimental modes can facilitate the detection of treatment
e�ect heterogeneity and associated experimental measurement error.
Our novel contribution is to suggest how replicating identical experimental protocols

across diverse experimental modes can inform e�orts to detect experimental measurement
error. We propose an iterative, machine-learning-based estimation strategy in order to
assess the magnitude of heterogeneous treatment e�ects across modes. These multi-mode
microreplications can be informative if researchers observe su�iciently di�erent estimated

Authors’ note: We would like to acknowledge the contributions of the Nu�ield College Centre for Experimental Social
Sciences postdocs who were instrumental in helping design and implement the experiments reported on in the
manuscript—these include, John Jensenius III, Aki Matsuo, Sonke Ehret, Mauricio Lopez, Hector Solaz, Wojtek Przepiorka,
David Klinowski, Sonja Vogt, and Amma Parin. We have also benefited from the very helpful comments from colleagues
including Vera Troeger, Thomas Pluemper, Dominik Duell, Luke Keele, and Mats Ahrenshop. And thanks to the Political
Analysis reviewers, editor and editorial team who were extremely helpful. Of course we assume responsibility for all of
the shortcomings of the design and analysis. All replication materials are available from the Political Analysis Dataverse,
doi.org/10.7910/DVN/F0GMX1 (Duch et al. 2019).
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treatment e�ects and they can distinguish, with reasonable precision, modes with high versus
low experimental measurement error. We propose two further diagnostic strategies that help
assess whether any observed heterogeneity reflects experimental measurement error. First,
we propose to embed measurement items in the experimental protocol to help calibrate
measurement error. Second, we advocate supplemental experiments that directly manipulate
the magnitude of experimental measurement error. These diagnostic techniques along with
multi-modemicroreplications help assess the robustness of estimated treatment e�ects.
We illustrate our case for multi-mode microreplications with the results from four identical

interactive experiments. One experiment consists of 6 sessions with 116 subjects in the Nu�ield
Centre for Experimental Social Sciences (CESS) Lab. A second identical experimentwas conducted
online with 144 subjects from the same CESS lab subject pool. In a third experiment 90 subjects
from the CESS UK Online subject pool took decisions in the identical interactive experiment.
Finally, 390MTurkworkers, all from theU.S.,made choices in an identical interactive experiment.1

Separately, to illustrate how embedded, or complementary, experiments can help identify
experimental measurement error, we conducted experimental vignette experiments in India with
samples of 200 MTurk and 200 CESS India Online subjects.
We begin with a discussion of multi-mode microreplications, suggesting why this strategy

helps identify experimental measurement error. We present the results of a simulation that
illustrates the informative value of multi-mode replications. This is followed by three sections,
each presenting a diagnostic strategy along with empirical examples: an iterative machine
learning-based statistical method for estimating mode-specific heterogeneous treatment e�ects;
measurement strategies for detecting experimental measurement error; and experimental
approaches for evaluating conjectures about experimental measurement error.

2 Microreplication and Multi-modes
2.1 How Should I Microreplicate?

Many experiments are conducted with a nonprobability sample and can be implemented in a
variety of modes. By modes wemean how the experimental treatments are delivered to subjects.
Classic social science experiments are conducted in experimental labs where subjects receive
treatments under the close supervision of the experimenter. Over the past decades, themodes for
deliveringexperimental treatmentshavediversifieddramatically. The subjects couldbe“workers”
whoagree todopaid taskson the internet—MTurkbeing themostpopular examplealthough there
are quite numerous variations on this theme. They could be part of a regular panel that agrees to
answer various types of surveys on a regular basis. And experiments embedded in these surveys
could be conducted in person, online, on the phone, on various personal devices, or on Skype.
Social media experimentation can take place on the internet with digital traces representing the
outcomes of interest (Centola 2018). And of course there is a proliferation of experiments that are
conducted in a wide variety of field settings.
We contend that this diversity of modes provides researchers with a unique opportunity to

identify experimentalmeasurementerror.Ourcontribution is to suggeste�ectivemicroreplication
strategies given this diversity of experimental modes and constraints on researchers’ resources.
For many, having already invested in a particular mode—say MTurk—the preferred strategy is
to replicate within that same mode.2 We contend however that if the mode itself incorporates
features that exaggerate, or contribute to, experimental measurement error then replicating
within mode may not be particularly informative about fragile treatment e�ects. If the objective

1 All of the replication material for this essay is available at Duch et al. (2019).
2 Note, that since our concern is with replication, we do not assume that researchers will be able to randomly assign mode
(although this may be the experimental ideal).
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is to identify the measurement error associated with an experimental implementation, then the
most cost-e�ective microreplication strategy is to invest in alternative modes.
The experimental endeavor is all about a design and implementation that will generate

convincing results that replicate. We contend multi-mode microreplications not only facilitate
measurement error detection but have higher marginal payo�s than investing in same-mode
replication. To demonstrate this proposition, we construct a simple simulation of experimental
decision-making. As our simulations suggest, multi-modemicroreplications will be helpful under
two reasonable assumptions: the prevalence of experimental measurement error varies by
experimental context, ormode; and, second, when observing treatment e�ects that vary bymode
researchers can typically identify the mode exhibiting lower measurement error.

2.2 Experimental Measurement Error
Experimental measurement error occurs when subjects make choices or decisions that are an
unintended artifact of the experimental design. This is a violation of the exclusion restriction
since elements of the treatment delivery (mode) are confounded with treatment e�ects. An
underlying theme of much of the voluminous literature on experimental modes is the claim
that experimental measurement error is, or is not, exaggerated in one mode versus another.
Experimental measurement error fuels the debate in economics regarding the merits and failings
of classic lab experiments as opposed to field experiments (Camerer 2015; Levitt and List 2015).
One of the most widely cited examples of experimental measurement error is the experimenter
e�ect (Zizzo 2010) that has been attributed to classic lab settings (Levitt and List 2007), field
experiments (Al-Ubaydli et al. 2017; Dupas and Miguel 2017) and survey experiments (Bertrand
and Mullainathan 2001; Gooch and Vavreck 2019), although de Quidt, Haushofer, and Roth
(2018) suggest its overall e�ect might be exaggerated. Online experiments have a range of
potential experimental measurement errors that are unique to the mode, including inattention,
online use of search browsers, trolling, and multiple identities. MTurk online experiments,
particularly because of their popularity, have come under scrutiny due to potential measurement
error associated with experimenter e�ects, the active social networks that link MTurk workers,
questions about the nationality of MTurk workers, and, in fact, whether many MTurk workers
are real people or simply bots (Burleigh, Kennedy, and Cli�ord 2018; Kennedy et al. 2018).
Our general point is that regardless of what experimental mode is selected—a lab experiment,
crowd-sourced worker experiment, online with highly paid subjects, lab in the field, Facebook-
recruited subjects, online with representative panel, random control trials in the field—there will
be well-regarded published authorities demonstrating the extent to which a particular mode is
prone to experimental measurement error.
Researchers should adopt designs that maximize their chances of being informed about

this potential experimental measurement error. By deliberately varying the experimental mode,
researchers increase the likelihood of observing heterogeneous treatment e�ects produced by
measurement error. The challenge for researchers is discerning whether results are artifacts of
experimental measurement error when they observe di�erent mode-related treatment e�ects.3

2.3 Are Multi-mode Replications Informative?
Experimental measurement error occurs when outcomes are an unintended artifact of the
experimental design. As a result we observe an outcome with error. The implementation of
multi-mode experiments can anticipate, and help account for, this measurement error (Loomes
2005). One of the important challenges for experimentalists is simply detecting experimental

3 Recent findings by Bader et al. (2019) regarding the transportability of classic laboratory experimental findings to other
modes highlight the issue of what constitutesmode-specific heterogeneity. In their case they clearly find that quantitative
estimated treatment e�ects vary significantly across modes. On the other hand, the qualitative results are for the most
part consistent across modes.
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measurement error and hence potential threats to the robustness of a reported treatment
e�ect. In a perfect world we report an ATET that reflects the “true” treatment e�ect. In fact,
of course, the typical experiment generates ATEk where k = a mode. Having conducted a
single experiment—lets say with 500 subjects on MTurk—it is di�icult to be certain that ATEk
approximates ATET .4

Wecontend thatmeasurement error is exaggeratedorminimized in somemodes versus others.
For example, underreporting on the outcome variable is more prevalent in certain modes. A
concern is whether our data is generated in a mode that exaggerates this measurement error,
i.e., MEk > 0 and hence our estimated treatment e�ect is biased, i.e., ATE∗k = (ATET + MEk ).
Incorporating amulti-mode replication in the designmay be informative about thismeasurement
error—probably more informative than a monomode replication. Two conditions must hold in
order for multi-mode replications to be informative about measurement error. First, MEk , MEk ′
and, second, there is a reasonably high probability the researcher can distinguish low- from high-
error modes.
Microreplications are designed to identify experimentalmeasurement error. Amicroreplication

that has a low probability of signaling measurement error is probably not worth the investment.
Repeated sampling from the same mode may simply confirm the underlying bias created
by mode-related measurement error. But of course, depending on one’s priors regarding the
prevalence of measurement error in di�erent modes, multi-mode replications might not be
cost-e�ective. We have constructed a simple simulation based on reasonable priors regarding the
state of experimental measurement error. It suggests that multi-mode replication has as-good,
if not better, payo�s than single-mode replication even when researchers’ capacity to identify
modes with low experimental measurement error are low.
Our “true” average treatment e�ect, (ATET ), excludes any bias created by mode-related

measurement error—respondent fatigue, experimenter e�ects, falsified responses, etc.5 ATET
is unobserved. A typical experimenter will observe ATE∗k , where k is the mode in which the
experiment is conducted. In our illustration, researchers can be in one of three “mode” states
with some fixed probability, pk such that

∑3
k=1 pk = 1. MEk is the experimental measurement

error associated with mode k ∈ {1, 2, 3}. In our illustration this can vary between 0 and 50.
Each treatment e�ect will be observed with some probability: ATE∗k = (ATET + MEk ) × pk .
A key consideration in engaging in multi-mode microreplication is the researcher’s ability to
detect which mode has a measurement error advantage. We capture this in the expected value
calculation with the µ term. µ is the probability, conditional on observing the mode with the
least experimental measurement error, of correctly identifying this mode, k , as having the least
experimental measurement error.
We assume in this illustration that

∑
k,2MEk > ME2 = 0. Researchers observe ATE∗k and

then make a decision regarding microreplication; to either replicate within the same mode or to
replicate with a di�erent mode. Their replication decision determines their final estimated ATE∗k .
For those who choose the path of microreplication within the same mode, their expected ATE∗k
will simply be a function of the pk and MEk . In a three mode setting, where P = {p1, p2} and
p3 = 1 − p1 − p2, the expected measurement error for microreplication within the same mode

4 We can also express this issue at the individual level. Assuming we observe treatment outcomes in a “error-free” context
then for subject i , the observed outcome should be yi = β0 + β1Ti + εi whereTi is the treatment-assignment indicator for
subject i , and β1 is unbiased and e�icient. But in anymode, k , with some noise, we observe the treatment outcome y ∗i k =
δk yi + θkTi k + εi k , where θ reflects mode-specific measurement error related to treatment, and δ reflects mode-specific
attenuation of outcome measurements. Hence, if θk > 0 then we misreport measurement error for a treatment e�ect; if
0 < δk < 1 there is underreporting on the outcome variable.

5 Note since this is an average treatment e�ect, we are concerned with themean response to treatment across the relevant
population. The “true” treatment e�ect for any subgroup may di�er due to covariate factors that are not related to mode
itself (which we explore in more detail in later sections).
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is as follows:

E (P ,ME) = p1 × ME1 + (1 − p1 − p2) × ME3. (1)

Similarly we can compute the expectedmeasurement error for thosewho opt formicroreplica-
tion in a di�erent mode. Their expected observed treatment e�ect is slightly di�erent. First, the
expected value calculationwill include theprobability of ending up in oneof the other twomodes.
It of course also includes themode-specificMEk . We include a third term, µ that is specific to those
instances inwhich the researcher observes ATET , i.e, when k = 2 in our scenario. This term reflects
the ability of the researcher to correctly identify k = 2 as having ME = 0. Essentially this term
reflects the success of e�orts by researchers to embed measures and design microexperiments
that identify experimental measurement error. For the sake of simplicity in this illustration we
assume mode comparisons are only informative if the researcher is comparing a mode with
experimental measurement error to one without. In fact, the result can be generalized to cases in
which researchers are comparing modes with varying levels of experimental measurement error.
The expected measurement error for microreplication in di�erent modes is:

E (P ,ME, µ) = p1 ×
p2

1 − p1
× ((1 − µ) × ME1)

+ p1 ×
1 − p1 − p2

1 − p1
×
ME1 + ME3

2
+ p2 ×

p1
1 − p2

× ((1 − µ) × ME1)

+ p2 ×
1 − p1 − p2

1 − p2
× ((1 − µ) × ME3) + (1 − p1 − p2) ×

p1
p1 + p2

×
ME1 + ME3

2

+ (1 − p1 − p2) ×
p2

p1 + p2
× ((1 − µ) × ME3). (2)

The optimal microreplication strategy depends on the three parameters: pk , MEk and µ, as
Figure 1 illustrates. Here we have generated a schedule of outcomes for varying degrees of
measurement error:MEk ∈ {5, 10, 40}, for k ∈ {1, 3};ME2 = 0. Andµ is varied in the interval [0.5, 1];
at µ = 0.5, the researcher places equal weighting between the two modes i.e., has no relevant
priors that lead to the researcher weighting their estimation in favor of Mode 2 (as opposed to 1
or 3).6 The values presented in Figure 1 are the e�ect on the expected measurement error of
a multi-mode replication strategy relative to monomode replication. We vary the value of the
measurement error in Modes 1 and 3 as detailed above, as well as the probabilities p1 and p2 (and
so, by implication, the probability of being inMode 3).7 Each facet represents a di�erent value of µ,
ranging from 0.5 to 1.0.
The red shading represents states of the replication world in which it is preferable to adopt

a single mode replication strategy. First, and this is clear from Equation (2), as µ declines from
certainty and approaches 0.5, the monomode replication strategy becomes optimal across a
larger range of scenarios. This corresponds to research designs that are poorly equipped to detect
experimental measurement error—hence unable to distinguish a treatment e�ect with minimal
versus considerable experimental measurement error. Being unable to weigh more favorably the
estimate within Mode 2 means that in expectation it is more advantageous to microreplicate
within the same mode. And we can see from Figure 1 that as a researcher becomes increasingly
likely to recognize Mode 2 as having lowmeasurement error, a high µ, then adopting multi-mode
microreplication is the dominant strategy.

6 It is possible to supply values of µ < 0.5. These values, however, would suggest the researcher is biased against the zero
measurement error mode, which runs contrary to the assumptions of our basic model. For this reason, we focus only on
those scenarios where the researcher is at worst ambivalent to Mode 2 (µ = 0.5), or is biased toward Mode 2 (µ > 0.5).

7 Figure 1 shows the results for all the combinations of measurement error. The principle influence of measurement error in
this model is to a�ect the magnitude of the payo�.
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Figure 1. Simulation of relative measurement error using multi- versus single-mode replication.

But for intermediate values of µ, which are probably the most plausible, i.e., between 0.5
and 0.7, we get some sense of how variations in the state of experimental measurement error
a�ect microreplication strategies. First, the probability of Mode 2 has to be much greater than
0.5 for it to make sense, in general, for researchers to adopt monoreplication strategies. Even
when researchers have a greater than 50 percent chance of already having conducted an
experiment with no measurement error, researchers will place greater weight on the mode with
zero measurement error if it is chosen. As a result, multi-mode replication becomes less costly in
expectation.
If the probability of a no experimental measurement error mode (i.e., Mode 2 with ME = 0) is

less than 0.5 and µ is between 0.5 and 0.7 then multi-mode replication is the dominant strategy.
Because the researcher expects to observe one of two modes with measurement error and is
more than likely to distinguish the no experimental measurement error mode (Mode 2) from the
nonzero mode (either Mode 1 or 3), in expectation the multi-mode replication strategy will have
lower experimental measurement error than a single mode replication.
The bottom row of Figure 1 is in some sense aspirational. It represents a world in which

researchers are almost certain to incorporate into their experimental design mechanisms for
confidently detecting experimental measurement error (µ > 0.7). In this case, a multi-mode
microreplication is virtually always the dominant strategy. The remainder of the essay suggests
strategies both in the design, and subsequent analysis of results, that facilitate detection of
experimental measurement error, i.e. increases the magnitude of µ.

3 Identifying Heterogeneous Mode E�ects
The benefits of multi-mode replications illustrated in Figure 1 are very much contingent on our
ability to identify heterogeneous treatment e�ects that are associated with mode. And by mode
here we are referring to features of the experimental design that determine how treatments are
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administered to subjects. In amulti-mode replicationwe treat experimentalmodes like covariates
that could potentially condition treatment e�ects. There are potentially many other competing
covariates that could be conditioning treatment e�ects. And, as Hu� and Tingley (2015) suggest,
clusteringofparticular covariates indi�erent experimentalmodes couldbeconfoundedwithwhat
we are characterizing asmode e�ects.8 The diagnostic utility ofmulti-mode replications depends
on our ability to tease out the relative importance of mode in conditioning treatment e�ects.
To determine whether there are significant mode e�ects we implement an iterative, machine

learning-basedstatisticalmethoddesigned forestimatingheterogeneous treatmente�ects (Athey
and Imbens 2017; Grimmer, Messing, and Westwood 2017; Künzel et al. 2019). The estimation
is conducted without any a priori specification of the functional form of the heterogeneity in
treatment e�ects. The method allows us to estimate the magnitude of treatment e�ects for all
possible combinations of relevant covariates including the experimental modes. To the extent
that there is no significant mode-related heterogeneity in conditional average treatment e�ects
(CATEs) we gain some confidence that the estimated treatment e�ects are not confounded with
experimental measurement error. Of course, this will only be the case for measurement error
that is correlated with experimental mode. If the measurement error is similarly shared (i.e.,
the same magnitude) across modes then the multi-mode design would be uninformative. But
to the extent that there is a correlation between mode and the magnitude of experimental
measurement error (an argument frequently made in the literature) then the multi-mode design
will be informative. We illustrate this with an experimental design that has identical interactive
experiments implemented in four diverse experimental modes. And we implement one of a
number of iterative machine learning-based statistical methods to estimate heterogeneity in
treatment e�ects associated with these modes.

3.1 Experiment
We illustrate this approach using treatment e�ects generated from four di�erent mode
replications of identical experiments conducted by Duch, Laroze, and Zakharov (2018). The aim of
this studywas to understand lying behavior. These experiments consisted of lying games inwhich
subjects earn money performing real e�ort tasks (RETs); deductions are then applied to their
earnings and distributed to other group members (subjects are randomly assigned to groups of
four); and subjects have opportunities to lie about their earnings. In all experiments, subjects
make the same interactive decisions in real time.
The lab sessions were conducted at Nu�ield CESS in Nov.–Dec. 2013 and Aug.–Sep. 2017. The

experiment begins with a Dictator Game. This is followed by two lying modules consisting of ten
rounds each and they only di�er in the audit rates—0% audit in the first module and 20% audit
in the second. Prior to the lying game, participants are randomly assigned to groups of four and
the composition of each group remains unchanged throughout both lying modules. Each round
of these two lying modules has two stages. In the first stage subjects perform RET to compute a
series of two-number additions in one minute. Their Preliminary Gains depend on the number of
correct answers, getting 150 ECUs for each correct answer.
In the second stage, subjects receive information concerning their Preliminary Gains and they

are asked to declare these gains. A certain percentage of these Declared Gains is then deducted
from their Preliminary Gains. These deductions are then summed up and evenly divided among
the members of the group. Note that in each session the deduction rate is consistent. The
deduction treatments implemented in the lab experiments are: 10%, 20% and 30%. Subjects
are informed of the audit rate at the beginning of each module and that, if there is an audited

8 Although Coppock, Leeper, and Mullinix (2018) compare survey experiment results from di�erent modes and suggest this
might not be an issue.
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Table 1. GLMestimationonpercentdeclared.

Mode

Lab Online Lab Online UK Mturk

Ability Rank −0.50 −0.16 −0.16 −0.12

(0.04) (0.04) (0.07) (0.04)
20% Deduction −0.12

(0.02)
30% Deduction −0.13 −0.18 0.04 0.02

(0.02) (0.03) (0.04) (0.02)
No Audit −0.33 −0.13 −0.16 0.01

(0.02) (0.03) (0.04) (0.02)
Age 0.01 0.01 −0.0002 0.002

(0.002) (0.003) (0.001) (0.001)
Gender (1 = Female) 0.002 0.10 −0.02 −0.004

(0.02) (0.02) (0.04) (0.02)
Constant 0.72 0.48 0.88 0.58

(0.07) (0.09) (0.07) (0.04)

Observations 1,600 1,219 499 1,902

discrepancy between the Declared and Preliminary gains, they will be deducted half of the
di�erence between the two values plus the full deduction of the Preliminary gains.
At the end of each round participants are informed of their Preliminary and Declared gains; the

amount they receive from thegroupdeductions; and their earnings in the round. Subjects are paid
for one out of the ten rounds in each lyingmodule at the endof the experiment, anddonot receive
feedback about earnings until the end of the experiment. Further details of these experiments are
provided in the Appendix and in Duch, Laroze, and Zakharov (2018).9

We also conduct an online version of the lying experiment with three di�erent subject
pools—the same student subject pool eligible for the lab, a general population UK panel (CESS
online), andU.S.MTurkworkers. Theonly substantivedi�erencesare that: (1) participantsplayone
cheatingmodule of 10 rounds instead of the twomodules that exist in the lab version. The second
cheating module is omitted to reduce the length of the experiment.10 In the lying module there
is either a 0% or 10% audit rate that is fixed throughout the session. (2) There are only on-screen
instructions. (3) The conversion rate is lower, at 1000 ECUs = £1 for UK samples (US $1 for Mturk)
(compared to the 300 ECUs = £1 in the lab).

3.2 Treatment E�ects
Subjects in all experiments were assigned to similar deduction and audit treatments. Our general
expectation is that report rates will drop as deduction rates rise (a.k.a. higher lying); report rates
will be lower when there is no auditing of income; and those who perform better on the RET will
lie more about their income.
Table 1 reports results for the regression model with the percent of income reported as the

dependent variable. To estimate treatment e�ects, we include two dummy variables for the 20%
and 30% deduction rates, and a “No Audit” dummy variable. The covariate ability is measured

9 The complete replicationmaterial for Duch, Laroze, and Zakharov (2018) is available at https://github.com/rayduch/Once-
a-Liar. Replication material for the specific lab experiment employed in our analysis is available at Duch et al. (2019).

10 Thedecision todrop thesecondmodule isbasedonnonrandomattritionconcerns—asubstantiveproblem inexperimental
outcomes (Gerber and Green 2008). While lab experiment subjects can reasonably be expected to stay in the lab for one
or two hours (Morton and Williams 2010), it is di�icult to maintain participants attention online for that long (Mutz 2011).
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by the rank of one’s average performance across all experimental rounds relative to all other
participants (normalized between 0 and 1, where 1 is the highest performer). In addition, we
includeageandgender as further controls. Thebaseline is the 10%deduction rate anda 10percent
audit rate.
The Deduction dummy coe�icients are negative and significant for the lab subject pools (but

not for the online subject pools). And the Audit dummy variable is negative and significant in
three of the four models. For the four online and labmodels, the estimated coe�icients for Ability
Rank are, as expected, negative and significant in all four equations. The lab results stand out as
beingmost consistently supportive of our conjectures. The experiments outside of the lab are less
consistently supportive although again not contradictory.
The estimated e�ects reported in Table 1 are significant and in the expected direction for the

lab experiments; there is more variability in direction and significance for the online multivariate
results. In theAppendixwe report theWild andPCBp values for the coe�icients reported inTable 1,
which further indicate that e�ects for online experiments are muchmore imprecisely estimated.

3.3 Heterogeneous Mode E�ects
Table 1 suggests a straightforward estimation strategy for identifying heterogeneousmodee�ects.
We run separate generalized linear models (GLMs) for eachmode, and there clearly is a pattern in
the estimated coe�icients suggesting variation in treatment e�ects across modes. Note that the
deduction rate treatments are particularly significant, and in the correct direction, for the lab and
online lab modes—but weaker and incorrectly signed for Online UK and MTurk. The “No Audit”
treatment is quite large, significant and correctly signed for the Lab experiment but weaker for
Online Lab and Online UK and indistinguishable from zero for the MTurk experiment. And the
coe�icient for ability is strongly negative for the Labmode but smaller for the other three modes.
And demographic covariates are significant in some, although not all, modes.
The GLM estimation in Table 1 may be a perfectly reasonable specification for a model

explaining lying behavior. It may not be the most conservative strategy for identifying
heterogeneous treatment e�ects, however. The possible complication is that we are e�ectively
imposing a particular specification (“ad hoc variable selection”) that might not be optimal for
identifying heterogeneous mode e�ects (Imai and Ratkovic 2013, p. 445). At least with respect to
estimating possible heterogeneous mode e�ects typically we have no a priori expectations as to
howmode interacts with either the treatment or other covariates. Nor dowe necessarily have any
priors on how other covariates interact with treatment itself.
To avoid imposing a restrictive structure on the estimated treatment and covariate e�ects,

and their interactions, we estimate CATEs for the combined data from identical experiments
using an iterative, machine learning-based statistical method. As many have pointed out, there
are significant advantages to automating this estimation by employing nonparametric iterative
estimation techniques (Imai and Strauss 2011; Green and Kern 2012; Athey and Imbens 2017;
Grimmer, Messing, and Westwood 2017; Wager and Athey 2018). These techniques allow us to
assesswhether experimentalmodes condition estimated treatment e�ects (Imai andStrauss 2011;
Green and Kern 2012). Hence, we estimate CATEs for subjects sharing particular values on all
combinations of relevant covariates including the experimentalmodes inwhich theyparticipated.
In spite of the relatively large sample, the number of subjects populating any one unique

covariate/mode value will be relatively small. With so few observations sharing any one of these
unique covariate values, estimateddi�erences in CATEs are likely to bedrivenby randomvariation
in the small samples (Athey and Imbens 2017; Grimmer, Messing, and Westwood 2017). The
challenge then is to estimate heterogeneous e�ects that distinguish systematic responses from
di�erences that are the result of chance random assignment.
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A number of techniques have been proposed for overcoming this limitation in estimating
the response surface for any treatment variable conditional on particular covariates. Grimmer,
Messing, and Westwood (2017) present an excellent overview and suggest estimating a weighted
ensemble of such estimators. In the main text we present the results of one machine learning-
based strategy we believe is well-suited to estimating mode-related heterogeneity: Bayesian
Additive Regression Trees (BART) (Hill 2011; Green and Kern 2012).
BART is the Bayesian adaptation of the frequentist classification and regression tree (CART)

strategy for estimating models that repeatedly divide up the sample into increasingly more
homogeneous subgroups. Fitted values of the outcome variable are estimated for all of the
terminal nodes of a tree which will reflect ranges of covariate values in addition to treatment
status. Given a regularization procedure to prevent model overfit (Mullainathan and Spiess 2017),
the resultant estimates prove useful for estimating treatment heterogeneity across a vector of
treatment assignments and covariates.11

BART has several advantages. First, as with other supervised-learning methods, it takes the
substantial decision about the functional form of the model out of the hands of the researcher.
As thenumber of potential covariate–treatment interactions increases, thebenefits of automating
this aspect of estimation are greater (given the greater chanceofmodelmisspecification). Second,
BART results are relatively robust to experimenters’ choice of pruning parameters (Green andKern
2012). As a result, observed heterogeneity in CATEs across modes is less likely to be the result of
idiosyncratic parameter selection. Third, even when outcomes are linear with treatment, BART’s
performance is very similar to the results of linear models (Hill 2011). As we demonstrate below,
even with a relatively small number of covariates, the results of the BART procedure nevertheless
confirm the intuitions of the separate GLMmodels in Table 1. Finally, BARTmore easily enables us
to recover individual CATE estimates, and to visualize mode heterogeneity in an informative way.
BART employs an MCMC algorithm for generating individual estimated outcomes given the

covariate values of interest. For a set ofN observations, and aN ×C vector of covariates including
the treatment variable, BART generates a posterior drawof 1,000 predicted values for each unique
treatment and covariate profile a�er a model burn-in phase (Green and Kern 2012). We treat the
average of each of these 1,000 draws as the estimated outcome given the observed treatment
value and covariate profile.
Since the implementedBARTprocedure predicts outcomes rather than coe�icients, we recover

CATE estimates by first simulating outcomes for the observed data, and then for a set of
counterfactual observations. For the first set of simulated outcomes the BART model takes as
inputs the outcome variable of the study (in our case lying) and a training data matrix consisting
of the actual treatment assignments and covariates of interest. The second set of simulated
outcomes is basedona separate “test”datamatrix. Thisdataset contains “synthetic”observations
that are identical to the training data, except that the treatment assignments are reversed. The
test dataset does not influence the estimation procedure itself. Rather, these counterfactual cases
are used postestimation to predict counterfactual outcomes given the results of the BART model
using the observed, training data. Estimating outcomes for both the observed and counterfactual
observations ensures that for any unique set of covariates that have treated cases there will be a
matched set of counterfactual “control” cases at that set of values, and vice versa. TheCATE for the

11 There are, of course, other strategies researchers can use to test for mode-related heterogeneous e�ects. Results for an
additional estimation strategy, FindIt, are reported in the Online Appendix—the findings are essentially the same as those
reported for the BART method in this section. One could alternatively pursue exact matching on subject covariate values
to estimate di�erences in outcome based on mode assignment. Of course, exact matching requires a su�icient number
of subjects across modes to be e�ective. And, as a further complication, the researcher would have to match across both
mode assignment, and treatment assignment too. This strategy is beyond the purview of this essay, thoughwe encourage
others to pursue its viability. We return to the relevance of BART to other experimental contexts in the Discussion.
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Figure 2. BART estimated heterogeneous e�ects by mode; predicted CATEs (top panel) and corresponding
histogram of mode distributions (bottom panel).

various covariate values is simply the di�erence between the predicted outcome for the covariate
value in the training dataset and the corresponding observation in the synthetic, test dataset.
A CATE is estimated for each subject basedon their individual vector of treatment and covariate

values. This specification uses the same covariates as in Table 1—age, gender, and ability rank—
except here we pool observations across mode rather than estimating individual mode-specific
models. Consequently, the ability rank covariate is now calculated with respect to the entire
pooled sample, rather than individually within each mode. Our BART model of heterogeneous
e�ects is generated using the BayesTree R package with inputs described as above. All other
options within BayesTree are le� at their default value.
The distribution of CATEs organized by magnitude along with the histogram of covariate and

mode/sample pool profiles are presented in Figure 2. The overall average ATE is −0.07 and the
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range over all the covariate values is −0.25 to 0.20. The distribution of CATEs generated by BART
suggests that about 70 percent of the CATEs are negative which is consistent with the initial
conjecture and with the estimated ATE in Table 1. About half of the CATEs were less than −0.07
suggesting that to the extent that there is subject heterogeneity it tends to be consistent with the
direction of the ATE.
Theoverall treatment e�ect is negativebut there is distinctivemode-relatedheterogeneity. The

histogram in the lower part of Figure 2 provides a sense of how experimental modes influence
the magnitude of treatment e�ects. Participants from the classic lab subject pool—whether they
play the game in the lab or online—exhibit the highest Deduction Treatment e�ects. Most of these
subjects have treatment e�ects that aremorenegative than theATEof−0.07. Online subjects from
eitherMTurk or CESSOnline for themost part hadCATEs greater than−0.07; and over half of these
subjects (MTurk or CESS Online) had CATEs that were incorrectly signed.
In total we observe over 5,000 decisions in four identical experiments conducted with

di�erent modes. We estimate the impact of their ability on lying. Automated iterative statistical
estimators allow us to identify whether any particular covariates, including our four experimental
modes, are responsible for heterogeneity in treatment e�ects. Two di�erent such estimations
of heterogeneity e�ects, one reported here and the other in the Online Appendix, result in very
similar conclusions: treatment e�ects di�er bymode. Treatment e�ects forMTurk and CESSOnline
modes were smaller than expected.
Implementingmulti-mode replications alongwith automated iterative estimation is apowerful

diagnostic tool for identifying potentialmode-related experimentalmeasurement error. But since
subjects in our, andmost typical, experiments are not randomly assigned tomodes (unlike Gooch
and Vavreck 2019), resulting evidence, or lack of, should only be treated as an indirect indicator.
The concern, of course, is that there are variables (unrelated to experimentalmeasurement error),
that we have not accounted for in the estimation and that covary with mode. In our illustration
for example, those subjects who participate via MTurk are unlikely to be similar to student
participants who sign up for in-lab experiments. Our BART estimation strategy does include
relevant covariates like age and gender that mitigate mode-related e�ects being confounded by
demographic biases across mode. But of course these do not exhaust the subject characteristics
that might be confounders here.
This particular diagnostic tool should be the point of departure—it establishes the

likelihood of (or absence of) mode-related experimental measurement error. We suggest two
subsequent diagnostic phases that assesswhether anymode-relatedheterogeneity signals actual
experimental measurement error.

4 Experimental Measurement Error
Observingmode-relatedheterogeneity inCATEs is not particularly informativeunless the research
design incorporates explicit measurement error identification strategies. A second diagnostic
component of the design, that we address now, determines whether mode-related heterogeneity
actually signals experimental measurement error. We illustrate how embedded metrics in the
experimental protocols can indicate whether mode-related heterogeneity reflects experimental
measurement error. These illustrations focus on both random and systematic measurement
errors.

4.1 RandomMeasurement Error Metrics
Random measurement error in the outcome variable can reduce the precision of estimated
treatment e�ects. There is a growing recognition that an e�ective strategy for estimating
experimental measurement error is to observe subjects making lots of decisions—either very
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Table 2. Comparisonof ICCs acrossmodes for bothoutcomeandRET.

Report Rate (Outcome) RET

Mode (1) (2) (3) (4) (1) (2) (3) (4)

Lab 0.77 0.90 0.76 0.85 0.77 0.77 0.64 0.85
(0.03) (0.02) (0.05) (0.03) (0.02) (0.02) (0.04) (0.05)

Lab Online 0.74 0.86 0.63 0.77 0.81 0.76 0.76 0.77
(0.03) (0.02) (0.04) (0.04) (0.02) (0.02) (0.02) (0.05)

CESS Online 0.77 0.92 0.70 0.75 0.88 0.83 0.83 0.75
(0.04) (0.02) (0.10) (0.14) (0.01) (0.02) (0.03) (0.03)

MTurk 0.81 0.78 0.89 0.83 0.76 0.76 0.78 0.83
(0.02) (0.02) (0.03) (0.03) (0.02) (0.01) (0.02) (0.03)

Tax Rate 10% 30% 10% 30% 10% 30% 10% 30%
Audited? No No Yes Yes No No Yes Yes

similar, or identical, decisions or decisions that we expect to be related in a predictable fashion
(Engel and Kirchkamp 2018; Gillen, Snowberg, and Yariv 2019).12

In the Duch, Laroze, and Zakharov (2018) experiment, subjects repeat, a minimum of 10 times
(20 for students in the Lab), an identical RET. A�er the RET, theymake an identical decision, again
at least 10 times, as to how much of the earned income to report and be subject to a deduction
rate.13 An indicator of measurement error is the variability of the subjects’ observed behavior
within a particular deduction and audit rate treatment. For a particular deduction and audit
rate treatment we compare the variability of subjects’ behavior on these two tasks over the 10
rounds (intrasubject variability) with its variability across subjects (intersubject variability). We
calculate the Intraclass Correlation Coe�icient (ICC) which is simply the ratio of the between-
cluster variance to the total variance. It indicates the proportion of the total variance in reported
earnings that is accounted for by the subject clustering.We can thinkof it as the correlation among
scores for anyparticular subject. Our expectation is that intersubject variability should account for
much of the total variance—hence a high ICC. Moreover, the null hypothesis is not simply that the
ICC is high but also that it is very similar across quite di�erent modes.
Table 2 presents the ICC for the two variables, performance on the RET and the percent of RET

earnings reported in the experiment. The columns correspond to di�erent deduction/audit rate
treatments. ICCs are reported separately for each of the four experimental modes. Bootstrapped
standard errors are shown in brackets. For both the RET performance and reported earnings
variables, overall ICCs are quite high, and consistently so, across treatments for subjects in all four
modes. In the case of reported earnings, the one potential outlier here is the 0.63 ICC estimated
for the Lab Online mode.
Subjects in this experiment, at least with respect to the outcome variable, appear to behave

quite consistently across many rounds of identical decision-making tasks. And consistent
behavior is observed across quite di�erent experimental modes. There is little evidence at least
for these twometrics to suggest that randommeasurement error is correlated with experimental
mode.

12 Randommeasurementerrorassociatedwithcovariates isparticularlyproblematicbecause it can result inbiasedestimates
of treatment e�ects. Strategies for identifying and correcting for this bias again build on this practice of observing subjects
makemultiple decisions, for example onmeasures of risk aversion (Engel andKirchkamp2018; Gillen, Snowberg, and Yariv
2019). While recognizing that this work is very much complementary to our e�orts, we do not specifically deal here with
measurement bias in covariates.

13 Because of a programmingmistake in some of the UK Online sessions subjects onlymade these decisions four times. This
was detected quickly and fixed.
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Figure 3. Comparing percentages of actual earnings reported for all modes (le� panel) and onlinemodes by
age (right panel).

4.2 Systematic Measurement Error
A source of systematic measurement error is under- or overreporting preferences or behaviors
measured by the outcome variable (e.g., Gooch and Vavreck 2019). The range of behavioral
outcomes studied by social scientists that are plausible candidates here is vast: vote buying
and other types of corrupt behavior, voting turnout, lying, tax compliance, criminal activity, etc.
Systematic misreporting biases treatment e�ects. Incorporating diverse experimental modes in
the design can facilitate the detection of this systematic measurement error.
The challenge is incorporating features into the experimental design that convincingly identify

whether measurement error is generated by misreporting (Blattman et al. 2016). Lying about
earnings, the outcome variable in our experiment, is plausibly a sensitive choice for subjects to
make. And there is an extensive measurement literature on how reporting of sensitive behavior
varies by experimental, or survey, mode (Tourangeau and Yan 2007). We assume here that diverse
experimental modes trigger varying concerns regarding the social desirability of certain reported
behavior. There clearly is evidence that treatment e�ects in our experiments are not significant in
somemodes—possibly the result of underreporting.
The mode-related heterogeneity in CATEs observed in Figure 2 indicated that subjects in the

MTurk and CESS Online modes had CATEs closer to zero or, for many, incorrectly signed. This
could result because these participants from online subject pools are hesitant to lie about their
earnings. We are able to compare the rates of lying across experimental modes that can provide
some insight into whether underreportingmight be a source ofmeasurement error. The le�-hand
graph in Figure 3 reports the incidence andmagnitude of lying across the four modes.
There are two behavioral di�erences that stand out for the zero-audit condition in Figure 3.

First, subjects, for the most part Oxford undergraduate, drawn from the lab subject pool (Lab
and Online Lab) are more comfortable lying about their earnings. Second, subjects from the
online subject pools (CESS Online and MTurk) are more hesitant about lying. In the zero-audit
condition, lab subjects overall report between 30 and 40 percent of their earnings while online
subjects report about 60 percent of their gains. These results are consistent with the notion
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that underreporting on the outcome variable (lying) contributes to the null findings observed in
Figure 2 for the MTurk and CESS Online modes.
An alternative explanation, of course, is that age andmode are confounding variables in these

comparisons. The observed higher levels of earnings reported for CESS Online and MTurk modes
might simply reflect the presence of older subjects in the sample (the lab samples were students
and hence essentially young). The right-hand graph in Figure 3 indicates this may not be the case.
Here we control for the subjects over and under 30 years of age for the zero-audit condition.
For the CESS Online mode there is some evidence here that older subjects drive some of the
underreporting. But for the MTurk modes the two age cohorts have essentially identical levels
of reporting (or lying).
There is some evidence here that subjects from online subject pools, MTurk in particular, are

reluctant to lie about their earnings; and, at least in the MTurk case, this does not seem to be
related to the age di�erences between online and lab subject pools. As discussed previously,
underreporting (lying in this case) can bias the estimated treatment e�ect to the null. The average
CATEs foreachof thesemodesareconsistentwith thisnotion—theyare reportedon the topofeach
bar in Figure 3. CATEs are significantly negative, as hypothesized, for thosemodes where subjects
are clearly willing to lie about their earnings. And we see amuchmoremuted treatment e�ect for
those modes where subjects are generally reluctant to lie. Moreover, the muted treatment e�ect
is similar for both young and old subjects. This suggests that the less negative CATEs estimated for
the MTurk subjects are the result of a reluctance to lie on the part of both young and old alike.
Subjects from the CESS lab subject pool, regardless of whether they played the game online

or in the lab, were significantly more likely to lie than was the case for CESS Online or MTurk
subjects. Moreover, this di�erence persists for the MTurk mode even when we control for age,
i.e., comparing the lab subject pool (who are essentially all young students) with young subjects
from the MTurk subject pools (younger subjects who are not necessarily students). As a result,
the treatment e�ects in Figure 2 are much larger for subjects from the Oxford lab subject pool,
regardless of whether they played in the lab or online.
As part of the multi-mode replication design, the experimental protocol should anticipate this

second component of the diagnostic process. Initial evidence of mode-specific heterogeneity
simply signals the possibility of experimental measurement error. In this section, we proposed
incorporating measurement metrics within the experimental protocol that allow researchers to
assess the magnitude of measurement error in di�erent modes.14

5 Measurement Error by Design
The third microreplication diagnostic explicitly manipulates measurement error in order to
determinewhich experimentalmode exhibits higher levels ofmeasurement error. Our contention
is that estimated treatment e�ects will respond di�erently to these manipulations depending
on the extent of measurement error inherent to the mode. This diagnostic therefore helps
increaseour “µ-informed”priors about certainmodes. Thenotionof experimentallymanipulating
measurement error builds on similar e�orts by deQuidt, Haushofer, and Roth (2018), for example,
who employ such manipulations to identify the bounds of experimenter demand on estimated
treatment e�ects.

5.1 Diagnostic Logic
Suppose we observe ATE1 < ATE2 and our “µ-informed” prior is that Mode 2 has significantly less
measurement error. By explicitly manipulating additional measurement error across these two
modes we can gain insights into whether Mode 2 really does have less measurement error. Let

14 The importance of detecting, and distinguishing, random and systematic experimental measurement error is particularly
relevant to survey experiments that incorporate sensitive questions (Ahlquist 2018; Blair, Chou, and Imai 2019).
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m ∈ {C,M+,M−} be the measurement error manipulation arm in a factorial design (where C is
a control arm). Thus, ATEk ,m is the average treatment e�ect in mode k for measurement error
manipulation m. Each arm in this example has a control and single treatment group such that
ATEk ,m = E [Y `k ,m,T = 1] − E [Y `k ,m,T = 0].
The two proposed manipulations are designed to inflate and suppress measurement error

respectively inorder to signalwhichmodeexhibits less inherent experimentalmeasurementerror.
The first manipulation,M +, inflatesmeasurement error such that both the control and treatment
conditions within this arm have high levels of measurement noise (relative to arm C). Conversely,
M − explicitly depressesmeasurement error. This arm is particularly useful for anymodewith high
inherentmeasurement error since, if it is biasedbymeasurement error, then suppressing it should
lead to a convergence toward the estimates in modes with lower inherent measurement error.15

We can observe an ATE for each combination of mode and measurement error manipulation.
Thecomparisonsof theATEsunderM + andM − to theATEsunderC are thediagnosticsof interest.
Again, our expectation is that modes with di�erent amounts of inherent measurement error
should respond di�erently to thesemanipulations. Increasingmeasurement error in Mode 1, with
already high inherent measurement error, should have relatively small e�ects on the estimated
treatment e�ect. Andanyobserved e�ectwill be toward thenull. In otherwords,we should expect
that ATE1,M + = ATE1,C ≥ 0. Conversely, in Mode 2 where we expect to find little measurement
error, the additional noise should substantially reduce the treatment e�ect: ATE2,C > ATE2,M + ≥ 0.
Separately, with respect to Mode 1, since ATE1,M − is the observed treatment e�ect having
suppressed measurement error in a mode with inherent measurement error, this manipulation
should significantly increase the treatment e�ect. Our expectation here then is that ATE1,M − >
ATE1,C ≥ 0.

5.2 Illustration
To demonstrate this diagnostic, we implemented a survey vignette experiment as part of the
Nu�ield CESS 2019 Vote India election study.16 Vote India was an election study conducted with
2,734 participants from the CESS India Online subject pool and 10,036 MTurk India workers—
excluding participants with partial responses. The simple survey vignette experiment aims to
assess the ability of the Indian general public to identify fake election news stories. The theme
of the news stories was the reliability of electronic voting machines used to tally votes in 2019
Indian Lok Sabha elections.17 We implemented the experiment in two di�erent modes during
the period April 2–26, 2019: MTurk workers from India (equivalent to our Mode 1), and the CESS
India Online subject pool (equivalent to our Mode 2). As part of the initial design we included
treatment assignments to identify heterogeneous mode e�ects that could be associated with
measurement error. Again, our primary goal is to leverage multi-mode microreplications to learn
about experimental measurement error.
In this example, for all manipulation arms, the ATE is simply the di�erence in subjects’

perceptions of how truthful the news story was, between those presented with an “authentic”
news story and those presented with a “fake” news story. In the “control” arm, the fake
(authentic) reporting condition was randomly assigned to 47 (56) MTurk and 53 (42) CESS Online

15 Measurement error could either inflate or depress estimated treatment e�ects. The classic “experimenter e�ect” for
example could have an inflationary impact on estimated treatment e�ects (de Quidt, Haushofer, and Roth 2018).

16 Details on the Vote India project are available at https://cess-nu�ield.nu�.ox.ac.uk/india-vote/.
17 Voting machine reliability was a frequent theme in news accounts of the Lok Sabha elections. https://www.bbc.com/
news/world-asia-india-46987319.
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subjects respectively.18 Our expectation is that, because of measurement error, the magnitude of
ATE1,Control (MTurk) is significantly lower than ATE2,Control (CESS Online).
We also implemented two measurement error manipulation arms. In the first (akin toM +) we

included a “high-error” version of both the authentic and fake news statements. We deliberately
varied the framing in the “high-error” measurement arm (compared to the control arm) so
as to create measurement error in fake news detection.19 Fake (authentic) versions were
randomly assigned to 47 (46) MTurk and 48 (57) CESS Online subjects. The expectation is that
ATEMTurk,Control ≥ ATEMTurk,High = 0 and ATECESS,Control > ATECESS,High > 0.
The secondmeasurementmanipulation (akin toM −) was implemented for the MTurk subjects

only. This “attention-incentivized” version of the vignette experiment was designed to explicitly
reduce inattention that we conjectured was partially responsible for the low treatment e�ect in
this mode. Subjects were asked to complete exactly the same fake news detection task as in the
other twomanipulation arms. But in this version respondents also saw the following text: “On the
following page, a�er you indicate how truthful or false the statement is, we will then ask you a
factual question about the statement itself. If you answer this factual question correctly, you will
be paid an additional 25 INR.” The factual question asked participants to select which institution
was mentioned in the vignette text (the Indian Electoral Commission). Our goal here is to reduce
measurement error resulting from inattention by both signaling that there would be a treatment
check (a factual questionabout the treatment)and incentivizing correct answers. The incentivized
version of the experiment was fielded on a further 200 subjects (high-error arm: 64 authentic
news, 47 fake news; control arm: 44 authentic news, 45 fake news). The expectation is that with
additional incentives, the same control and high-error manipulation treatment e�ects for MTurks
will be significant—hence resembling the CESS Online treatment e�ects: ATEMTurk,Control,Attention >
ATEMTurk,High,Attention > 0 and ATEMTurk,Control,Attention > ATEMTurk,Control.
Results for thenonincentivizedconditionsare reported in the first four rowsofTable3. There is a

much greater treatment e�ect for CESS Online compared toMTurk subjects (MTurk < 1, and CESS
Online > 3). A design relying exclusively on the MTurk mode would favor the null—the inability
of subjects to detect fake news. This is also consistent with our initial priors—that the MTurk
treatments would have considerablemeasurement error depressing estimated treatment e�ects.
On the other hand, and again consistent with our priors, the CESS Online treatment e�ects in
rows 3 and 4 are large and statistically significant. Moreover, the treatment coe�icients for all four
models are essentially the same when we include controls for age and gender (see Appendix for
full results). A possible conclusion here is that MTurk subjects are considerably less attentive than
CESS Online subjects and hence were e�ectively not being “treated.” The result is an insignificant
treatment e�ect.
As expected, inflating themeasurement error hadnoe�ect on theMTurk treatment e�ects—the

control and high-error ATEs are similarly small and insignificant. Again, as expected, we do see
treatment e�ects drop (by over one standard error) when we introduce identical measurement
error for the CESS Online subjects. These di�erential responses to the measurement error
treatments suggest that the MTurk mode results are depressed by experimental measurement

18 The authentic version of the control condition read: “The Indian Election Commission has announced that the coming
Indian elections will continue to use electronic voting machines.” The “fake” news version read: “The Indian Election
Commission has warned that there is likely to be extensive election fraud in the upcoming Lok Sabha elections because of
the use of electronic voting machines, that can be easily hacked.”

19 In the high-error report condition the control statement read: The Indian Election Commission has said all polling booths
will have the voter-verified paper audit trail facility this election, a system in which voters can see on paper whether the
machine has registered the same vote as the button they pressed. This provides an additional layer of security and reduces
the possibility of massive electoral fraud. The “fake” news treatment read: “The Indian Election Commission has been
ordered to discontinue the use of voter-verified paper audit trail facility this election, an old system in which voters could
see on paper whether the machine had registered the same vote as the button they had pressed. Opposition parties have
alleged that the BJP is behind this change and that not using paper trail will lead to massive electoral fraud.”
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Table3. Inducedmeasurementerrormodel results.

Coe�icient S.E. t -statistic p Mode Error Manipulation Incentivized?

−0.74 0.47 −1.57 0.12 MTurk Control No
−0.83 0.47 −1.76 0.08 MTurk High No
−3.85 0.51 −7.52 0.00 CESS Online Control No
−3.23 0.49 −6.64 0.00 CESS Online High No

−1.16 0.49 −2.35 0.02 MTurk Control Yes
−1.00 0.33 −3.01 0.00 MTurk High Yes

error. This could very well be the result of MTurker’s inattention, or even MTurk bots that increase
measurement error. We interpret the impact of the high-error version of the treatment e�ect
for CESS Online subjects as an indication of relatively subdued experimental measurement
error—particularly in contrast to theMTurk results. Addingmeasurement error to an experimental
context with little prior measurement error should moderate the treatment e�ects although note
they are still substantial and significant in the high-error manipulation.
The final two rows of Table 3 help assess the conjecture that at least some of themeasurement

error depressing the MTurk treatment e�ect results from inattention. 131 of 200 subjects correctly
identified that the textmentioned the IndianElectoral Commission. Evenwith financial incentives,
over a third of the sample failed to pay su�icient attention to answer a straightforward descriptive
question. The estimated ATE for both control and “high-error” manipulations of the vignette
are substantively larger than their unincentivized counterparts. Both coe�icients are statistically
significant, and the ATE of the control arm is now moderately larger than the corresponding
“high-error” arm. There is strong evidencehere that by experimentally reducingMTurk inattention
to treatments we obtain results more comparable to those for the CESS India Online subjects.20

These fake news detection results illustrate our broader theme of the importance of designs
that identify mode-specific heterogeneous treatment e�ects. Certainly in this case it could be
problematic to rely exclusively on the MTurk mode. Our specific goal in this section though
is to suggest a third diagnostic strategy for determining whether mode-specific heterogeneous
treatment e�ects are a product of experimental measurement error. Having observed mode-
specific heterogeneity, we recommend designing measurement error experiments that directly
assess the underlying source of the error. In our case, we designed treatments that explicitly
manipulated the contextual features of the experiment that are claimed to cause experimental
measurement error.

6 Discussion
Technology, ingenuity and cost have all contributed to the diversity and accessibility of
experimental modes available to the average researcher. We should exploit this rich diversity
of experimental modes in order to understand and address experimental measurement error in
our replications.Most recognize that reported e�ect sizeswill be an artifact of the context inwhich
treatments are assigned. The interesting challenge is to understand the source andmagnitude of
this experimental measurement error. Our contribution in this respect is twofold: first we explain
whymulti-mode designs are informative about experimental measurement error, and second we
provide suggestions for deploying multi-mode designs as a diagnostic tool.

20 Participants could select multiple options (despite the question asking for a single choice). Of the 131 individuals who
correctly identified the Indian Election Commission, only 106 selected this institution alone. Running the estimations on
just those 106 participants, the high and low error ATE estimates both increase in size, remain statistically significant, and
the di�erence in ATEs increases between the manipulation arms too: Control ATE = −2.16 (s.e. = 0.78); High-error ATE =
−1.70 (s.e. = 0.57).
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We assume there is some mode-related heterogeneity in experimental measurement error
and researchers are reasonably adept at detecting this measurement error. With these quite
reasonable assumptions, we demonstrate that multi-mode replication designs are clearly the
most informative about experimental measurement error.
Our recommendation is to incorporate numerous diverse experimental mode replications in

the design—in our examplewe had four distinctmodes. One of the diagnostic contributions of the
essay is a simplemachine learning-basedstrategy that identifiesheterogeneous treatmente�ects.
The researcher imposes no a priori specification on the nature of the potential heterogeneity.
CATEs are generated for all subjects across all experimental modes. We then show how mode-
specific heterogeneity can be estimated and viewed graphically. The absence of mode-specific
heterogeneity speaks to the robustness of the estimated treatment e�ects.
We recommend BART because it is a flexible estimation strategy. As the number of potential

covariate–treatment interactions increases, the benefits of BART over linear regression strategies
also increase. Given the ease of implementingBARTestimation, its robustness to varying numbers
of covariates, and its accurate predictions regardless of covariate length (Hill 2011), we believe
the procedure should be used as the standardmeans of estimating both CATEs andmode-related
heterogeneity.
That said, the choice of machine-learning estimator should depend on the nature of the

data and the data generating process itself. In the Appendix we demonstrate the results of
one alternative strategy—LASSO models—but other machine-learning strategies include using
ensemble methods (Grimmer, Messing, and Westwood 2017) and metalearning to handle
treatment-assignment imbalances (Künzel et al. 2019).
Ultimately multi-mode replication designs are powerful where researchers are able to

demonstrate thatmode-specific heterogeneity is (or is not) related to experimentalmeasurement
error. To resolve the quandary of contradictory treatment e�ects observed for identical
experiments administered in di�erent modes, we suggest diagnostic tools for detecting
experimental measurement error. Embedding measurement items can help determine whether
modes exhibit systematic or random measurement error. Our examples included measurement
scales (Are respondents scaling as we would expect them to?); repeated measures (Are their
answers correlated over time?); and indicators of sensitive questions (Are subjects underreporting
certain behaviors or preferences?).21 Separately, implementing measurement experiments that
directly manipulate levels, and types, of measurement error enable researchers to test for the
presence and nature of experimental measurement error.
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