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Abstract

In this paper we introduce the multivariate Brownian semistationary (BSS) process and
study the joint asymptotic behaviour of its realised covariation using in-fill asymptotics.
First, we present a central limit theorem for general multivariate Gaussian processes with
stationary increments, which are not necessarily semimartingales. Then, we show weak
laws of large numbers, central limit theorems, and feasible results for BSS processes. An
explicit example based on the so-called gamma kernels is also provided.
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1. Introduction

The univariate Brownian semistationary process is a stochastic process of the form

Yt =μ+
∫ t

−∞
g(t − s)σs dWs +

∫ t

−∞
q(t − s)as ds,

where μ is a constant, W is a Brownian measure on R, g and q are nonnegative deterministic
functions on R, with g(t) = q(t) = 0 for t ≤ 0, and σ and a are càdlàg processes. The name
Brownian semistationary (BSS) process comes from the fact that, when σ and a are stationary
then Y is stationary. These processes were first introduced in [2] and, since then, they have
been extensively used in applications due to their flexibility and, thus, their capacity to model
a variety of empirical phenomena. Two of the most notable fields of applications are turbulence
and finance.

In the context of turbulence, where the process σ represents the intermittency of the
dynamics, these processes are able to reproduce the key stylized features of turbulence data,
such as homogeneity, stationarity, skewness, isotropy, and certain scaling laws (see [8], [15],
and the discussion therein). In finance, the BSS process has been applied to the modelling
of energy spot prices [4], [10] and of logarithmic volatility of futures [11], among others.
Furthermore, fast and efficient simulation schemes for the univariate BSS are available [12].

One of the key aspects of the BSS process that has been analysed in great detail in the last
decade is the asymptotic behaviour of its realised power variation. The realised power variation
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of a process Yt is the sum of absolute powers of increments of a process, i.e.

�nt�∑
i=1

|�n
i Y|r, where �n

i Y := Yi/n − Y(i−1)/n.

For general semimartingales, the study of realised variation has a pivotal role in estimating the
key aspects of the process under consideration, e.g. the integrated squared volatility given by∫ t

0 σ
2
s ds (see [7] for further discussions). This has led to the development of numerous works

on this topic (see [19] and the references therein). On the other hand, the BSS process is not
in general a semimartingale and the theory of realised power variation for semimartingales
does not apply in this case. New results based on different mathematical tools, mainly those
presented in the works of Peccati, Nourdin, and coauthors (see [20] and the references therein),
have been obtained. Barndorff-Nielsen et al. [7] presented the multipower variation for BSS
processes, while Granelli and Veraart [17] obtained the realised covariation for the bivariate
BSS without drift. It is important to mention that in the general multivariate setting we have
the work [3] for the semimartingale case, but no work for the case of BSS processes outside
the semimartingale framework.

In this article we introduce the multivariate BSS process, study the joint asymptotic
behaviour of its realised covariation, and present feasible results and relevant examples. In
particular, we will study the asymptotic behaviour of

�nt�∑
i=1

(
�n

i Y (k)

τ
(k)
n

�n
i Y (l)

τ
(l)
n

)
k,l=1,...,p

,

where p ∈N, τ ( j)
n > 0, and Y ( j)

t is the jth component of the multivariate BSS process, for j =
1, . . . , p. This work is motivated by the manifold applications of the BSS process and it is not
just an extension to the multivariate case of the results presented in [7] and [17]. Indeed, in
these previous works, the realised power variations and covariations were always scaled by a
scaling factor (τn) restricted to a specific structure. We eliminate this restriction and this enables
us to obtain all the feasible results presented in this work, which were not obtainable otherwise.

We remark that, despite the more general theory developed here, no additional assumptions
will be added other than those already introduced in [7] and [17] (but used in a multivariate
setting).

Due to the various potential applications of the multivariate BSS process, it appears natural
to derive feasible results, namely results that can be computed directly from real data. We focus
on two objects: ( ∑�nt�

i=1 �
n
i Y (k)�n

i Y (l)√∑�nt�
i=1 (�n

i Y (k))2
√∑�nt�

i=1 (�n
i Y (l))2

)
k,l=1,...,p

and

(∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)∑�nT�
i=1 �n

i Y (k)�n
i Y (l)

)
k,l=1,...,p

.

Both objects belong to the class of realised covariation ratios. Similar ratios tailored to the
univariate case have been used in the literature to construct a consistent estimator of key
parameters, e.g. the smoothness parameter α of the BSS process in [15]. The second object can
be defined as the relative covolatility of the BSS process, since it represents the multivariate
representation of the relative volatility concept introduced in [8].
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This paper is structured as follows. In Section 2 we introduce the multivariate BSS process,
the general setting, and the basic mathematical concepts of this work. It is usually the case
that, when a univariate process is extended to the multivariate case, there is more than one
way to do it. Hence, we present two possible multivariate extensions of the one-dimensional
BSS process. Furthermore, in the same section we introduce the Gaussian core, which is a key
object for the mathematical understanding and estimation of the BSS process. In Sections 3
and 4 we respectively present the joint central limit theorem for general multivariate Gaussian
processes with stationary increments and for the BSS processes. In particular, in these two
sections we present different cases depending on which multivariate extension of the BSS
process and values of the scaling factor τn are considered. In addition, in Section 4 we prove
the weak law of large numbers (WLLN) for BSS processes. In Section 5 we derive the feasible
results and in Section 6 we present examples. In Section 7 we provide some final remarks and
open questions.

We refer the reader to Section 6.1 for a presentation of the main results of this work (in a
simplified framework).

2. Preliminaries

In this section we explore the setting and some of the basic mathematical tools used
throughout this article.

Let T > 0 denote a finite time horizon, and let (�,F , (Ft), P) be a filtered complete
probability space. In the following we always assume that p, n ∈N and that B(R) denotes
the class of Borel sets of R. We recall the definition of a Brownian measure.

Definition 2.1. An Ft-adapted Brownian measure W : �× B(R) →R is a Gaussian stochas-
tic measure such that, if A ∈ B(R) with E[(W(A))2]<∞, then W(A) ∼ N(0, Leb(A)), where
Leb is the Lebesgue measure. Moreover, if A ⊆ [t,∞) then W(A) is independent of Ft.

We will assume that (�,F , (Ft), P) supports p independent Ft-Brownian measures on R.
Consider the stochastic process {Gt}t∈[0,T] defined as

Gt :=
⎛⎜⎝G(1)

t
...

G( p)
t

⎞⎟⎠=
∫ t

−∞

⎛⎜⎝g(1,1)(t − s) . . . g(1,p)(t − s)
...

. . .
...

g( p,1)(t − s) . . . g( p,p)(t − s)

⎞⎟⎠
⎛⎜⎝dW(1)

s
...

dW( p)
s

⎞⎟⎠ ,
where the integral has to be considered componentwise, for i, j = 1, . . . , p, g(i,j)∈ L2((0,∞))
are deterministic functions and continuous on R \ {0}, and (W(1), . . . ,W( p)) are jointly
Gaussian Ft-Brownian measures on R. Thus, we have G(i)

t =∑p
j=1

∫ t
−∞ g(i,j)(t − s) dW( j)

s . We
call the process {Gt}t∈[0,T] the multivariate Gaussian core, and it is possible to see that it is a
stationary Gaussian process and it has stationary increments. The Gaussian core will play a
crucial role in the limit theorems for the BSS process.

Remark 2.1. Note that we do not assume independence of the Brownian measures. The only
requirement is that they are jointly Gaussian so that the process {Gt}t∈[0,T] is Gaussian. This
level of generality is needed to prove the central limit theorem (CLT) for the BSS process. In
fact, as we will later see, proving a CLT for the Gaussian core driven by independent Brownian
measures is not sufficient for proving the CLT for the BSS process.

For j ∈ {1, . . . , p} and l ∈ {1, . . . , n}, let τ ( j)
n be a (scaling) constant depending on G( j)

and n whose explicit form will be introduced later, and let �n
l G( j) := G( j)

l/n − G( j)
(l−1)/n.
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Since {Gt}t∈[0,T] is a Gaussian process, we can use the machinery of Malliavin calculus. In
particular, let H be the Hilbert space generated by the random variables given by:(

�n
l G( j)

τ
( j)
n

)
n≥1, 1≤l≤�nt�, j∈{1,...,p}

(2.1)

equipped with the scalar product 〈·, ·〉H induced by L2(�,F , P), i.e. for X, Y ∈ H , we have
〈X, Y〉H =E[XY]. Note that H is a closed subset of L2(�,F , P) composed by L2-Gaussian
random variables generated by (2.1). In particular, we have an isonormal Gaussian process
because the random variables (2.1) are jointly Gaussian since they are (rescaled) increments of
the Gaussian process {Gt}t∈[0,T]. Following the setting of [20], we assume that F is generated
by H . Finally, recall that any element of L2(�,F , P) has a unique decomposition in terms of
the Wiener chaos expansion of H (see [20]).

Next, we present and define the multivariate BSS process. Since there are several ways to
generalise a univariate BSS process to a multivariate process, we will present two particularly
relevant multivariate extensions.

Definition 2.2. Consider p jointly Brownian measures W(1), . . . ,W( p). Furthermore, consider
p2 nonnegative deterministic functions g(1,1), . . . , g( p,p) ∈ L2((0,∞)) which are continuous
on R \ {0} and such that g(i,j)(t) = 0 for t ≤ 0 and i, j = 1, . . . , p. Let σ (1,1), . . . , σ ( p,p) be
càdlàg, Ft-adapted stochastic processes and assume for all t ∈ [0, T] and i, j, k = 1, . . . , p that∫ t
−∞ (g(i,j)(t − s)σ ( j,k)

s )2 ds<∞ for every t ≥ 0. Let {Ut}t∈[0,T] = {(U(1)
t , . . . ,U( p)

t )}t∈[0,T] be
a stochastic process in the nature of a drift term. Define

Yt :=
⎛⎜⎝Y (1)

t
...

Y ( p)
t

⎞⎟⎠

=
∫ t

−∞

⎛⎜⎝g(1,1)(t − s) · · · g(1,p)(t − s)
...

. . .
...

g( p,1)(t − s) · · · g( p,p)(t − s)

⎞⎟⎠
⎛⎜⎝σ

(1,1)
s · · · σ

(1,p)
s

...
. . .

...

σ
( p,1)
s · · · σ

( p,p)
s

⎞⎟⎠
⎛⎜⎝dW(1)

s
...

dW( p)
s

⎞⎟⎠

+
⎛⎜⎝U(1)

t
...

U( p)
t

⎞⎟⎠
and

Xt :=
⎛⎜⎝X(1)

t
...

X( p)
t

⎞⎟⎠

=
∫ t

−∞

⎛⎜⎝g(1,1)(t − s)σ (1,1)
s · · · g(1,p)(t − s)σ (1,p)

s
...

. . .
...

g( p,1)(t − s)σ ( p,1)
s · · · g( p,p)(t − s)σ ( p,p)

s

⎞⎟⎠
⎛⎜⎝dW(1)

s
...

dW( p)
s

⎞⎟⎠+
⎛⎜⎝U(1)

t
...

U( p)
t

⎞⎟⎠ .

Then the vector-valued processes {Yt}t∈[0,T] and {Xt}t∈[0,T] are both called multivariate BSS
processes.
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Remark 2.2. Note that in the above definition we consider the case where the matrices are of
dimension p × p. However, the above definition can be extended straightforwardly to include
general rectangular matrices.

Now, we will discuss properties of the tensor product in Hilbert spaces. Consider two real
Hilbert spaces H1 and H2 endowed with the inner products 〈·, ·〉H1 and 〈·, ·〉H2, respectively.
Given f , x ∈ H1 and g, y ∈ H2, we denote by [f ⊗ g](x, y) := 〈x, f 〉H1〈y, g〉H2 the bilinear form
f ⊗ g : H1 × H2 →R. Let K be the set of all finite linear combinations of such bilinear
forms, namely K := span(f ⊗ g : f ∈ H1, g ∈ H2). We are going to present a result on the
inner product for this space.

Lemma 2.1. The bilinear form 〈〈·, ·〉〉 on K defined by 〈〈f1 ⊗ g1, f2 ⊗ g2〉〉 := 〈f1, f2〉H1〈g1,

g2〉H2 is symmetric, well defined, and positive definite, and thus defines a scalar product on K .

Proof. This is a well-known result; for details, see Reed and Simon’s book [22]. �

Observe that K endowed with 〈〈·, ·〉〉 is not complete. In the next three definitions we
introduce the notion of a tensor product between Hilbert spaces, and the symmetrisation and
contraction of a tensor product.

Definition 2.3. The tensor product of the Hilbert spaces H1 and H2 is the Hilbert space H1 ⊗
H2 defined to be the completion of K under the scalar product 〈〈·, ·〉〉. Furthermore, we denote
by H⊗n

1 the n-fold tensor product between H1 and itself.

Definition 2.4. If f ∈ H⊗n is of the form f = h1 ⊗ · · · hn for h1, . . . , hn ∈ H , then the
symmetrisation of f , denoted by f̃ , is defined by f̃ := (1/n!)∑σ hσ (1) ⊗ · · · hσ (n), where the
sum is taken over all permutations of {1, . . . , n}. The closed subspace of H⊗n generated by
the elements of the form f̃ is called the n-fold symmetric tensor product of H , and is denoted
by H�n.

Definition 2.5. Let g = g1 ⊗ · · · ⊗ gn ∈ H⊗n and h = h1 ⊗ · · · ⊗ hn ∈ H⊗m. For any 0 ≤ p ≤
n ∧ m, we define the pth contraction of g ⊗ h as the following element of H⊗m+n−p : g ⊗p

h := 〈g1, h1〉H · · · 〈gp, hp〉H gp+1 ⊗ · · · ⊗ gn ⊗ hp+1 ⊗ · · · ⊗ hm. Note that, even if g and h are
symmetric, their pth contraction is not, in general, a symmetric tensor. We therefore denote by
g⊗̃ph its symmetrisation.

Let us now move to the discussion of multiple integrals in the Malliavin calculus setting
(see Section 2.7 of [20]). We denote by Ip : H�p → Wp the isometry from the symmetric
tensor product H�p, equipped with the norm

√
p!‖ · ‖H⊗p , onto the pth Wiener chaos Wp. In

other words, the image of a pth multiple integral lies in the pth Wiener chaos. The first property
that we are going to present is the isometry property of integrals.

Proposition 2.1. Fix integers 1 ≤ q ≤ p, as well as f ∈ H�p and g ∈ H�q. We have

E[Ip(f )Iq(g)] =
{

p!〈f , g〉H⊗p if p = q,

0 otherwise.

Proof. See Proposition 2.7.5 of [20]. �

Moreover, we have the following product formula for multiple integrals.
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Theorem 2.1. Let p, q ≥ 1. If f ∈ H�p and g ∈ H�q then

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

)
Ip+q−2r(f ⊗̃rg).

Proof. See Theorem 2.7.10 of [20]. �
Similarly to [17] we apply the product formula for multiple integrals to conclude that, for

i, j = 1, . . . , p,

�n
l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

= I1

(
�n

l G(i)

τ
(i)
n

)
I1

(
�n

l G( j)

τ
( j)
n

)

=
1∑

r=0

r!
(

1

r

)(
1

r

)
I2−2r

(
�n

l G(i)

τ
(i)
n

⊗̃r
�n

l G( j)

τ
( j)
n

)

= I2

(
�n

l G(i)

τ
(i)
n

⊗̃�
n
l G( j)

τ
( j)
n

)
+E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

]
⇒ I2

(
�n

l G(i)

τ
(i)
n

⊗̃�
n
l G( j)

τ
( j)
n

)
= �n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

]
.

Now, we introduce the space D([0, T],Rn). This space is the set of all càdlàg functions
from [0, T] to R

n and it is called the Skorokhod space. The norm in this space is defined as
‖f ‖D([0,T],Rn) := supt∈[0,T] ‖f ‖Rn, where f ∈ D([0, T],Rn) and ‖ · ‖Rn is any norm on R

n (it is
a finite-dimensional vector space; thus, all the norms are equivalent). This metric works fine for
C([0, T],Rn) (the space of continuous functions from [0, T] to R

n), but it is stronger than the
usual Skorokhod metric J1 (or M1). However, in this paper the functions to which our random
elements (i.e. random variables and stochastic processes) convergence are continuous, and in
this case these metrics are all equivalent.

Let us recall some results on stable convergence. We use the notation ‘
u.c.p.−−−→’, ‘

P−→’, ‘
st−→’,

and ‘
D−→’ for convergence uniformly on compacts in probability, convergence in probability,

stable convergence, and convergence in distribution, respectively. Recall that a sequence of
stochastic processes (Xn) converges to the limit X uniformly on compacts in probability if
P( sups≤t |Xn

s − Xs|> ε) → 0 as n → ∞ for each t, ε > 0. In the case of the Skorokhod space
with uniform metric, suppose that Xn, X are D([0, T],Rd)-valued stochastic processes defined

on the same filtered probability space. Then Xn
P−→ X if and only if Xn

u.c.p.−−−→ X, since they are
both equal to limn→∞ P( supt∈[0,T] ‖Xn,t − Xt‖Rd ).

Remark 2.3. To make the notation less cumbersome and when it does not create confusion,
we avoid writing ‘as n → ∞’. For example, we write Xn

p→ X for Xn
p→ X as n → ∞.

Theorem 2.2. (Continuous mapping theorem.) Let (S,m) be a metric space, and let (Sn,m) ⊂
(S,m) be arbitrary subsets and gn : (Sn,m) �→ (E, μ) be arbitrary maps (n ∈N∪ {0}) such
that, for every sequence xn ∈ (Sn,m), if xn′ → x along a subsequence and x ∈ (S0,m) then
gn′ (xn′ ) → g0(x). Then, for arbitrary maps Xn : �n �→ (Sn,m) and every random element
X with values in (S0,m) such that g0(X) is a random element in (E, μ), if Xn

D−→ X then

gn(Xn)
D−→ g0(X); if Xn

P−→ X then gn(Xn)
P−→ g0(X); and if Xn

a.s.→ X then gn(Xn)
a.s.→ g0(X).
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Proof. See Theorem 18.11 of [23]. �
Note that (S,m) might be a function space like the Skorokhod space endowed with the

uniform metric. For stable convergence, we have the following theorem; see Theorem 1 of [1].

Theorem 2.3. Let Xn be random elements defined on the same probability space (�,F , P).
Suppose that Xn

st−→ X, that σ is any fixed F -measurable random variable, and that g(x, y) is a
continuous function of two variables. Then g(Xn, σ )

st−→ g(X, σ ).

Proof. It follows from Theorem 2.2 and the definition of stable convergence. �
Proposition 2.2. Let Xn, Yn, and Y be random elements defined on the same probability space,

and assume that Yn
P−→ Y and Xn

st−→ X. Then (Xn, Yn)
st−→ (X, Y).

Proof. See Section 2 of [18]. �
We end this section with some asymptotic results. We start by reporting a simplified version

of Theorem 6.2.3 of [20].

Theorem 2.4. Let b ≥ 2 and consider

Fn := (I2(f1,n), . . . , I2(fb,n)).

Let C ∈ Mb×b(R) be a symmetric, nonnegative definite matrix, and let N ∼ Nb(0,C). Assume
that, for any r, s = 1, . . . , b,

lim
n→∞ E[I2(fs,n)I2(fr,n)] = (C)s,r and I2(fs,n)

D−→ N (0, (C)s,s).

Then Fn
D−→ N as n → ∞.

Proof. See Theorem 6.2.3 of [20]. �
We have the following simple corollary of Theorem 5.2.7 and Theorem 6.2.3 of [20].

Corollary 2.1. Let Fn and C be as in Theorem 2.4. Assume that, for any r, s = 1, . . . , b,

lim
n→∞ E[I2(fs,n)I2(fr,n)] = (C)s,r and lim

n→∞ ‖fs,n ⊗1 fs,n‖H⊗2 = 0.

Then Fn
D−→ N as n → ∞.

Moreover, we report here the part of Proposition 2 of [1] needed in this work. This result
concerns mixing limits, which are defined as follows. Let Yn be a sequence of random variables
in (�,F , P) converging stably to a random variable Y . If Y can be taken to be independent of
F then the limit is said to be mixing. We denote it by Yn

mixing−−−→ Y .

Proposition 2.3. Suppose that Yn
D−→ Y. Then the following statements are equivalent:

(i) Yn
mixing−−−→ Y,

(ii) for all fixed k ∈N and B ∈ σ (Y1, . . . , Yk), P(B)> 0,

lim
n→∞ P(Yn ≤ x | B) = FY (x),

where FY (x) is the distribution function of Y.

Proof. See Proposition 2 of [1]. �
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3. Joint CLT for multivariate Gaussian processes with stationary increments

As mentioned in the introduction, one of the differences from previous works on limit
theorems for BSS processes is that we use a different scaling factor τ . In this section we
present two cases. For the first case we use the same τ used in the literature, while in the
second we use a new formulation. The differences between the two approaches will be pointed
out subsequently.

Remark 3.1. Throughout this section {Gt}t∈[0,T] is a general multivariate Gaussian process
with stationary increments. Thus, it is not necessarily the Gaussian core.

3.1. Case I

For i, j = 1, . . . , p and k ∈N, let us define the scaling factor by

τ ( j)
n :=

√
E[(�n

1G( j))2], (3.1)

and the multivariate process {Zn
t }t∈[0,T] = {(Zn

(1,1),t, . . . , Zn
( p,p),t)

�}t∈[0,T] as

Zn
(i,j),t := 1√

n

�nt�∑
i=1

I2

(
�n

l G(i)

τ
(i)
n

⊗̃�
n
l G( j)

τ
( j)
n

)
, and r(n)

i,j (k) :=E

[
�n

1G(i)

τ
(i)
n

�n
1+kG( j)

τ
( j)
n

]
.

Thanks to Theorem 2.7.7 of [20] (reported in this work as Theorem 2.1), Zn
(i,j),t belongs to W2,

namely the second Wiener chaos. In addition, we will consider the following assumption on the
correlation. It states that, uniformly in n, the squared autocorrelations (r(n)

i,j (k))2 are summable,
which means that r(n)

i,j (k) goes to 0 sufficiently fast as k → ∞.

Assumption 3.1. Let the limit limn→∞ r(n)
i,j (k) exist for any k ∈N, and let (ξ (k))k∈N be a

sequence such that, for any k, n ∈N, (r(n)
i,j (k))2 ≤ ξ (k) and

∑∞
k=1 ξ (k)<∞ for i, j = 1, . . . , p.

Remark 3.2. Let limn→∞
∑∞

k=1 (r(n)
i,j (k))2 <∞ for i, j = 1, . . . , p. For x, y, z,w = 1, . . . , p,

the following limit holds:

lim
n→∞

1

n

n∑
k=1

k(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k))

+ 1

n

2n−1∑
k=n+1

(2n − k)(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k))

= 0.

This is because, given two sequences {ak}k∈N and {bk}k∈N, if
∑∞

k=1 (ak)2 <∞ and∑∞
k=1 (bk)2 <∞ then liml→∞ (1/l)

∑l
k=1 k(ak)2 = 0 and liml→∞ (1/l)

∑l
k=1 k(bk)2 = 0,

which imply that liml→∞ (1/l)
∑l

k=1 kakbk = 0 (see the use of Condition (3.9) of [7]).

We now present two propositions regarding the process {Zn
t }t∈[0,T] and they will lead us

to the main theorem of this section. The first proposition is on the convergence of the finite-
dimensional distributions, while the second proposition is on the tightness of the law of the
process.
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Proposition 3.1. Let d ∈N, and let (al, bl] be pairwise disjoint intervals in [0, T] where l =
1, . . . , d. Consider

Zn
bl

− Zn
al

= (Zn
(1,1),bl

− Zn
(1,1),al

, . . . , Zn
(1,p),bl

− Zn
(1,p),al

, Zn
(2,1),bl

− Zn
(2,1),al

, . . . ,

Zn
( p,p),bl

− Zn
( p,p),al

).

Then, under Assumption 3.1, (Zn
bl

− Zn
al

)1≤l≤d
D−→(D1/2(Bbl − Bal ))1≤l≤d as n → ∞, where D ∈

Mp2×p2
(R) and Bt is a p2-dimensional Brownian motion. In particular, associating for each

combination (i, j) a combination ((x, y), (z,w)), where x, y, z,w = 1, . . . , p, using the formula
(i, j) ↔ ((�(i − 1)/p� + 1, i − p�(i − 1)/p�), (�( j − 1)/p� + 1, j − p�( j − 1)/p�)), we have

(D)ij = (D)(x,y),(z,w)

= 1

n

n−1∑
k=1

(n − k)(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k) + r(n)
z,x(k)r(n)

w,y(k) + r(n)
z,y(k)r(n)

w,x(k))

+ (r(n)
x,z(0)r(n)

y,w(0) + r(n)
y,z(0)r(n)

x,w(0)).

Proof. In order to prove this result, we need to use Corollary 2.1. Note that now I2(fs,n)
takes the form of Zn

(x,y),bl
− Zn

(z,w),al
and b = p2d.

First, we compute the covariances. Note that it is sufficient to focus on the case in which
l = 2, a1 = 0, b1 = a2 = 1, and b2 = 2. Recall the isometry property of integrals (i.e.
Proposition 2.1) and that, for f1, g1, f2, g2 ∈ H , we have 〈f1 ⊗ g1, f2 ⊗ g2〉H⊗2 :=
〈f1, f2〉H 〈g1, g2〉H . Then, for x, y, z,w = 1, . . . , p, we have

E[(Zn
(x,y),1 − Zn

(x,y),0)(Zn
(z,w),2 − Zn

(z,w),1)]

= 2

n

〈 n∑
i=1

�n
i G(x)

τ
(x)
n

⊗̃�
n
i G(y)

τ
(y)
n

,

2n∑
j=n+1

�n
j G(z)

τ
(z)
n

⊗̃�
n
j G(w)

τ
(w)
n

〉
H⊗2

= 1

2n

n∑
i=1

2n∑
j=n+1

〈
�n

i G(x)

τ
(x)
n

⊗ �n
i G(y)

τ
(y)
n

,
�n

j G(z)

τ
(z)
n

⊗ �n
j G(w)

τ
(w)
n

〉
H⊗2

+
〈
�n

i G(y)

τ
(y)
n

⊗ �n
i G(x)

τ
(x)
n

,
�n

j G(z)

τ
(z)
n

⊗ �n
j G(w)

τ
(w)
n

〉
H⊗2

+
〈
�n

i G(x)

τ
(x)
n

⊗ �n
i G(y)

τ
(y)
n

,
�n

j G(w)

τ
(w)
n

⊗ �n
j G(z)

τ
(z)
n

〉
H⊗2

+
〈
�n

i G(y)

τ
(y)
n

⊗ �n
i G(x)

τ
(x)
n

,
�n

j G(w)

τ
(w)
n

⊗ �n
j G(z)

τ
(z)
n

〉
H⊗2

= 1

2n

n∑
i=1

2n∑
j=n+1

E

[
�n

i G(x)

τ
(x)
n

�n
j G(z)

τ
(z)
n

]
E

[
�n

i G(y)

τ
(y)
n

�n
j G(w)

τ
(w)
n

]

+E

[
�n

i G(y)

τ
(y)
n

�n
j G(z)

τ
(z)
n

]
E

[
�n

i G(x)

τ
(x)
n

�n
j G(w)

τ
(w)
n

]

+E

[
�n

i G(x)

τ
(x)
n

�n
j G(w)

τ
(w)
n

]
E

[
�n

i G(y)

τ
(y)
n

�n
j G(z)

τ
(z)
n

]
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+E

[
�n

i G(y)

τ
(y)
n

�n
j G(w)

τ
(w)
n

]
E

[
�n

i G(x)

τ
(x)
n

�n
j G(z)

τ
(z)
n

]

= 1

n

n∑
i=1

2n∑
j=n+1

E

[
�n

i G(x)

τ
(x)
n

�n
j G(z)

τ
(z)
n

]
E

[
�n

i G(y)

τ
(y)
n

�n
j G(w)

τ
(w)
n

]

+E

[
�n

i G(y)

τ
(y)
n

�n
j G(z)

τ
(z)
n

]
E

[
�n

i G(x)

τ
(x)
n

�n
j G(w)

τ
(w)
n

]
= 1

n

n∑
k=1

k(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k))

+ 1

n

2n−1∑
k=n+1

(2n − k)(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k)).

Hence, we have, for x, y, z,w = 1, . . . , p,

E[(Zn
(x,y),1 − Zn

(x,y),0)(Zn
(z,w),2 − Zn

(z,w),1)]

= 1

n

n∑
k=1

k(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k))

+ 1

n

2n−1∑
k=n+1

(2n − k)(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k)).

Under Assumption 3.1, we have limn→∞ E[(Zn
(x,y),1 − Zn

(x,y),0)(Zn
(z,w),2 − Zn

(z,w),1)] = 0.
For the variances, following similar computations as above and using the fact that r(n)

x,z( −
k) = r(n)

z,x(k), we have

E[(Zn
(x,y),1 − Zn

(x,y),0)(Zn
(z,w),1 − Zn

(z,w),0)]

= 2

n

〈 n∑
i=1

�n
i G(x)

τ
(x)
n

⊗̃�
n
i G(y)

τ
(y)
n

,

n∑
j=1

�n
j G(z)

τ
(z)
n

⊗̃�
n
j G(w)

τ
(w)
n

〉
H⊗2

= 1

n

n∑
i=1

n∑
j=1

r(n)
x,z(i − j)r(n)

y,w(i − j) + r(n)
y,z(i − j)r(n)

x,w(i − j)

= 1

n

n∑
i=1

i∑
j=1

r(n)
x,z(i − j)r(n)

y,w(i − j) + r(n)
y,z(i − j)r(n)

x,w(i − j)

+ 1

n

n∑
i=1

n∑
j=i+1

r(n)
z,x( j − i)r(n)

w,y( j − i) + r(n)
z,y( j − i)r(n)

w,x( j − i)

= 1

n

n−1∑
k=1

(n − k)(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k) + r(n)
z,x(k)r(n)

w,y(k) + r(n)
z,y(k)r(n)

w,x(k))

+ (r(n)
x,z(0)r(n)

y,w(0) + r(n)
y,z(0)r(n)

x,w(0)). (3.2)

Under Assumption 3.1, we have limn→∞ E[(Zn
(x,y),1 − Zn

(x,y),0)(Zn
(z,w),1 − Zn

(z,w),0)]<∞, by

using the fact that, for a, b ∈R, we have |ab| ≤ 1
2 (a2 + b2).

https://doi.org/10.1017/apr.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.30


Multivariate BSS processes 677

Furthermore, since we need to use a matrix formulation for our result, we need to associate
an element ((x, y), (z,w))) with x, y, z,w = 1, . . . , p to (i, j) with i, j = 1, . . . , p2. Recall that
we have the vector

(Zn
(1,1),bl

− Zn
(1,1),al

, . . . , Zn
(1,p),bl

− Zn
(1,p),al

, Zn
(2,1),bl

− Zn
(2,1),al

, . . . , Zn
( p,p),bl

− Zn
( p,p),al

),

and we can rename it as

(Zn
(1),bl

− Zn
(1),al

, . . . , Zn
( p),bl

− Zn
( p),al

, Zn
( p+1),bl

− Zn
( p+1),al

, . . . , Zn
( p2),bl

− Zn
( p2),al

).

In this way we are making the following association between (x, y) and i: i = 1 ↔ (1, 1);
i = 2 ↔ (1, 2); i = p ↔ (1, p); i = p + 1 ↔ (2, 1); i = 2p ↔ (2, p); i = 2p + 1 ↔ (3, 1); i =
p2 ↔ ( p, p). By symmetry, the same association applies to (z,w) and j. Thus, this can
be written compactly as (i, j) ↔ ((�(i − 1)/p� + 1, i − p�(i − 1)/p�), (�( j − 1)/p� + 1, j −
p�( j − 1)/p�)). Therefore, we have

(D)i,j = (D)((�(i−1)/p�+1,i−p�(i−1)/p�),(�( j−1)/p�+1,j−p�( j−1)/p�)),

where (D)((x,y),(z,w)) = limn→∞ E[(Zn
(x,y),1 − Zn

(x,y),0)(Zn
(z,w),1 − Zn

(z,w),0)] is equal to (3.2).
Now we have shown the convergence of the variances and covariances for intervals [al, bl]

of length 1; however, it is straightforward to change the summation indices from
∑n

i=1 to∑�nbl�
i=�nal�+1, and in addition observe that

lim
n→∞

�nbl� − �nal�
n

= lim
n→∞

nbl − nal

n
+ o

(
1

n

)
= bl − al.

The last step is to show that, for l = 1, . . . , d and x, y = 1, . . . , p,∥∥∥∥( 1√
n

�nbl�∑
i=�nal�+1

�n
i G(x)

τ
(x)
n

⊗̃�
n
i G(y)

τ
(y)
n

)
⊗1

(
1√
n

�nbl�∑
i=�nal�+1

�n
i G(x)

τ
(x)
n

⊗̃�
n
i G(y)

τ
(y)
n

)∥∥∥∥
H⊗2

→ 0. (3.3)

However, this is true under Assumption 3.1 by using the same computations as carried out in
the proof of Theorem 3.2 of [17]. Let us sketch them. Without loss of generality, we can focus
on d = 1, a1 = 0, and b1 = 1. By simple computations, it is possible to show that(

�n
i G(x)

τ
(x)
n

⊗̃�
n
i G(y)

τ
(y)
n

)
⊗1

(
�n

j G(x)

τ
(x)
n

⊗̃�
n
j G(y)

τ
(y)
n

)
= 1

4

∑
{a,a′}={x,y}
{b,b′}={x,y}

r(n)
a,b( j − i)

�n
i G(a′)

τ
(a′)
n

⊗ �n
j G(b′)

τ
(b′)
n

,

and from this we obtain

1

n2

∥∥∥∥ n∑
i,j=1

(
�n

i G(x)

τ
(x)
n

⊗̃�
n
i G(y)

τ
(y)
n

)
⊗1

(
�n

i G(x)

τ
(x)
n

⊗̃�
n
i G(y)

τ
(y)
n

)∥∥∥∥2

H⊗2

= 1

16n2

∑
{a,a′}={x,y}
{b,b′}={x,y}
{α,α′}={x,y}
{β,β ′}={x,y}

n∑
i,j,i′,j′=1

r(n)
a,b( j − i)r(n)

α,β ( j′ − i′)r(n)
a′,α′ (i′ − i)r(n)

b′,β ′ ( j′ − j). (3.4)
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The last step is to show that (3.4) goes to 0 as n → ∞. By Hölder’s inequality and some
computations, we obtain

(3.4) ≤ 1

8

∑
{a,a′}={x,y}
{b,b′}={x,y}
{α,α′}={x,y}
{β,β ′}={x,y}

∑
k∈Z

[(r(n)
α,β (k))2 + (r(n)

b′,β ′ (k))2]

(
1√
n

∑
|i|<n

|r(n)
a,b(i)|

)

×
(

1√
n

∑
|j|<n

|r(n)
a′,α′ ( j)|

)
.

Then, by Assumption 3.1 we have∑
k∈Z

[(r(n)
α,β (k))2 + (r(n)

b′,β ′ (k))2]<∞

and
1√
n

∑
|i|<n

|r(n)
a,b(i)| → 0,

1√
n

∑
|j|<n

|r(n)
a′,α′ ( j)| → 0,

as n → ∞, and therefore we obtain the desired convergence (3.3).
Finally, observe that the matrix denoted by C in Corollary 2.1 is here a dp2 × dp2 matrix

given by

C =

⎛⎜⎜⎜⎜⎝
(b1 − a1)D 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 (bd − ad)D

⎞⎟⎟⎟⎟⎠ ,
where the (bl − al)D are p2 × p2 matrices and the 0 matrices are also p2 × p2 but only
composed by zeros. Thus, we obtain the representation of the statement. �
Proposition 3.2. Under Assumption 3.1, let Pn be the law of the process {Zn

t }t∈[0,T] on the

Skorokhod space D([0, T],Rp2
). Then the sequence {Pn}n∈N is tight.

Proof. It follows from the tightness of the components of the vector Zn
t which is proved

following the same arguments as in the proof of Theorem 4.3 of [17] or of Theorem 7 of [14].
In particular, using the computations carried out in the proof of Proposition 3.1 for the

variances, we have

E[(Zn
(x,y),t − Zn

(x,y),s)
2]

= 1

n
E

[( �nt�∑
i=�ns�+1

I2

(
�n

l G(x)

τ
(x)
n

⊗̃�
n
l G(y)

τ
(y)
n

))2]

= �nt� − �ns�
n

1

�nt� − �ns�E
[( �nt�−�ns�∑

i=1

I2

(
�n

l G(x)

τ
(x)
n

⊗̃�
n
l G(y)

τ
(y)
n

))2]
= �nt� − �ns�

n
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×
[

1

�nt� − �ns�
(

1

n

�nt�−�ns�−1∑
k=1

(n − k)(r(n)
x,z(k)r(n)

y,w(k) + r(n)
y,z(k)r(n)

x,w(k)

+ r(n)
z,x(k)r(n)

w,y(k) + r(n)
z,y(k)r(n)

w,x(k))

+ (r(n)
x,z(0)r(n)

y,w(0) + r(n)
y,z(0)r(n)

x,w(0))

)]
≤ C

�nt� − �ns�
n

for a constant C> 0, where we used the fact that the object inside the square brackets converges
and hence it is bounded. Then, by the equivalence of the Lp norms for 1< p<∞ on a fixed
(sum of) Wiener chaos (see Theorem 2.7.2 of [20]), we obtain

E[(Zn
(x,y),t − Zn

(x,y),s)
4]1/2 ≤ C

�nt� − �ns�
n

.

Then, by the Cauchy–Schwarz inequality we have, for any t ≥ r ≥ s and λ> 0,

P(|Zn
(x,y),t − Zn

(x,y),r| ≥ λ, |Zn
(x,y),r − Zn

(x,y),s| ≥ λ) ≤ C

λ4

�nt� − �nr�
n

�nr� − �ns�
n

≤ C
(t − s)2

λ4
.

Finally, we obtain tightness by using Theorem 13.5 of [13]. �
Theorem 3.1. Let Assumption 3.1 hold. Then we have{

1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])
i,j=1,...,p

}
t∈[0,T]

st−→ {D1/2Bt}t∈[0,T],

where D and Bt are given in Proposition 3.1. In particular, Bt is independent of G(1), . . . ,G( p)

and the convergence is in D([0, T],Rp2
), namely the Skorokhod space equipped with the

uniform metric.

Proof. First, note that{
1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])
i,j=1,...,p

}
t∈[0,T]

D−→ {D1/2Bt}t∈[0,T],

follows from Theorem 13.1 of [13] by using the finite-dimensional distribution convergence
proved in Proposition 3.1 and by the tightness proved in Proposition 3.2.

The independence of Bt from G(1)
t , . . . ,G( p)

t is given by the fact that G(i)
t , . . . ,G( p)

t belong
to the first Wiener chaos, while Bt is the limiting process of objects belonging to the second
Wiener chaos. Moreover, we have{

(G(i)
t )i=1,...,p,

1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])
i,j=1,...,p

}
t∈[0,T]

D−→ {(G(i)
t )i=1,...,p,D1/2Bt}t∈[0,T] (3.5)
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in the space D([0, T],Rp ×R
p2

), namely the Skorokhod space equipped with the uniform
metric. Note that this result comes from the convergence of the finite-dimensional distributions
of (3.5), which follows from the arguments at the beginning of this proof together with the
orthogonality of different Wiener chaos, and from the tightness of the law of (3.5), which
follows from the tightness of each component of the vector proved in Proposition 3.2.

Concerning the convergence of the finite-dimensional distributions, note that, for any t ∈
[0, T], each element of (G(i)

t )i=1,...,p and of

1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])
i,j=1,...,p

belong to the first and second Wiener chaos, respectively; hence, for any i, j, k = 1, . . . , p and
s, t ∈ [0, T], we have

E

[
G(k)

s
1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])]
= 0.

Then, from this argument we have

lim
n→∞ E

[
G(k)

s
1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])]
= 0,

and note that each element of (G(i)
t )i=1,...,p and of

1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])
i,j=1,...,p

converges to a normal distribution. Then, by Theorem 2.4 we obtain the convergence of the
finite-dimensional distributions, that is, for any M ∈N and disjoint intervals [am, bm] with
m = 1, . . . ,M,(

(G(i)
bm

− G(i)
am

)i=1,...,p,
1√
n

�nbm�∑
l=am

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])
i,j=1,...,p

)
m=1,...,M

D−→ ((G(i)
bm

− G(i)
am

)i=1,...,p,D1/2(Bbm − Bam))m=1,...,M .

In order to obtain the stable convergence, it is sufficient to use Proposition 2.3. Observe that
condition (ii) in that proposition is implied by the convergence in (3.5) using Bayes’ theorem
and independence of the limiting process {Bt}t∈[0,T] from ({G(i)

t }t∈[0,T])i=1,...,p. In particular,
note that, by Bayes’ theorem, (3.5) implies that, for all fixed n1, . . . , nk ∈N and all

A ∈ σ
(

1√
n1

�n1t�∑
l=1

(
�

n1
l G(i)

τ
(i)
n1

�
n1
l G( j)

τ
( j)
n1

−E

[
�

n1
l G(i)

τ
(i)
n1

�
n1
l G( j)

τ
( j)
n1

])
i,j=1,...,p

, . . . ,

1√
nk

�nkt�∑
l=1

(
�

nk
l G(i)

τ
(i)
nk

�
nk
l G( j)

τ
( j)
nk

−E

[
�

nk
l G(i)

τ
(i)
nk

�
nk
l G( j)

τ
( j)
nk

])
i,j=1,...,p

)
,
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with P(A)> 0, we have

lim
n→∞ P

((
1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

−E

[
�n

l G(i)

τ
(i)
n

�n
l G( j)

τ
( j)
n

])
< x(i,j)

)
i,j=1,...,p

∣∣∣∣ A

)
= P(((D1/2Bt)i,j < x(i,j))i,j=1,...,p | A).

In addition, by the independence of the limiting process {Bt}t∈[0,T] from ({G(i)
t }t∈[0,T])i=1,...,p

we obtain

P(((D1/2Bt)i,j < x(i,j))i,j=1,...,p | A) = P(((D1/2Bt)i,j < x(i,j))i,j=1,...,p).

Following the same computations, it is possible to show the result for any set of points
{t1, . . . , ta} ∈ [0, T]a for a ∈N and not just one t ∈ [0, T]. Therefore, we obtain mixing
convergence and hence stable convergence in D([0, T],Rp2

). �

3.2. Case II

In this section we will show that the results presented in the previous section hold for
different choices of τn, i.e. the scaling factor. In particular, the scaling factor which we will
use in this section will have an order equal to or greater than the order of the previous scaling
factor as n goes to ∞. We will denote this new scaling factor by τ (β( j))

n for j = 1, . . . , p and
maintain the notation of τ ( j)

n for the scaling factor introduced in the previous section.
Indeed, let τ ( j)

n = O(τ (β( j))
n ) for j = 1, . . . , p (e.g. consider τ (β( j))

n = maxj=1,...,p (τ ( j)
n ) for

some js and τ (β( j))
n = τ

( j)
n for others, or see also Example 3.1). Let i, j = 1, . . . , p. In this section

we will work with the Hilbert space generated by the Gaussian random variables

(
�n

l G( j)

τ
(β( j))
n

)
n≥1, 1≤l≤�nt�, j∈{1,...,p}

and let r(β),(n)
i,j (k) :=E

[
�n

1G(i)

τ
(β(i))
n

�n
1+kG( j)

τ
(β( j))
n

]
.

Moreover, the following assumption is the analogue of Assumption 3.2.

Assumption 3.2. Let the limit limn→∞ r(β),(n)
i,j (k) exist for any k ∈N, and let (ξ (k))k∈N be

a sequence such that, for any k, n ∈N, (r(β),(n)
i,j (k))2 ≤ ξ (k) and

∑∞
k=1 ξ (k)<∞ for i, j =

1, . . . , p.

We can now present and prove a modification of the main result of the previous section.

Theorem 3.2. Let Assumption 3.2 hold. Let α, β = 1, 2. Then we have

{
1√
n

�nt�∑
l=1

(
�n

l G(i)

τ
(β(i))
n

�n
l G( j)

τ
(β( j))
n

−E

[
�n

l G(i)

τ
(β(i))
n

�n
l G( j)

τ
(β( j))
n

])
i,j=1,...,p

}
t∈[0,T]

st−→ {D(β) 1/2Bt}t∈[0,T].

In particular, associating for each combination (i, j) a combination ((x, y), (z,w)) where
x, y, z,w = 1, . . . , p, using the formula (i, j) ↔ ((�(i − 1)/p� + 1, i − p�(i − 1)/p�),
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(�( j − 1)/p� + 1, j − p�( j − 1)/p�)), we have

(D)(β)
ij = (D)(β)

(x,y),(z,w)

= lim
n→∞

1

n

n−1∑
k=1

(n − k)(r(β),(n)
x,z (k)r(β),(n)

y,w (k) + r(β),(n)
y,z (k)r(β),(n)

x,w (k)

+ r(β),(n)
z,x (k)r(β),(n)

w,y (k) + r(β),(n)
z,y (k)r(β),(n)

w,x (k))

+ (r(β),(n)
x,z (0)r(β),(n)

y,w (0) + r(β),(n)
y,z (0)r(β),(n)

x,w (0)).

Furthermore, Bt is a p2-dimensional Brownian motion independent of G(1), . . . ,G( p) and the
convergence is in D([0, T],Rp2

), namely the Skorokhod space equipped with the uniform
metric.

Proof. It follows from the same arguments as used in the proofs of Proposition 3.1,
Proposition 3.2, and Theorem 3.1. This is because the only difference is that now we have
a greater denominator than before (i.e. τ (β( j))

n ≥ τ ( j)
n ), which changes neither the logic of

the arguments nor the computations. This is because in our framework we do not need
E[(�n

i G(k)/τ
(k)
n )2] = 1. This was different for the previous literature where the equality was

needed in order to use Theorem 2.7.7 in combination with Theorem 2.7.8 of [20]. �

Remark 3.3. Note that, while the larger value of the τ (β( j))
n does not trigger any modification

in the proof of the results, it may reduce some of the components of D(β) to 0. For example, if
we assume that E[(�n

i G( j)/τ
( j)
n )2]<C, where C> 0, and that limn→∞{τ ( j)

n /τ
(β( j))
n } = 0 for

every j = 1, . . . , p, then all the components of D(β) reduce to 0. This is because, by stationarity,

r(β),(n)
i,j (k) =E

[
�n

1G(i)

τ
(β(i))
n

�n
1+kG( j)

τ
(β( j))
n

]
≤E

[(
�n

1G(i)

τ
(β(i))
n

)2

+
(
�n

1+kG( j)

τ
(β( j))
n

)2]

= τ
(i)
n

τ
(β(i))
n

+ τ
( j)
n

τ
(β( j))
n

→ 0.

Example 3.1. In this example, let {Gt}t∈[0,T] be a Gaussian core. Consider a partition of the
set {1, . . . , p} and call its elements Iα1, . . . , Iαv for some v ∈N. Hence, Iαh ⊂ {1, . . . , p} for
h = 1, . . . , v, and Iαh ∩ Iαl =∅ for h, l = 1, . . . , v with h �= l. For h = 1, . . . , v, define

τ (αh)
n :=

√√√√E

[( ∑
i∈Iαh

�n
1G(i)

)2]
, (3.6)

and consider �n
l G( j)/τ

(β( j))
n , where β( j) := αh when j ∈ Iαh . In addition, assume that, for

h = 1, . . . , v, the Ft-Brownian measures W(i) are independent for i ∈ Iαh . This means that
E[W(i)W( j)] = 0 if i, j ∈ Iαh for some h = 1, . . . , v. Then τ

(β( j))
n ≥ τ ( j)

n for j = 1, . . . , p,
where τ ( j)

n has been defined in (3.1) and, thus, we can apply Theorem 3.2.
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4. Joint CLT for the multivariate BSS process

In this section we will present and prove our main results consisting of the joint CLT for the
two types of multivariate BSS processes. First, we will present the CLT for the scaling factor
τ used in the literature (i.e. case I) and then the CLT for the new formulation (i.e. case II). For
case II, we have two scenarios depending on which multivariate extension of the univariate
BSS process we consider (see Definition 2.2). In this and the next two sections we will use
a multivariate version of the continuous mapping theorem applied to stable convergence (for
reference, see [1]). Moreover, we will adopt the following three assumptions. These are the
analogues of Assumption (CLT) and conditions in Section 4.1 of [7], and Assumptions 2.1,
2.2, 4.1, and 4.2 of [17]. The only difference is that they also focus on the convergence of the
autocorrelations r(n), which for the sake of brevity and clarity of exposition we decided not to
focus on in this work. Let �n := 1/n.

Assumption 4.1. For k, l = 1, . . . , p, let g(k,l) be differentiable on (0,∞) with derivative
(g(k,l))′ ∈ L2((ε,∞)) for all ε > 0 and ((g(k,l))′)2 be nonincreasing in [b(k,l),∞) for some
b(k,l) > 0. Let σ (k,l) have α(k,l)-Hölder continuous sample paths for α(k,l) ∈ ( 1

2 , 1). Define

π (k,l)
n (A) :=

∫
A (g(k,l)(s +�n) − g(k,l)(s))2 ds∫∞

0 (g(k,l)(s +�n) − g(k,l)(s))2 ds
, where A ∈ B(R).

We impose that there exists a constant λ(k,l) <−1 such that, for any εn = O(n−κ ), κ ∈ (0, 1),
we have

π (k,l)
n ((εn,∞)) = O(nλ

(k,l)(1−κ)).

In the next sections we present different cases. Each case will have particular τn and r(n), but
the underlying assumptions will have the same structure. Hence, for the last two assumptions,
we use the variables τn and r(n), whose specific form will not be introduced here, but instead
it will be specified in the context where the assumptions are used. In other words, we prefer
to have a general form for these two assumptions (with an unspecified τn and r(n)) in order to
avoid repeating the same assumptions with different τn and r(n) for each case.

Assumption 4.2. Let the limit limn→∞ r(n)(k) exist for any k ∈N, and let (ξ (k))k∈N be a
sequence such that, for any k, n ∈N, (r(n)(k))2 ≤ ξ (k) and

∑∞
k=1 ξ (k)<∞.

Assumption 4.3. Let k, l,m = 1, . . . , p. Let

sup
s∈(−∞,T]

E[(σ (l,m)
s )2]<∞.

Moreover, for any t> 0, let ∫ ∞

1
((g(k,l))′(s))2(σ (l,m)

t−s )2 ds<∞.

Let us discuss the intuition behind these assumptions. First, Assumption 4.2 is the analogue
of Assumption 3.1 and Assumption 3.2 of the previous section, and it concerns the summability
of the autocorrelations of the Gaussian core under consideration.

Assumption 4.1 regards the behaviour of the deterministic kernel g. In the first sentence we
are not imposing that (g(m,l))′ ∈ L2((0,∞)) in order to allow the theory to also be applicable
outside the semimartingale case. Moreover, the intuition behind the conditions on π (k,l)

n is
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that without them the increments �n
i Y (k) might contain substantial information about the

volatility far outside of the interval [(i − 1)/n, i/n] (i.e. [(i − 1)�n, i�n]), potentially leading
to a different stochastic limit. In other words, the mass of π (k,l)

n is more and more concentrated
toward 0 as n increases.

Furthermore, it is shown in Section 4.3 of [7] in the univariate case that Assumptions 4.1
and 4.2 are for example satisfied in two cases. These cases can be easily extended to our
multivariate framework since Assumptions 4.1 and 4.2 apply to each g(k,l) where k and l are
fixed. The first case consists of the function g(k,l)(x) = xδ1(0,1](x), x> 0, for δ ∈ ( − 1

2 , 0). The
second case consists of the function g(k,l)(x) = xδLg(x) with (g(k,l))′(x) = xδ−1Lg′ (x), where Lg

and Lg′ are two continuous functions on (0,∞) and slowly varying at 0, under the assumptions
that g(k,l) ∈ L2((0,∞)), (g(k,l))′ ∈ L2((ε,∞)) for any ε > 0, (g(k,l)) is nonincreasing on (b,∞)
for some b> 0, and δ ∈ ( − 1

2 , 0).
In many situations the condition of Assumption 4.3 is satisfied, for example, when the stoch-

astic volatilities are second-order stationary or more generally when sups∈(−∞,T] E[(σ (l,m)
s )2]<

∞. Concerning the second condition, it is satisfied when we assume a fast decay to 0 of the
derivative of the deterministic kernel (g(k,l))′(s) when s goes to ∞.

In Section 6 we will show that these assumptions are satisfied for an important and practical
case which is found in many real-world applications: the gamma kernel. Finally, since the
assumptions of this work and of [7] and [17] are similar, we refer the reader to Section 4.3 of
[7] and Section 2.1 of [17] for further discussions on the assumptions.

4.1. Case I

We will start with some preliminaries, where we focus on the bivariate case in order
to simplify the exposition. The notation for higher dimensions is analogous. Consider the
stochastic process {Yt}t∈[0,T] defined as

Yt :=
(

Y (1)
t

Y (2)
t

)
=
∫ t

−∞

(
g(1,1)(t − s) g(1,2)(t − s)
g(2,1)(t − s) g(2,2)(t − s)

)(
σ

(1,1)
s σ

(1,2)
s

σ
(2,1)
s σ

(2,2)
s

)(
dW(1)

s

dW(2)
s

)
+
(

U(1)
t

U(2)
t

)
,

where g(i,j)( · ), i, j = 1, 2, are deterministic functions and W(1),W(2) are two ( possibly
dependent) Ft-adapted jointly Brownian measures on R. From a modelling point of view, the
dependence of the Brownian measures is not very important since it is always possible to shift
it from the Brownian measure to the stochastic volatilities by just rewriting the latter. We have

Y (1)
t =

∫ t

−∞
(g(1,1)(t − s)σ (1,1)

s + g(1,2)(t − s)σ (2,1)
s ) dW(1)

s

+
∫ t

−∞
(g(1,1)(t − s)σ (1,2)

s + g(1,2)(t − s)σ (2,2)
s ) dW(2)

s + U(1)
t

and Y (2)
t =

∫ t

−∞
(g(2,1)(t − s)σ (1,1)

s + g(2,2)(t − s)σ (2,1)
s ) dW(1)

s

+
∫ t

−∞
(g(2,1)(t − s)σ (1,2)

s + g(2,2)(t − s)σ (2,2)
s ) dW(2)

s + U(2)
t .

Let us define, for k, r,m = 1, 2,

�n
i Z(k,r,m) :=

∫ i�n

(i−1)�n

g(k,r)(i�n − s)σ (r,m)
s dW(m)

s +
∫ (i−1)�n

−∞
�n

i g(k,r)(s)σ (r,m)
s dW(m)

s ,
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where �n
i g(k,l)(s) := g(k,l)(i�n − s) − g(k,l)((i − 1)�n − s). Then we have

�n
i Y (k) =�n

i Z(k,1,1) +�n
i Z(k,2,1) +�n

i Z(k,1,2) +�n
i Z(k,2,2) +�n

i U(k).

For m, r, k = 1, 2, let G(k,r;m)
t := ∫ t

−∞ g(k,r)(t − s) dW(m)
s . Hence,

�n
i G(k,r;m) =

∫ i�n

(i−1)�n

g(k,r)(i�n − s) dW(m)
s +

∫ (i−1)�n

−∞
�n

i g(k,r)(s) dW(m)
s .

Furthermore, let τ (k,r)
n :=

√
E[(�n

1G(k,r;m))2] and

r(n)
k,r,m;l,q,w(h) :=E

[
�n

1G(k,r;m)

τ
(k,r)
n

�n
1+hG(l,q;w)

τ
(l,q)
n

]
.

The Gaussian core {Gt}t∈[0,T] is here given by Gt = (G(k,r;m)
t )m,k,r=1,2, and it is a Gaussian

process since W(1) and W(2) are jointly Gaussian. Note that we are working with the separable
Hilbert space H generated by the jointly Gaussian random variables(

�n
1G(k,r;m)

τ
(k,r)
n

)
n≥1, 1≤l≤�nt�, k,r,m∈{1,2}

.

Furthermore, observe that

E

[
�n

1G(k,r;m)

τ
(k,r)
n

�n
1+hG(l,q;w)

τ
(l,q)
n

]
=E

[
�n

i G(k,r;m)

τ
(k,r)
n

�n
i+hG(l,q;w)

τ
(l,q)
n

]
for any i = 1, . . . , �nt�. Before presenting the CLT, we introduce an assumption, similar to
Assumption (4.10) of [7], that controls the asymptotic behaviour of the drift process. In
particular, it states that the drift process has to be sufficiently smooth so that the sum of its
increments does not grow too fast as n → ∞.

Assumption 4.4. For any k, l, r,m = 1, . . . , p, let

1√
n

�nt�∑
i=1

�n
i Z(k,r,m)

τ
(k,r)
n

�n
i U(l) u.c.p.−−−→ 0 and

1√
n

�nt�∑
i=1

�n
i U(k)�n

i U(l) u.c.p.−−−→ 0.

Theorem 4.1. Under Assumptions 4.1, 4.2, and 4.3 applied to τ (l,q)
n , r(n)

k,r;l,q for l, q, k, r =
1, . . . , p, and Assumption 4.4, we have the following stable convergence:{√

n

[
1

n

�nt�∑
i=1

( p∑
r,m=1

�n
i Z(k,r,m)

τ
(k,r)
n

+�n
i U(k)

)( p∑
q,w=1

�n
i Z(l,q,w)

τ
(l,q)
n

+�n
i U(l)

)

−
p∑

r,m,q,w=1

E

[
�n

1G(k,r,m)

τ
(k,r)
n

�n
1G(l,q,w)

τ
(l,q)
n

] ∫ t

0
σ (r,m)

s σ (q,w)
s ds

]
k,l=1,...,p

}
t∈[0,T]

st−→
{ ∫ t

0
VsD

1/2 dBs

}
t∈[0,T]

in D([0, T],Rp2
). Where D and Vs are introduced in Appendix A, and Bs is a p6-dimensional

Brownian motion.
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Remark 4.1. As all the other CLTs and WLLN in this section, this result is not feasible
because the scaling factor τ (k,r)

n for k, r = 1, . . . , p depends on the Gaussian core Gt which
is not observable, and, so, this result cannot be computed directly from the data. Note also that
in Theorem 4.1 and Corollary 4.1 the increments �n

i Z(k,r,m) appear, which are not observable
either.

Proof of Theorem 4.1. Let us assume for now that p = 2 and that the drift process Ut = 0 for
any t ∈ [0, T]. We can split our formulation into two components An + Cn, where An contains
the elements that go to 0, while Cn contains the elements that do not converge to 0. In this proof
we will use the so-called blocking technique; see [7], [15], and [17] for details. Let 1 ≤ h ≤ n,
and let us first focus on Cn, which is defined as

Cn := 1√
n

( �ht�∑
j=1

∑
i∈Ih,n( j)

2∑
r,m,q,w=1

(
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

−E

[
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

])

× σ
(r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

)
k,l=1,2

, (4.1)

where Ih,n( j) = {i | i/n ∈ (( j − 1)/h, j/h]}, which can be rewritten as

Cn = 1√
n

�ht�∑
j=1

∑
i∈Ih,n( j)

V( j−1)�h

(
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

−E

[
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

])
r,m,q,w,k,l=1,2

,

where

V( j−1)�h =

⎛⎜⎜⎝
σ( j−1)�h 0 0 0

0 σ( j−1)�h 0 0
0 0 σ( j−1)�h 0
0 0 0 σ( j−1)�h

⎞⎟⎟⎠ .

Here σ( j−1)�h = (σ (r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

)�r,m,q,w=1,2 (hence, it is a row vector of 16 elements), and 0
is a row vector of 16 elements containing only 0s. Hence, V( j−1)�h is a 4 × 64 matrix. Now, by
Theorem 3.1 we have{

1√
n

�nt�∑
i=1

(
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

−E

[
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

])
r,m,q,w,k,l=1,2

}
t∈[0,T]

st−→ {D1/2Bt}t∈[0,T] as n → ∞

in D([0, T],R64), where the symmetric matrix D1/2 is a 64 × 64 matrix and Bt is a 64-
dimensional Brownian motion. In particular, in order to define the elements of the matrix D,
we proceed with the following association of (z, y) to ((rz,mz, qz,wz, kz, lz), (ry,my, qy,wy,

ky, ly)). This part of the proof is similar to the analogue part in the proof of Proposition 3.1, but
there are some differences. First, in the latter we had the association of fewer elements (namely
(i, j) ↔ ((x, y), (z,w))). Second, as it is possible to see from (4.1) in the present case there is
a summation over r,m, q,w and hence there is no a specific ordering of r,m, q,w when we
consider it as a vector (given that we modify the ordering of σ( j−1)�h accordingly). Indeed, let
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ν(r,m, q,w) be any permutation of the set {(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 2, 2),
. . . , (2, 2, 2, 2)}, namely the set of all the possible combinations of r,m, q,w ∈ {1, 2}, and let
νs(r,m, q,w) determine the sth element of ν(r,m, q,w). It is possible to see that ν(r,m, q,w)
contains 24 elements; hence, s ∈ {1, . . . , 24}. Then we have

Cn = 1√
n

�ht�∑
j=1

∑
i∈Ih,n( j)

V( j−1)�h

(
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

−E

[
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

])
r,m,q,w,k,l=1,2

= 1√
n

�ht�∑
j=1

∑
i∈Ih,n( j)

Vν( j−1)�h

(
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

−E

[
�n

i G(k,r;m)

τ
(k,r)
n

�n
i G(l,q;w)

τ
(l,q)
n

])
ν(r,m,q,w);k,l=1,2

,

where Vν( j−1)�h
has the same form as V( j−1)�h , but with σν( j−1)�h

=(σ (r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

)�ν(r,m,q,w)
instead of σ( j−1)�h . In particular, given a vector X = (X1, . . . ,X24 ), by the notation (X)ν(r,m,q,w)
we mean that the sth component of the vector is νs(r,m, q,w), that is,

(X)ν(r,m,q,w) = (Xν1(r,m,q,w), Xν2(r,m,q,w), . . . , Xν24 (r,m,q,w)).

We are now ready to formulate the relation between z and (rz,mz, qz,wz, kz, lz): for z = s ↔
(νs(r,m, q,w), 1, 1); z = 24 + 1 ↔ (ν1(r,m, q,w), 1, 2); . . . z = 24 + s ↔ (νs(r,m, q,w), 1,
2); . . . z = 25 + 1 ↔ (ν1(r,m, q,w), 2, 1); . . . z = 25 + s ↔ (νs(r,m, q,w), 2, 1); . . . z =
25 + 24 + 1 ↔ (ν1(r,m, q,w), 2, 2); . . . z = 25 + 24 + s ↔ (νs(r,m, q,w), 2, 2); . . . z = 26 ↔
(ν24 (r,m, q,w), 2, 2). By symmetry, the same relation applies to y and (ry,my, qy,wy, ky, ly).
This can be written compactly as

(z, y) ↔
((
νz−�(z−1)/24�24(r,m, q,w),

⌊�(z − 1)/24�
2

⌋
+ 1,

⌊
z − 1

24

⌋
+ 1

− 2

⌊�(z − 1)/24�
2

⌋)
,(

νy−�(y−1)/24�24(r,m, q,w),

⌊�(y − 1)/24�
2

⌋
+ 1,

⌊
y − 1

24

⌋
+ 1

− 2

⌊�(y − 1)/24�
2

⌋))
.

Moreover, here it becomes evident why we need Theorem 3.1 to hold for jointly Gaussian
Brownian measures and not just for independent Brownian measures: this is because the vector
of Brownian measures is not composed of independent Brownian measures, but rather of the
same Brownian measures recurring repeatedly.

Continuing with the proof, we observe that, by using the properties of the stable convergence
and the assumption on the F -measurability of the σ , we obtain, for fixed h,

Cn
st−→
{ �ht�∑

j=1

V( j−1)�h D1/2(Bj�h − B( j−1)�h )

}
t∈[0,T]

as n → ∞
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in D([0, T],R4), where the dimensions are 4 × 64, 64 × 64, and 64 × 1, respectively. The
convergence in this space is implied by the convergence in D([0, T],R64). In addition, since
the stochastic volatilities are càdlàg, we have

�ht�∑
j=1

V( j−1)�h D1/2(Bj�h − B( j−1)�h )
P−→
∫ t

0
VsD

1/2 dBs as h → ∞.

From this we obtain the stable convergence of Cn.
Concerning A(l,k),n we apply the same arguments as for Propositions 7.1, 7.2, and 7.5 of

[17] and Theorem 4 of [7]. This is because we can focus on the single elements

√
n

[
1

n

�nt�∑
i=1

�n
i Z(k,r,m)

τ
(k,r)
n

�n
i Z(l,q,w)

τ
(l,q)
n

−E

[
�n

i G(k,r,m)

τ
(k,r)
n

�n
i G(l,q,w)

τ
(l,q)
n

] ∫ t

0
σ (r,m)

s σ (q,w)
s ds

]
(4.2)

and directly apply their arguments using the assumptions of this theorem. This is because,
for each (k, r,m, l, q,w), A(k,r,m,l,q,w),n converges to 0 in distribution in D([0, T],R4), which
implies that they converge jointly to 0 stably in distribution. For the sake of completeness, let
us sketch their arguments and show how they apply to our case. First note that (4.2) can be
split into elements that converge to 0 and elements that do not. The second elements belong to
Cn and so they have already been treated in the previous part of this proof. The first elements
are given by

A(k,r,m,l,q,w),n

:= 1√
n

�nt�∑
i=1

(
�n

i Z(k,r,m)

τ
(k,r)
n

�n
i Z(l,q,w)

τ
(l,1)
n

− σ
(r,m)
(i−1)�n

σ
(q,w)
(i−1)�n

�n
i G(k,r,m)

τ
(k,r)
n

�n
i G(l,q,w)

τ
(l,q)
n

)

+
[

1√
n

�nt�∑
i=1

σ
(r,m)
(i−1)�n

σ
(q,w)
(i−1)�n

�n
i G(k,r,m)

τ
(k,r)
n

�n
i G(l,q,w)

τ
(l,q)
n

− 1√
n

�ht�∑
j=1

σ
(r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

∑
i∈Ih,n( j)

�n
i G(k,r,m)

τ
(k,r)
n

�n
i G(l,q,w)

τ
(l,q)
n

]

+E

[
�n

1G(k,r,m)

τ
(k,r)
n

�n
1G(l,q,w)

τ
(l,q)
n

]

×
(√

n

h

�ht�∑
j=1

σ
(r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

− 1√
n

�nt�∑
j=1

σ
(r,m)
( j−1)�n

σ
(q,w)
( j−1)�n

)

+E

[
�n

1G(k,r,m)

τ
(k,r)
n

�n
1G(l,q,w)

τ
(l,q)
n

]

×
(

1√
n

�nt�∑
j=1

σ
(r,m)
( j−1)�n

σ
(q,w)
( j−1)�n

− √
n
∫ t

0
σ (r,m)

s σ (q,w)
s ds

)
=: An

t + A′n,h
t + A′′n,h

t + Dn
t .

Note that #Ih,n( j) ∈ {�n/h�, �n/h� + 1}, which implies that #Ih,n( j) = n/h + eh,n( j) with
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eh,n( j) ∈ ( − 1, 1] for every 1 ≤ h ≤ n and j ≥ 1. Then we have

C̃(k,r,m,l,q,w),n = 1√
n

�ht�∑
j=1

σ
(r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

∑
i∈Ih,n( j)

�n
i G(k,r,m)

τ
(k,r)
n

�n
i G(l,q,w)

τ
(l,q)
n

−E

[
�n

1G(k,r,m)

τ
(k,r)
n

�n
1G(l,q,w)

τ
(l,q)
n

]√
n

h

�ht�∑
j=1

σ
(r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

= C(k,r,m,l,q,w),n

+
�ht�∑
j=1

σ
(r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

(
1√
n

#Ih,n( j) −
√

n

h

)

×E

[
�n

1G(k,r,m)

τ
(k,r)
n

�n
1G(l,q,w)

τ
(l,q)
n

]
,

where

C(k,r,m,l,q,w),n = 1√
n

�ht�∑
j=1

σ
(r,m)
( j−1)�h

σ
(q,w)
( j−1)�h

×
∑

i∈Ih,n( j)

(
�n

i G(k,r,m)

τ
(k,r)
n

�n
i G(l,q,w)

τ
(l,q)
n

−E

[
�n

1G(k,r,m)

τ
(k,r)
n

�n
1G(l,q,w)

τ
(l,q)
n

])
.

Since #Ih,n( j)/
√

n − √
n/h = eh,n( j)/

√
n, the second addendum in the above equation

(i.e. C̃(k,r,m,l,q,w),n − C(k,r,m,l,q,w),n) goes to 0 almost surely as n → ∞. For completeness,
we remark that in this proof the order is always n → ∞ first and h → ∞ afterwards.
Furthermore, note that A(k,r,m,l,q,w),n + C̃(k,r,m,l,q,w),n gives us (4.2), and that C(k,r,m,l,q,w),n is
the (k, r,m, l, q,w)th element of the vector Cn.

Let A′′′n,h
t := A′n,h

t + A′′n,h
t . Observe that our assumptions are sufficient to use Propositions

7.1, 7.2, and 7.5 of [17], which would allow us to prove the convergence to 0 of An
t , of

A′′′n,h
t , and of Dn

t , respectively. In particular, Assumptions 2.1, 2.2, 4.1, and 4.2 of [17]
and Assumption (CLT) of [7] are analogues of Assumptions 4.1, 4.2, and 4.3 together with
Definition 2.2 (see also the discussion after Assumption 4.3). The only main difference
between our and their assumptions is that they additionally focus on the limiting object of
the convergence of the correlations r(n), which is denoted by ρi,j

ϑ (k) in [17] and by ρ(k) in
[7]. However, for the sake of brevity and clarity of exposition, we decided not to focus on
this issue in our work. This allows us to get rid of some assumptions, in particular some
part of Assumption 2.2 of [17] and some part of Assumption (CLT) of [7]. Therefore, by
our assumptions and by Propositions 7.1, 7.2, and 7.5 of [17], we obtain the convergence to 0
of An

t , of A′′′n,h
t , and of Dn

t , respectively.
Since Cn converges stably and An converges stably to 0, they jointly converge stably. Note

also that C̃n − Cn converges to 0 almost surely and so it does not affect the limit. This concludes
the proof for the case Ut = 0, where 0 is a vector of 0s.

Now consider Ut �= 0. In order to get the stated result, we need to prove that the following
elements converge uniformly on compacts in probability (u.c.p.) to 0, so that the stable
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convergence obtained so far in this proof remains the same. These elements are

√
n

[
1

n

�nt�∑
i=1

(
�n

i Z(k,1,1)

τ
(k,1)
n

+ �n
i Z(k,2,1)

τ
(k,2)
n

+ �n
i Z(k,1,2)

τ
(k,1)
n

+ �n
i Z(k,2,2)

τ
(k,2)
n

)
�n

i U(l)

+
(
�n

i Z(l,1,1)

τ
(l,1)
n

+ �n
i Z(l,2,1)

τ
(l,2)
n

+ �n
i Z(l,1,2)

τ
(l,1)
n

+ �n
i Z(l,2,2)

τ
(l,2)
n

)
�n

i U(k)

+�n
i U(k)�n

i U(l)
]

k,l=1,2
.

Thanks to Assumption 4.4 (with p = 2) they go to 0 u.c.p. componentwise (i.e. for fixed k, l)
and, hence, jointly. Thus, using the properties of the stable convergence, the proof for the case
p = 2 is complete.

Now, let p ≥ 2. The proof for this case follows from the same arguments as just presented
for the case p = 2. Indeed, having p ≥ 2 does change the dimension of the objects considered
(in particular, see the matrix D and Vs in Appendix A), but it does not affect in any way the
logic of the arguments. �

It is possible to obtain a vech formulation of our results, thus reducing their dimensions
without losing any information. This is possible because of the symmetry of our object of
study, that is there is no difference between

�n
i G(k,r,m)

τ
(k,r)
n

�n
i G(l,q,w)

τ
(l,q)
n

and
�n

i G(l,q,w)

τ
(l,q)
n

�n
i G(k,r,m)

τ
(k,r)
n

and between
�n

i Z(k,r,m)

τ
(k,r)
n

�n
i Z(l,q,w)

τ
(l,q)
n

and
�n

i Z(l,q,w)

τ
(l,q)
n

�n
i Z(k,r,m)

τ
(k,r)
n

.

Hence, we have the following formulation of our results.

Corollary 4.1. Under Assumptions 4.1, 4.2, and 4.3 applied to τ (l,q)
n , r(n)

k,r;l,q for l, q, k, r =
1, . . . , p, and Assumption 4.4, we have the stable convergence{√

n

[
1

n

�nt�∑
i=1

( p∑
r,m=1

�n
i Z(k,r,m)

τ
(k,r)
n

+�n
i U(k)

)( p∑
q,w=1

�n
i Z(l,q,w)

τ
(l,q)
n

+�n
i U(l)

)

−
p∑

r,m,q,w=1

E

[
�n

1G(k,r,m)

τ
(k,r)
n

�n
1G(l,q,w)

τ
(l,q)
n

] ∫ t

0
σ (r,m)

s σ (q,w)
s ds

]
k=1,...,p;l≤k

}
t∈[0,T]

st−→
{ ∫ t

0
VsD

1/2 dBs

}
t∈[0,T]

in D([0, T],Rp( p+1)/2), where D and Vs are introduced in Appendix A, and Bs is a p5( p +
1)/2-dimensional Brownian motion.

Proof. It follows from the same arguments as used in the proof of Theorem 4.1. Indeed, in
Theorem 4.1 we had k, l = 1, . . . , p, but now we have k = 1, . . . , p and l ≤ k. As before, this
does change the dimension of the objects considered (in particular, see the matrix D and Vs in
Appendix A), but not the logic of the arguments. �
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Remark 4.2. Note that p5( p + 1)/2 comes from p4( p2 −∑p−1
j=1 j), where

∑p−1
j=1 j indicates

that we are not considering the strictly upper (or lower) triangular elements of the p × p matrix.
Moreover, for the remaining sections and subsections, we will always adopt the vech version
of our results.

4.2. Case II: first scenario

Despite the process Yt being the same as in the previous section, we introduce a new
formulation for the τ . This formulation is in line with that presented in Section 3.2.
Furthermore, in this section we present and prove the results for one of the two versions of
the multivariate BSS process introduced in Definition 2.2. In the next section we will do the
same for the other version.

Consider the stochastic process {Yt}t∈[0,T] = {(Y (1)
t , . . . , Y ( p)

t )}t∈[0,T] given by

Yt =
∫ t

−∞

⎛⎜⎝g(1,1)(t − s) · · · g(1,p)(t − s)
...

. . .
...

g( p,1)(t − s) · · · g( p,p)(t − s)

⎞⎟⎠
⎛⎜⎝σ

(1,1)
s · · · σ

(1,p)
s

...
. . .

...

σ
( p,1)
s · · · σ

( p,p)
s

⎞⎟⎠
⎛⎜⎝dW(1)

s
...

dW( p)
s

⎞⎟⎠

+
⎛⎜⎝U(1)

t
...

U( p)
t

⎞⎟⎠ .

Assume that the Ft-Brownian measures are all independent of each other. The Gaussian core
is given by {Gt}t∈[0,T] with

Gt = (G(k,r,m)
t )k,r,m=1,...,p =

( ∫ t

0
g(k,r)(t − s) dW(m)

s

)
k,r,m=1,...,p

.

Let us define, for k = 1, . . . , p, the sequence (τ̄ (k)
n )n∈N such that, for each n ∈N,

max
r=1,...,p

τ (k,r)
n = O(τ̄ (k)

n ).

For example, we may assume that

τ̄ (k)
n :=

√√√√E

[( p∑
r=1

�n
1G(k,r,r)

t

)2]
or that τ̄ (k)

n := max
r=1,...,p

√
E[(�n

1G(k,r,r)
t )2].

Note that in the previous expressions we focused on (k, r, r) instead of (k, r,m). This is
because, by the independence of the Brownian measures, we obtain

E

[
�n

1G(k,r,m)

τ̄
(k)
n

�n
1+hG(l,q,w)

τ̄
(l)
n

]
= 0

whenever m �= w; hence, it is sufficient to define the scaling factors just in terms of (k, r, r).
Moreover, for h ∈N, let

r̄(n)
k,r,m;l,q,w(h) :=E

[
�n

1G(k,r,m)

τ̄
(k)
n

�n
1+hG(l,q,w)

τ̄
(l)
n

]
,

and observe that if m �= w then r̄(n)
k,r,m;l,q,w(h) = 0.
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Assumption 4.5. For any k, l = 1, . . . , p, let

1√
n

�nt�∑
i=1

�n
i (Y (k) − U(k))

τ̄
(k)
n

�n
i U(l)

τ̄
(l)
n

u.c.p.−−−→ 0 and
1√
n

�nt�∑
i=1

�n
i U(k)

τ̄
(k)
n

�n
i U(l)

τ̄
(l)
n

u.c.p.−−−→ 0.

Observe that the above assumption is similar to Assumption 4.4. The only difference is that
now the increments of the drift are divided by the scaling factor due to the different formulation
of the theorems. Indeed, now the process Yt contains the drift Ut.

Theorem 4.2. Under Assumptions 4.1, 4.2, and 4.3 applied to τ̄ (l)
n , r̄(n)

k,r,m;l,q,m for l, q, k, r,
m = 1, . . . , p, and Assumption 4.5, we have the stable convergence{√

n

[
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

−
p∑

r,m,q=1

E

[
�n

1G(k,r,m)

τ̄
(k)
n

�n
1G(l,q,m)

τ̄
(l)
n

]

×
∫ t

0
σ (r,m)

s σ (q,m)
s ds

]
k=1,...,p;l≤k

}
t∈[0,T]

st−→
{ ∫ t

0
VsD

1/2 dBs

}
t∈[0,T]

in D([0, T],Rp( p+1)/2), where D and Vs are introduced in Appendix A, and Bs is a p5( p +
1)/2-dimensional Brownian motion.

Proof. It follows from the same arguments as used in the proof of Theorem 4.1, the only
difference is the use of Theorem 3.2 instead of Theorem 3.1. In particular, the elements that
converge to 0 (which we called An in the proof of Theorem 4.1) still converge to 0 since we are
using a larger denominator. For the other elements (which we called Cn) we do have the stated
convergence due to Theorem 3.2. �

4.3. Case II: second scenario

In this section we present and prove the results for the other version of the multivariate BSS
process introduced in Definition 2.2. In addition, at the price of a simple assumption on the
stochastic volatilities, this new form allows for a definition of τn in terms of the BSS process
{Xt}t∈[0,T] (see below) and not in terms of the Gaussian process {Gt}t∈[0,T].

Consider the stochastic process {Xt}t∈[0,T] = {(X(1)
t , . . . , X( p)

t )}t∈[0,T] given by

Xt =
∫ t

−∞

⎛⎜⎝g(1,1)(t − s)σ (1,1)
s · · · g(1,p)(t − s)σ (1,p)

s
...

. . .
...

g( p,1)(t − s)σ ( p,1)
s · · · g( p,p)(t − s)σ ( p,p)

s

⎞⎟⎠
⎛⎜⎝dW(1)

t
...

dW( p)
t

⎞⎟⎠+
⎛⎜⎝U(1)

t
...

U( p)
t

⎞⎟⎠ . (4.3)

Assume that the Ft-Brownian measures are all independent of each other and of
the drift process, and that the volatilities, σ

(k,m)
s for any k,m = 1, . . . , p, are sec-

ond order stationary. Let us define, for k = 1, . . . , p, τ̃ (k)
n :=

√
E[(�n

1X(k))2]. Following
Example 3.1, it is possible to observe that τ̃ (k)

n is similar to τ (αh)
n introduced in (3.6) (except for

the drift component). The Gaussian core is given by {Gt}t∈[0,T] with Gt = (G(k,m)
t )k,m=1,...,p =

(
∫ t

0 g(k,m)(t − s) dW(m)
s )k,m=1,...,p and the partition is in the k variables, namely we split

{1, . . . , p}2 into {1} × {1, . . . , p}, . . . , {p} × {1, . . . , p}. Note that, for each element of the
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partition, the associated Brownian measures are independent of each other. Furthermore, we
define

r̃(n)
k,m;l,w(h) :=E

[
�n

1G(k,m)

τ̃
(k)
n

�n
1+hG(l,w)

τ̃
(l)
n

]
;

observe that if m �= w then r̃(n)
k,m;l,w(h) = 0 and that the rate of τ̃ (k)

n is greater than or equal to the
order of τ (k,r)

n as n → ∞ for any r = 1, . . . , p.

Theorem 4.3. Under Assumptions 4.1, 4.2, and 4.3 applied to τ̃ (l)
n , r̃(n)

k,m;l,m and Assumption
4.5 applied to X(k) for l, k,m = 1, . . . , p, we have the stable convergence{√

n

[
1

n

�nt�∑
i=1

�n
i X(k)

τ̃
(k)
n

�n
i X(l)

τ̃
(l)
n

−
p∑

m=1

E

[
�n

1G(k,m)

τ̃
(k)
n

�n
1G(l,m)

τ̃
(l)
n

]

×
∫ t

0
σ (k,m)

s σ (l,m)
s ds

]
k=1,...,p;l≤k

}
t∈[0,T]

st−→
{ ∫ t

0
VsD

1/2 dBs

}
t∈[0,T]

in D([0, T],Rp( p+1)/2), where D and Vs are introduced in Appendix A and Bs is a p3( p +
1)/2-dimensional Brownian motion.

Proof. It follows from the arguments of Theorem 4.1 and the results of Theorem 3.2. In
particular, in the present case, the converging element is given by

Cn = 1√
n

( �ht�∑
j=1

∑
i∈Ih,n( j)

p∑
m=1

(
�n

i G(k,m)

τ̃
(k)
n

�n
i G(l,m)

τ̃
(l)
n

−E

[
�n

i G(k,m)

τ̃
(k)
n

�n
i G(l,m)

τ̃
(l)
n

])

× σ
(r,m)
( j−1)�h

σ
(q,m)
( j−1)�h

)
k,l=1,...,p;l≤k

. �

Remark 4.3. It is possible to obtain a similar result to Theorem 4.3 using a formulation for the
τ which is not written in terms of the σ , (hence without the assumption of the independence
of the Brownian measures and on the expected squared value of the σ s required for Theorem
4.3). This could be obtained by proceeding as we have in the previous section (i.e. case II,
first scenario). So why did we introduce this formulation of the τ? The reason comes from the
novel possibility, provided by the multidimensional structure of the BSS process presented in
this section (see (4.3)), to write τ directly in terms of X. The benefit of doing this is that if we
have an estimate of E[(�n

1X(k))2] then Theorem 4.3 becomes a feasible CLT.

4.4. WLLN

From the CLTs proved in the previous sections, it is possible to derive the WLLN. First,
we present the following lemma, which follows from the definition of uniform convergence in
probability.

Lemma 4.1. Consider p real-valued stochastic processes {H(1)
t }t∈[0,T], . . . , {H( p)

t }t∈[0,T].

Furthermore, consider sequences of random variables {H(i),n
t }t∈[0,T] such that H(i),n

t
u.c.p.−−−→H(i)

t

for i = 1, . . . , p and any t ∈ [0, T]. Then (H(1),n
t , . . . ,H( p),n

t )
u.c.p.−−−→ (H(1)

t , . . . ,H( p)
t ).
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Proof. Consider the case p = 2, since for p> 2 the proof uses exactly the same arguments.
Let t ∈ [0, T], and let | · | denote the Euclidean norm. We have

P

(
sup

s∈[0,t]
|(H(1),n

s ,H(2),n
s ) − (H(1)

s ,H(2)
s )|> ε

)
≤ P

(
sup

s∈[0,t]
|H(1),n

s − H(1)
s | + |H(2),n

s − H(2)
s |> ε

)
≤ P

(
sup

s∈[0,t]
|H(1),n

s − H(1)
s |> ε

2

)
+ P

(
sup

s∈[0,t]
|H(2),n

s − H(2)
s |> ε

2

)
→ 0 as n → ∞. �

We will derive the WLLN for the first scenario of case II and point out that, using the same
arguments, it is possible to obtain similar results for all the CLTs presented in this work.

Let r̄k,r,m;l,q,w(h) := limn→∞ r̄(n)
k,r,m;l,q,w(h) and r̃k,m;l,w(h) := limn→∞ r̃(n)

k,m;l,w(h) for
k, r,m, l, q,w = 1, . . . , p.

Theorem 4.4. Let the assumptions of Theorem 4.2 hold. Then we have(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)
k=1,...,p;l≤k

u.c.p.−−−→
( p∑

r,m,q=1

r̄k,r,m;l,q,m(0)
∫ t

0
σ (r,m)

s σ (q,m)
s ds

)
k=1,...,p;l≤k

Proof. Fix l, k ∈ {1, . . . , p}. From Theorem 4.2,

√
n

[
1

n

�nt�∑
i=1

�n
i Y (k)

τ
(k)
n

�n
i Y (l)

τ
(l)
n

−
p∑

r,m,q=1

E

[
�n

1G(k,r,m)

τ̄
(k)
n

�n
1G(l,q,m)

τ̄
(l)
n

] ∫ t

0
σ (r,m)

s σ (q,m)
s ds

]
converges in distribution. Now, by Slutsky’s theorem, we have[

1

n

�nt�∑
i=1

�n
i Y (k)

τ
(k)
n

�n
i Y (l)

τ
(l)
n

−
p∑

r,m,q=1

E

[
�n

1G(k,r,m)

τ̄
(k)
n

�n
1G(l,q,m)

τ̄
(l)
n

] ∫ t

0
σ (r,m)

s σ (q,m)
s ds

]
D−→ 0,

which implies that[
1

n

�nt�∑
i=1

�n
i Y (k)

τ
(k)
n

�n
i Y (l)

τ
(l)
n

−
p∑

r,m,q=1

E

[
�n

1G(k,r,m)

τ̄
(k)
n

�n
1G(l,q,m)

τ̄
(l)
n

] ∫ t

0
σ (r,m)

s σ (q,m)
s ds

]
P−→ 0.

Then, by the triangular inequality, it follows that

1

n

�nt�∑
i=1

�n
i Y (k)

τ
(k)
n

�n
i Y (l)

τ
(l)
n

P−→
p∑

r,m,q=1

r̄k,r,m;l,q,m(0)
∫ t

0
σ (r,m)

s σ (q,m)
s ds.

The uniform convergence in probability follows from Remark 4.25 of [16], while the joint
uniform convergence follows from Lemma 4.1. �
Remark 4.4. Similar WLLN corresponding to all the others CLTs presented in this work,
including those for the multivariate Gaussian processes with stationary increments, can be
derived using the same arguments as above.

https://doi.org/10.1017/apr.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.30


Multivariate BSS processes 695

5. Feasible results

In all the limit theorems presented above, we considered scaling of the increments of the
corresponding process X, Y, or G by τn. However, in empirical applications τn would not be
known, which makes the limit theorems infeasible in the sense that they are not computable
from empirical data. We now want to move on to derive related feasible results which can be
implemented in empirical applications. To this end, we somehow need to get rid off the τns.
A natural way of doing this is to consider suitable ratios of the statistics considered above so
that the scaling parameters cancel out.

In this section we will focus on two kinds of feasible results, which differ from each other
for the type of ratio considered. They are the correlation ratio and the relative covolatility.
For the latter, see [8]. We will show feasible results for both scenarios of case II. Moreover,
we will present the results using the vech formulation; however, similar results hold for the
general formulation. The reason why we focus only on case II is because, for case I, it is not
possible to get rid off the scaling factor τ (unless in trivial cases) and, hence, to get feasible
limit theorems. This is one of the main benefits of the introduction of case II.

Remark 5.1. From the feasible results developed in this section, it is possible to obtain
estimates for the mean of our process. Thus, we have ‘first-order’ feasible results. It is an
open question whether it is possible to obtain ‘second-order’ feasible results, namely estimates
for the asymptotic covariance. For the univariate BSS process, this question has been solved
for the power variation case in [8], but it still remains open for the multipower variation case.

In this section we will make considerable use of certain random variables and in order to
simplify the exposition we decided to use the following formulation. For any l, k = 1, . . . , p,
we define

R̄(k,l)
t,n :=

p∑
r,m,q=1

E

[
�n

1G(k,r,m)

τ̄
(k)
n

�n
1G(l,q,m)

τ̄
(l)
n

] ∫ t

0
σ (r,m)

s σ (q,m)
s ds,

R̄(k,l)
t :=

p∑
r,m,q=1

r̄k,r,m;l,q,m(0)
∫ t

0
σ (r,m)

s σ (q,m)
s ds,

R̃(k,l)
t,n :=

p∑
m=1

E

[
�n

1G(k,m)

τ̃
(k)
n

�n
1G(l,m)

τ̃
(l)
n

] ∫ t

0
σ (k,m)

s σ (l,m)
s ds,

and R̃(k,l)
t :=

p∑
m=1

r̃k,m;l,m(0)
∫ t

0
σ (k,m)

s σ (l,m)
s ds.

5.1. Correlation ratio

In this section, by a slight abuse of notation, we will consider τ̄ (k)
n =

√
E[(�n

1Y (k))2],

r̄(n)
k,m;l,w(h) =E

[
�n

1G(k,m)

τ̄
(k)
n

�n
1+hG(l,w)

τ̄
(l)
n

]
,

and r̄k,m;l,w(h) = limn→∞ r̄(n)
k,m;l,w(h), for k,m, l,w = 1, . . . , p. Moreover, observe that, for

k,m = 1, . . . , p,
p∑

r,q=1

E

[
�n

1G(k,r,m)

τ̄
(k)
n

�n
1G(k,q,m)

τ̄
(k)
n

] ∫ t

0
σ (r,m)

s σ (q,m)
s ds ≥ 0,
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since it is a quadratic form. Therefore, for k = 1, . . . , p, we have R̄(k,k)
t,n ≥ 0 and R̄(k,k)

t ≥ 0
(and equals 0 only in the trivial case). The same applies to R̃(k,k)

t,n and R̃(k,k)
t .

Before presenting the main results of this section, we introduce the following lemma, which
is a generalisation of the functional delta method (see Chapter 3.9 of [24]) and of Proposition 2
of [21].

Lemma 5.1. Let D and E be metrizable topological vector spaces and rn constants such that
rn → ∞ as n → ∞. Let φ : Dφ ⊂D→E be continuous and satisfy

rn(φ(θn + r−1
n hn) − φ(θn)) → φ′(θ, h) (5.1)

for all converging sequences θn, hn with hn → h ∈D0 ⊂D, θn → θ ∈Dφ and with θn + r−1
n hn ∈

Dφ for all n, and some arbitrary map φ′(θ, h) from Dφ ×D0 to E. If Yn, Ȳn : �n →Dφ are
maps with Yn

P−→ Y and rn(Yn − Ȳn)
st−→ X, where X is separable and takes its values in D0, then

rn(φ(Yn) − φ(Ȳn))
st−→ φ′(Y, X).

Proof. Since
√

n(Yn − Ȳn)
st−→ X then |Yn − Ȳn| P−→ 0 and, given that Yn

P−→ Y , applying the

triangular inequality we can deduce that Ȳn
P−→ Y . Hence, we have (Yn, Ȳn)

P→ (Y, Y), and using

the properties of the stable convergence, we have (Ȳn, rn(Yn − Ȳn))
st−→ (Y, X).

Now, for each n, define a map gn(θn, hn) := rn(φ(θn + r−1
n hn) − φ(θn)) on {(hn, θn) : θn +

r−1
n hn ∈Dφ}. These maps are continuous in E since φ is continuous and, by (5.1), they

converge to φ′(θ, h). Applying the continuous mapping theorem, we obtain gn(Ȳn, rn(Yn −
Ȳn))

st−→φ′(Y, X), which is our result. �

For the next results, we will use the following lemma.

Lemma 5.2. Let I ⊂R be a compact interval and consider D(I, (0,∞)), namely the
space of càdlàg functions from I to (0,∞). Then, for any f ∈ D(I, (0,∞)), we have
inft∈I f (t)> 0. Moreover, let fn ∈ D(I, (0,∞)), n ∈N, such that fn → f in D(I, (0,∞)),
namely supt∈I |fn(t) − f (t)| → 0 as n → ∞. Then infn∈N inft∈I fn(t)> 0.

Proof. First, recall that, for a càdlàg function, the left limits must exist, that is, for every
t ∈ I, lims↑t f (s) exists, which means that lims↑t f (s) ∈ (0,∞). Assume that inft∈I f (t) = 0. Then
there exists a sequence (tn)n∈N ⊂ I such that limn→∞ f (tn) = 0 and, by compactness, there
exists a subsequence (tnk )nk∈N such that tnk → t ∈ I as nk → ∞ and so limtnk →t f (tnk ) = 0.
Hence, there exists either a subsequence (tnkl

)nkl∈N of (tnk )nk∈N which converges to the left
to t and so limtnkl

↑t f (tnkl
) = 0, or a subsequence (tnkj

)nkj∈N of (tnk )nk∈N which converges to the

right to t and so limtnkj
↓t f (tnkj

) = 0, or both. In all the three cases we have a contradiction. This

proves the first statement.
Now, consider the second statement. Let inft∈I f (t) = 2ε for some ε > 0. Since fn → f in

the uniform metric, then there exists a ñ ∈N such that, for all n ≥ ñ, we have supt∈I |fn(t) −
f (t)|< ε. This implies that, for all n ≥ ñ, fn(t)> f (t) − ε for every t ∈ I and so inft∈I fn(t) ≥
inft∈I f (t) − ε= ε. Furthermore, for all n< ñ, we have inft∈I fn(t)> 0 and, since ñ is finite, we
get infn∈N inft∈I fn(t) ≥ min ( minn<ñ inft∈I fn(t), ε)> 0. �

We can now present the main results of this section: the feasible WLLN and CLT.
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Proposition 5.1. Let ε > 0. Under the assumptions of Theorem 4.2 and, for any interval [ε, T],( ∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)√∑�nt�
i=1 (�n

i Y (k))2
√∑�nt�

i=1 (�n
i Y (l))2

)
k=1,...,p;l≤k

u.c.p.−−−→
(

R̄(k,l)
t√

R̄(k,k)
t R̄(l,l)

t

)
k=1,...,p;l≤k

.

Proof. Fix l, k ∈ {1, . . . , p} such that l ≤ k. We have, for n ≥ 1/ε (the case n< 1/ε is trivial
and moreover we are concerned with the behaviour as n → ∞),( �nt�∑

i=1

�n
i Y (k)�n

i Y (l)
)( �nt�∑

i=1

(�n
i Y (k))2

�nt�∑
i=1

(�n
i Y (l))2

)−1/2

− R̄(k,l)
t√

R̄(k,k)
t R̄(l,l)

t

=
[(

1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)
− R̄(k,l)

t

](
1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)−1/2

+ 1√
R̄(k,k)

t R̄(l,l)
t

R̄(k,l)
t

(
1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)−1/2

×
[√

R̄(k,k)
t R̄(l,l)

t −
(

1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)1/2]
u.c.p.−−−→ 0,

where, for the term in the first square bracket, the u.c.p. convergence to 0 comes from the
fact that we have LLN results (see Theorem 4.4). For the second square bracket, we have
the following. First, we use the continuous mapping theorem knowing the joint convergence
in probability and using the continuous function g(x, y) = √

xy (note that in our case x and y
are positive). Then, we pass from the convergence in probability to the uniform convergence
using the fact that the paths are nondecreasing in time and the paths of the limiting process
are continuous almost surely. Concerning the elements outside the square brackets, they do not
interfere with the uniform convergence since their suprema are bounded for any t ∈ [ε, T] (and
that is why we have considered ε > 0).

Finally, the joint convergence follows from Lemma 4.1. �
Proposition 5.2. Under the assumptions of Theorem 4.2, we have, for any ε > 0{√

n

( ∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)√∑�nt�
i=1 (�n

i Y (k))2
√∑�nt�

i=1 (�n
i Y (l))2

− R̄(k,l)
t,n√

R̄(k,k)
t,n R̄(l,l)

t,n

)
k=1,...,p;l≤k

}
t∈[ε,T]

st−→
{(

1√
R̄(k,k)

t R̄(l,l)
t

( ∫ t

0
(VsD

1/2)(k,l) dB(k,l)
s − 1

2

R̄(k,l)
t

R̄(k,k)
t

∫ t

0
(VsD

1/2)(k,k) dB(k,k)
s

− 1

2

R̄(k,l)
t

R̄(l,l)
t

∫ t

0
(VsD

1/2)(l,l) dB(l,l)
s

))
k=1,...,p;l≤k

}
t∈[ε,T]

in D([ε, T],Rp( p+1)/2), where (VsD1/2)(k,l) indicates that we are considering only the (k, l)

row of the matrix (VsD1/2) (see Appendix A) and the B(k,l)
s are one-dimensional independent

Brownian motions.
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Proof. First we prove the statement for fixed k and l. As in the previous proof, we
concentrate on the case n ≥ 1/ε. We have

√
n

[( �nt�∑
i=1

�n
i Y (k)�n

i Y (l)
)( �nt�∑

i=1

(�n
i Y (k))2

�nt�∑
i=1

(�n
i Y (l))2

)−1/2

− R̄(k,l)
t,n√

R̄(k,k)
t,n R̄(l,l)

t,n

]

= 1√
R̄(k,k)

t,n R̄(l,l)
t,n

√
n

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

− R̄(k,l)
t,n

)

− √
n

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)

×
[

R̄(k,k)
t,n R̄(l,l)

t,n

(
1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)]−1/2

×
((

1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)1/2

−
√

R̄(k,k)
t,n R̄(l,l)

t,n

)

=
√

n√
R̄(k,k)

t,n R̄(l,l)
t,n

(
1,−

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)

×
(

1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)−1/2)

×
((

1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)
− R̄(k,l)

t,n ,

(
1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)1/2

−
√

R̄(k,k)
t,n R̄(l,l)

t,n

)�
.

Note that

Z(k,l)
1,n := 1√

R̄(k,k)
t,n R̄(l,l)

t,n

(
1,−

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)

×
(

1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)−1/2)
u.c.p.−−−→ 1√

R̄(k,k)
t R̄(l,l)

t

(
1,− R̄(k,l)

t√
R̄(k,k)

t R̄(l,l)
t

)
=: Z(k,l)

1 ,

by Proposition 5.1 and by noting that, for any δ > 0,

P

(
sup

t∈[ε,T]

(√
R̄(k,k)

t R̄(l,l)
t

)−1
> δ

)
= P

((√
R̄(k,k)
ε R̄(l,l)

ε

)−1
> δ

)
.
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For the other term, by Theorem 4.3 and Lemma 5.1 applied to g : D([ε, T],R× (0,∞)2) →
D([ε, T],R× (0,∞)) (where both Skorokhod spaces as well as the Euclidean spaces
are equipped with the uniform metric) defined as g({xt}t∈[ε,T]) = {g(x1,t, x2,t, x3,t)}t∈[ε,T] =
{(x1,t,

√
x2,tx3,t)}t∈[ε,T], we have

Z(k,l)
2,n :=

{√
n

((
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)
− R̄(k,l)

t,n ,

(
1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)1/2

−
√

R̄(k,k)
t,n R̄(l,l)

t,n

)�}
t∈[ε,T]

st−→
{(1 0 0

0 1
2

√
R̄(l,l)

t /R̄(k,k)
t

1
2

√
R̄(k,k)

t /R̄(l,l)
t

)

×
( ∫ t

0
(VsD

1/2)(k,l) dB(k,l)
s ,

∫ t

0
(VsD

1/2)(k,k) dB(k,k)
s ,∫ t

0
(VsD

1/2)(l,l) dB(l,l)
s

)�}
t∈[ε,T]

=
{( ∫ t

0 (VsD1/2)(k,l) dB(k,l)
s

1
2 (
√

R̄(l,l)
t /R̄(k,k)

t )
∫ t

0 (VsD1/2)(k,k) dB(k,k)
s + 1

2 (
√

R̄(k,k)
t /R̄(l,l)

t )
∫ t

0 (VsD1/2)(l,l) dB(l,l)
s

)}
t∈[ε,T]

=: Z(k,l)
2 ,

where B(k,l)
s , B(k,k)

s , and B(l,l)
s are three independent Brownian motions. Note that we have

not yet investigated whether such functional g satisfies the conditions of Lemma 5.1, but
we will do it now. First, we check that g is continuous and then, using the notation
of Lemma 5.1, that g′({θ}t∈[ε,T], {h}t∈[ε,T]) = {∇g(θt)ht}t∈[ε,T], where ∇g is the Jacobian
matrix of g. Comparing the notation of Lemma 5.1 to the present framework, we note
that D([ε, T],R× (0,∞)2) =Dφ , D([ε, T],R3) =D0 =D, D([ε, T],R2) =E, g = φ, and
g′ = φ′. Hence, θ, θn ∈ D([ε, T],R× (0,∞)2) and hn, h ∈ D([ε, T],R3) with θn + r−1

n hn ∈
D([ε, T],R× (0,∞)2) for every n ∈N.

To prove the continuity of g, we need to show that, for every ({(x(1)
n,t, x(2)

n,t, x(3)
n,t)}t∈[ε,T])n∈N→

{(x(1)
t , x(2)

t , x(3)
t )}t∈[ε,T] in D([ε, T],R× (0,∞)2), we have

lim
n→∞ sup

t∈[ε,T]

∥∥∥(x(1)
n,t − x(1)

t ,

√
x(2)

n,tx
(3)
n,t −

√
x(2)

t x(3)
t

)∥∥∥∞ = 0.

For the first component, it is straightforward, while, for the second, we have

sup
t∈[ε,T]

∣∣∣√x(2)
n,tx

(3)
n,t −

√
x(2)

t x(3)
t

∣∣∣
≤ sup

t∈[ε,T]

∣∣∣√x(2)
n,t

(√
x(3)

n,t −
√

x(3)
t

)∣∣∣+ ∣∣∣√x(3)
t

(√
x(2)

n,t −
√

x(2)
t

)∣∣∣
≤ sup

t∈[ε,T]

∣∣∣√x(2)
n,t

∣∣∣ sup
t∈[ε,T]

∣∣∣√x(3)
n,t −

√
x(3)

t

∣∣∣+ sup
t∈[ε,T]

∣∣∣√x(3)
t

∣∣∣ sup
t∈[ε,T]

∣∣∣√x(2)
n,t −

√
x(2)

t

∣∣∣.
Note that x(3)

n,t − x(3)
t = (

√
x(3)

n,t −
√

x(3)
t )(

√
x(3)

n,t +
√

x(3)
t ). Furthermore, by Lemma 5.2 we have

supt∈[ε,T]{1/
√

x(3)
t }<∞ because x(3)

t : [ε, T] → (0,∞) and it is a càdlàg function. The same
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applies to x(2)
t . Hence, we have

sup
t∈[ε,T]

∣∣∣√x(3)
n,t −

√
x(3)

t

∣∣∣≤ sup
t∈[ε,T]

1

(
√

x(3)
t +

√
x(3)

n,t)
sup

t∈[ε,T]
|x(3)

n,t − x(3)
t |

≤ sup
t∈[ε,T]

1√
x(3)

t

sup
t∈[ε,T]

|x(3)
n,t − x(3)

t |

→ 0

⇒ sup
t∈[ε,T]

∣∣∣√x(2)
n,tx

(3)
n,t −

√
x(2)

t x(3)
t

∣∣∣
→ 0 as n → ∞.

Regarding the map g′, we need to show that

lim
n→∞ sup

t∈[ε,T]

∥∥∥∥(rn(θ (1)
n,t + r−1

n h(1)
n,t − θ

(1)
n,t ) − h(1)

t ,

rn

√
(θ (2)

n,t + r−1
n h(2)

n,t)(θ
(3)
n,t + r−1

n h(3)
n,t) − rn

√
θ

(2)
n,t θ

(3)
n,t − h(2)

t

2

√√√√θ
(3)
t

θ
(2)
t

− h(3)
t

2

√√√√θ
(2)
t

θ
(3)
t

)∥∥∥∥∞
= 0. (5.2)

For the first component, it is straightforward since h(n) → h, while, for the second, using the

Taylor series for the bivariate function f (x, y) = rn

√
(x + r−1

n h(2)
n,t)(y + r−1

n h(3)
n,t), we have

sup
t∈[ε,T]

∣∣∣∣rn

√
(θ (2)

n,t + r−1
n h(2)

n,t)(θ
(3)
n,t + r−1

n h(3)
n,t) − rn

√
θ

(2)
n,t θ

(3)
n,t − h(2)

t

2

√√√√θ
(3)
t

θ
(2)
t

− h(3)
t

2

√√√√θ
(2)
t

θ
(3)
t

∣∣∣∣
≤ sup

t∈[ε,T]

∣∣∣∣h(2)
n,t

2

√√√√θ
(3)
n,t

θ
(2)
n,t

+ h(3)
n,t

2

√√√√θ
(2)
n,t

θ
(3)
n,t

− h(2)
t

2

√√√√θ
(3)
t

θ
(2)
t

− h(3)
t

2

√√√√θ
(2)
t

θ
(3)
t

∣∣∣∣
+ r−1

n

2
sup

t∈[ε,T]

∣∣∣∣ h(2)
n,th

(3)
n,t√

θ
(2)
n,t θ

(3)
n,t

− 1

4
(h(2)

n,t)
2

√√√√ θ
(3)
n,t

(θ (2)
n,t )3

− 1

4
(h(3)

n,t)
2

√√√√ θ
(2)
n,t

(θ (3)
n,t )3

∣∣∣∣+ o(r−1
n ). (5.3)

Since θ (2)
n,t and θ (3)

n,t take values in (0,∞) and are càdlàg functions, then by Lemma 5.2 we

have, for each n ∈N, supt∈[ε,T] |1/
√
θ

( j)
n,t |<∞ for j = 1, 2. Moreover, θ (2)

n,t , θ (3)
n,t , h(2)

n,t, and
h(3)

n,t converge in the uniform metric to θ (2)
t , θ

(3)
t , h(2)

t , and h(3)
t , respectively, while r−1

n → 0.
Therefore,

lim
n→∞

r−1
n

2
sup

t∈[ε,T]

∣∣∣∣ h(2)
n,th

(3)
n,t√

θ
(2)
n,t θ

(3)
n,t

− 1

4
(h(2)

n,t)
2

√√√√ θ
(3)
n,t

(θ (2)
n,t )3

− 1

4
(h(3)

n,t)
2

√√√√ θ
(2)
n,t

(θ (3)
n,t )3

∣∣∣∣= 0.
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Finally, the o(r−1
n ) term in (5.3) comes from the fact that the remaining terms of the Taylor

expansion have a further multiplying factor of r−1
n . Now, observe that∣∣∣∣h(2)

n,t

2

√√√√θ
(3)
n,t

θ
(2)
n,t

− h(2)
t

2

√√√√θ
(3)
t

θ
(2)
t

∣∣∣∣≤ ∣∣∣∣h(2)
n,t

2

(√√√√θ
(3)
n,t

θ
(2)
n,t

−
√√√√θ

(3)
t

θ
(2)
t

)∣∣∣∣+ ∣∣∣∣
√√√√θ

(3)
t

θ
(2)
t

(
h(2)

n,t

2
− h(2)

t

2

)∣∣∣∣,√√√√θ
(3)
n,t

θ
(2)
n,t

−
√√√√θ

(3)
t

θ
(2)
t

= 1√
θ

(2)
t

(√
θ

(3)
n,t −

√
θ

(3)
t

)
+ 1√

θ
(2)
t

√√√√θ
(3)
n,t

θ
(2)
n,t

(√
θ

(2)
t −

√
θ

(2)
n,t

)
,

and that supt∈[ε,T] |1/
√
θ

(2)
t |<∞ by Lemma 5.2 because θ (2)

t is a càdlàg function with values
in (0,∞) (and the same holds for the other θs). Then, taking the limit as n → ∞ in (5.3), we
obtain the desired result (5.2).

Furthermore, since Z(k,l)
1,n

P−→ Z(k,l)
1 and Z(k,l)

2,n
st−→ Z(k,l)

2 , we deduce that (Z(k,l)
1,n , Z(k,l)

2,n )
st−→

(Z(k,l)
1 , Z(k,l)

2 ). Finally, by applying the continuous mapping theorem for the stable convergence
using the continuous function f (Z(k,l)

1,n , Z(k,l)
2,n ) = {Z(k,l)

1,n (t)Z(k,l)
2,n (t)}t∈[ε,T], we obtain our result for

fixed k and l.
For the joint stable convergence, we proceed similarly thanks to the uniform metric. Let

�n :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
Z(1,1)

1,n (t) 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 Z( p,p)
1,n (t)

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
t∈[ε,T]

.

Then {√
n

( ∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)√∑�nt�
i=1 (�n

i Y (k))2
√∑�nt�

i=1 (�n
i Y (l))2

− R̄(k,l)
t,n√

R̄(k,k)
t,n R̄(l,l)

t,n

)
k=1,...,p;l≤k

}
t∈[ε,T]

= {�n(t)(Z(1,1)
2,n (t), . . . , Z( p,p)

2,n (t))�}t∈[ε,T].

Using Lemma 4.1 and the arguments used before for fixed k and l, we obtain the u.c.p.
convergence of �n. Now, we would like to prove the stable convergence for {(Z(1,1)

2,n (t), . . . ,
Z( p,p)

2,n (t))�}t∈[ε,T]. Define the function g̃ : D([ε, T], (0,∞)p ×R
p( p−1)/2) → D([ε, T], (0,

∞)p( p+1)/2 ×R
p( p+1)/2) as (using our variables)

g̃

({(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)
k=1,...,p;l≤k

}
t∈[ε,T]

)

=
{(

1

n

�nt�∑
i=1

(
�n

i Y (1)

τ̄
(1)
n

)2

,

√√√√(
1

n

�nt�∑
i=1

(
�n

i Y (1)

τ̄
(1)
n

)2)2

,
1

n

�nt�∑
i=1

�n
i Y (2)

τ̄
(2)
n

�n
i Y (1)

τ̄
(1)
n

,

√√√√1

n

�nt�∑
i=1

(
�n

i Y (2)

τ̄
(2)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (1)

τ̄
(1)
n

)2

,
1

n

�nt�∑
i=1

(
�n

i Y (2)

τ̄
(2)
n

)2

,

√√√√(
1

n

�nt�∑
i=1

(
�n

i Y (2)

τ̄
(2)
n

)2)2

,
1

n

�nt�∑
i=1

�n
i Y (3)

τ̄
(3)
n

�n
i Y (1)

τ̄
(1)
n

,
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√√√√1

n

�nt�∑
i=1

(
�n

i Y (3)

τ̄
(3)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (1)

τ̄
(1)
n

)2

,
1

n

�nt�∑
i=1

�n
i Y (3)

τ̄
(3)
n

�n
i Y (2)

τ̄
(2)
n

,

√√√√1

n

�nt�∑
i=1

(
�n

i Y (3)

τ̄
(3)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (2)

τ̄
(2)
n

)2

, . . . ,
1

n

�nt�∑
i=1

(
�n

i Y ( p)

τ̄
( p)
n

)2

,

√√√√(
1

n

�nt�∑
i=1

(
�n

i Y ( p)

τ̄
( p)
n

)2)2)�}
t∈[ε,T]

.

Note that the above formulation is just a multidimensional extension of the formulation of g
given in the first part of this proof. In particular, the function g̃ can be seen as associating to
any three-dimensional vector of the form(

1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

,
1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2

,
1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2 )
a two-dimensional vector of the form(

1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

,

√√√√1

n

�nt�∑
i=1

(
�n

i Y (k)

τ̄
(k)
n

)2 1

n

�nt�∑
i=1

(
�n

i Y (l)

τ̄
(l)
n

)2)
for any k = 1, . . . , p and l ≤ k.

Then, as in the first part of the proof thanks to Theorem 4.3 and Lemma 5.1 applied to g̃,
we obtain the stable convergence as in the statement. Moreover, we use the same arguments as
used for fixed k and l to prove that g̃ satisfies the required conditions of Lemma 5.1 thanks to
the properties of the uniform metric. �

Similar results can be obtained for the second scenario of case II.

Proposition 5.3. Let ε > 0. Under the assumptions of Theorem 4.3 and, for any interval [ε, T],( ∑�nt�
i=1 �

n
i X(k)�n

i X(l)√∑�nt�
i=1 (�n

i X(k))2
√∑�nt�

i=1 (�n
i X(l))2

)
k=1,...,p;l≤k

u.c.p.−−−→
(

R̃(k,l)
t√

R̃(k,k)
t R̃(l,l)

t

)
k=1,...,p;l≤k

.

Proof. It follows from the same arguments as used in the proof of Proposition 5.1. �
Proposition 5.4. Under the assumptions of Theorem 4.3, we have, for any ε > 0,{√

n

( ∑�nt�
i=1 �

n
i X(k)�n

i X(l)√∑�nt�
i=1 (�n

i X(k))2
√∑�nt�

i=1 (�n
i X(l))2

− R̃(k,l)
t,n√

R̃(k,k)
t,n R̃(l,l)

t,n

)
k=1,...,p;l≤k

}
t∈[ε,T]

st−→
{(

1√
R̃(k,k)

t R̃(l,l)
t

( ∫ t

0
(VsD

1/2)(k,l) dB(k,l)
s − 1

2

R̃(k,l)
t

R̃(k,k)
t

∫ t

0
(VsD

1/2)(k,k) dB(k,k)
s

− 1

2

R̃(k,l)
t

R̃(l,l)
t

∫ t

0
(VsD

1/2)(l,l) dB(l,l)
s

))
k=1,...,p;l≤k

}
t∈[ε,T]
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in D([ε, T],Rp( p+1)/2), where (VsD1/2)(k,l) indicates that we are considering only the (k, l)
row of the matrix (VsD1/2) (see Appendix A) and the B(k,l)

s are one-dimensional independent
Brownian motions.

Proof. It follows from the same arguments as used in the proof of Proposition 5.2. �

5.2. Relative covolatility

In this section we look at the relative volatility case (see [8]). Similarly to the previous
section, we present first the results for the first scenario and then for the second scenario of
case II.

Proposition 5.5. Assume that, for all n ∈N,
∑�nT�

i=1 �n
i Y (k)�n

i Y (l) �= 0 almost surely for k =
1, . . . , p and l ≤ k. Then under the assumptions of Theorem 4.2, we have(∑�nt�

i=1 �
n
i Y (k)�n

i Y (l)∑�nT�
i=1 �n

i Y (k)�n
i Y (l)

)
k,l=1,...,p;l≤k

u.c.p.−−−→
(

R̄(k,l)
t

R̄(k,l)
T

)
k=1,...,p;l≤k

.

Proof. Fix k, l. We have

( �nt�∑
i=1

�n
i Y (k)�n

i Y (l)
)( �nT�∑

i=1

�n
i Y (k)�n

i Y (l)
)−1

− R̄(k,l)
t

R̄(k,l)
T

=
(

1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

− R̄(k,l)
t

)(
1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)−1

+ R̄(k,l)
t

R̄(k,l)
T

(
1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)−1(
R̄(k,l)

T − 1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)
u.c.p.−−−→ 0,

by Theorem 4.4. Note that the supremum of R̄(k,l)
t over t ∈ [0, T] is bounded since the σ are

compact on bounded intervals. Finally, the joint convergence follows from Lemma 4.1. �

Proposition 5.6. Assume that, for all n ∈N,
∑�nT�

i=1 �n
i Y (k)�n

i Y (l) �= 0 almost surely for k =
1, . . . , p and l ≤ k. Then under the assumptions of Theorem 4.2, we have{√

n

(∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)∑�nT�
i=1 �n

i Y (k)�n
i Y (l)

− R̄(k,l)
t,n

R̄(k,l)
T,n

)
k=1,...,p;l≤k

}
t∈[0,T]

st−→
{(

1

R̄(k,l)
T

∫ t

0
(VsD

1/2)(k,l) dB(k,l)
s

− R̄(k,l)
t

(R̄(k,l)
T )2

∫ T

0
(VsD

1/2)(k,l) dB(k,l)
s

)
k=1,...,p;l≤k

}
t∈[0,T]

in D([0, T],Rp( p+1)/2), where (VsD1/2)(k,l) indicates that we are considering only the (k, l)
row of the matrix (VsD1/2) (see Appendix A) and the B(k,l)

s are one-dimensional independent
Brownian motions.
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Proof. Fix k, l. We have

√
n

[ ∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)∑�nT�
i=1 �n

i Y (k)�n
i Y (l)

− R̄(k,l)
t,n

R̄(k,l)
T,n

]

=
√

n

R̄(k,l)
T,n

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

− R̄(k,l)
t,n

)

−
√

n

R̄(k,l)
T,n

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)(
1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)−1

×
(

1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

− R̄(k,l)
T,n

)
,

which can be rewritten in vector notation as

√
n

R̄(k,l)
T,n

(
1,−

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)(
1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)−1)

×
(

1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

− R̄(k,l)
t,n ,

1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

− R̄(k,l)
T,n

)�
.

Note that

1

R̄(k,l)
T,n

(
1,−

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)(
1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

)−1)
u.c.p.−−−→ 1

R̄(k,l)
T

(
1,− R̄(k,l)

t

R̄(k,l)
T

)
using Proposition 5.5, and that{√

n

(
1

n

�nt�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

− R̄(k,l)
t,n ,

1

n

�nT�∑
i=1

�n
i Y (k)

τ̄
(k)
n

�n
i Y (l)

τ̄
(l)
n

− R̄(k,l)
T,n

)�}
t∈[0,T]

st−→
{( ∫ t

0
(VsD

1/2)(k,l) dB(k,l)
s ,

∫ T

0
(VsD

1/2)(k,l) dB(k,l)
s

)�}
t∈[0,T]

in D([0, T],R2),

by Theorem 4.2, where (VsD1/2)(k,l) indicates that we are considering only the (k, l) row of the
matrix (VsD1/2). Then, using the properties of the stable convergence and the continuous map-
ping theorem we conclude the proof for fixed k and l. For the joint case, we proceed as we have
in the proof of Proposition 5.2. In particular, we have an analogue of�n which converges u.c.p.
since its elements do. Moreover, we have an analogue of {(Z(1,1)

2,n (t), . . . , Z( p,p)
2,n (t))�}t∈[ε,T]

whose stable convergence in the Skorokhod space is guaranteed by Theorem 4.3 and the con-
tinuous mapping theorem using the function g({x1(t), . . . , xp( p+1)2/(t)}t∈[0,T]) = {(x1(t), x1(T),
. . . , xp( p+1)/2(t), xp( p+1)2/(T))}t∈[0,T]. Finally, using the properties of the stable convergence,
we obtain the stated result. �

Similar results can be obtained for the second scenario of case II.
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Proposition 5.7. Assume that, for all n ∈N,
∑�nT�

i=1 �n
i X(k)�n

i X(l) �= 0 almost surely for any
k = 1, . . . , p and l ≤ k. Then under the assumptions of Theorem 4.3, we have(∑�nt�

i=1 �
n
i X(k)�n

i X(l)∑�nT�
i=1 �n

i X(k)�n
i X(l)

)
k=1,...,p;l≤k

u.c.p.−−−→
(

R̃(k,l)
t

R̃(k,l)
T

)
k=1,...,p;l≤k

.

Proof. It follows from the same arguments as used in the proof of Proposition 5.5. �

Proposition 5.8. Assume that, for all n ∈N,
∑�nT�

i=1 �n
i X(k)�n

i X(l) �= 0 almost surely for k =
1, . . . , p and l ≤ k. Then under the assumptions of Theorem 4.3, we have{√

n

(∑�nt�
i=1 �

n
i X(k)�n

i X(l)∑�nT�
i=1 �n

i X(k)�n
i X(l)

− R̃(k,l)
t,n

R̃(k,l)
T,n

)
k=1,...,p;l≤k

}
t∈[0,T]

st−→
{(

1

R̃(k,l)
T

∫ t

0
(VsD

1/2)(k,l) dB(k,l)
s

− R̃(k,l)
t

(R̃(k,l)
T )2

∫ T

0
(VsD

1/2)(k,l) dB(k,l)
s

)
k=1,...,p;l≤k

}
t∈[0,T]

,

in D([0, T],Rp( p+1)2/), where (VsD1/2)(k,l) indicates that we are considering only the (k, l)
row of the matrix (VsD1/2) (see Appendix A) and the B(k,l)

s are one-dimensional independent
Brownian motions.

Proof. It follows from the same arguments as used in the proof of Proposition 5.6. �

Remark 5.2. Similar feasible results for general multivariate Gaussian processes with station-
ary increments can be derived by just setting all the σ to be equal to 1.

6. Examples

6.1. The diagonal case

Due to the complexity of the presentation of the results, mainly due to their generality
and their multidimensional nature, we now present a setting under which the results of this
work simplify considerably. Nonetheless the results of this section are already a theoretical and
feasible extension of the existing literature due to their multidimensional, joint, and feasible
nature (indeed the work [17] provides neither joint nor feasible results, while the work [7]
covers only the one-dimensional case).

Let p ∈N. Consider the stochastic process {Yt}t∈[0,T] = {(Y (1)
t , . . . , Y ( p)

t )}t∈[0,T] given by

Yt =
∫ t

−∞

⎛⎜⎜⎜⎜⎝
g(1)(t − s)σ (1)

s 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 g( p)(t − s)σ ( p)
s

⎞⎟⎟⎟⎟⎠
⎛⎜⎝dW(1)

s
...

dW( p)
s

⎞⎟⎠+
⎛⎜⎝U(1)

t
...

U( p)
t

⎞⎟⎠ .

Assume that the Ft-Brownian measures are jointly Gaussian (hence, we allow for dependency).
For k = 1, . . . , p, let G(k)

t := ∫ t
0 g(k)(t − s) dW(k)

s . Furthermore, let us define the scaling factor
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as in Section 3.1. For k = 1, . . . , p, let τ (k)
n :=

√
E[(�n

1G(k))2] and

r(n)
k,l (h) :=E

[
�n

1G(k)

τ
(k)
n

�n
1+hG(l)

τ
(l)
n

]
.

It is possible to see that in this setting, case I and the first scenario of case II coincide.
Moreover, if we additionally assume that the volatilities are second order stationary with
variance normalised to 1 (i.e. E[(σ (k)

s )2] = 1 for any k = 1, . . . , p and s ∈ ( −∞, T]), then
E[(�n

1G(k))2] =E[(�n
1Y (k))2]. Hence, by this additional assumption, all the cases presented

in this work coincide.
Then, we have the following CLT, which follows directly from Theorem 4.1.

Corollary 6.1. Under Assumptions 4.1, 4.2, 4.3, and 4.5 applied to τ
(l)
n , r(n)

k,l for l, k = 1,
. . . , p, we have the stable convergence{√

n

[
1

n

�nt�∑
i=1

�n
i Y (k)

τ
(k)
n

�n
i Y (l)

τ
(l)
n

−E

[
�n

1G(k)

τ
(k)
n

�n
1G(l)

τ
(l)
n

] ∫ t

0
σ (k)

s σ (l)
s ds

]
k,l=1,...,p

}
t∈[0,T]

st−→ D1/2
{( ∫ t

0
σ (k)

s σ (l)
s dB(k,l)

s

)
k,l=1,...,p

}
t∈[0,T]

in D([0, T],Rp2
), where B(k,l)

s for l, k = 1, . . . , p are independent one-dimensional Brownian
motions and D is a p2 × p2 matrix defined in Proposition 3.1.

Remark 6.1. It is possible to see that in this framework we have a clear separation between the
deterministic and the stochastic parts of the limiting process. Indeed, the deterministic kernel
functions g(1), . . . , g( p) constitute just a matrix of constants multiplying the limiting stochastic
process.

Let rk,l(0) := limn→∞ r(n)
k,l (0). The previous result leads to the following WLLN.

Corollary 6.2. Let the assumptions of Corollary 6.1 hold. Then we have(
1

n

�nt�∑
i=1

�n
i Y (k)

τ
(k)
n

�n
i Y (l)

τ
(l)
n

)
k,l=1,...,p

u.c.p.−−−→
(

rk,l(0)
∫ t

0
σ (k)

s σ (l)
s ds

)
k,l=1,...,p

.

Now, recall that

R̄(k,l)
t,n :=E

[
�n

1G(k)

τ
(k)
n

�n
1G(l)

τ
(l)
n

] ∫ t

0
σ (k)

s σ (l)
s ds

and that R̄(k,l)
t := rk,l(0)

∫ t
0 σ

(k)
s σ

(l)
s ds. Furthermore, let

R(k,l)
t :=

√
R̄(k,k)

t,n R̄(l,l)
t,n =

√∫ t

0
(σ (k)

s )2 ds
∫ t

0
(σ (l)

s )2 ds.

Therefore, we have
R̄(k,l)

t

R(k,l)
t

= rk,l(0)

∫ t
0 σ

(k)
s σ

(l)
s ds√∫ t

0 (σ (k)
s )2 ds

∫ t
0 (σ (l)

s )2 ds
.

We have the following feasible results on the asymptotic behaviour of the correlation ratio and
of the relative covolatility. They follow directly from the results presented in Section 5.
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Corollary 6.3. Under the assumptions of Corollary 6.1, we have, for any ε > 0,( ∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)√∑�nt�
i=1 (�n

i Y (k))2
√∑�nt�

i=1 (�n
i Y (l))2

)
k,l=1,...,p

u.c.p.−−−→
(

R̄(k,l)
t

R(k,l)
t

)
k,l=1,...,p

,

and{√
n

( ∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)√∑�nt�
i=1 (�n

i Y (k))2
√∑�nt�

i=1 (�n
i Y (l))2

− R̄(k,l)
t,n

R(k,l)
t

)
k,l=1,...,p

}
t∈[ε,T]

st−→ D1/2
{(

1

R(k,l)
t

( ∫ t

0
σ (k)

s σ (l)
s dB(k,l)

s

−1

2
R̄(k,l)

t

(∫ t
0 (σ (k)

s )2dB(k,k)
s∫ t

0 (σ (k)
s )2 ds

+
∫ t

0 (σ (l)
s )2 dB(l,l)

s∫ t
0 (σ (l)

s )2 ds

)))
k,l=1,...,p

}
t∈[ε,T]

in D([ε, T],Rp2
), where the B(k,l)

s are one-dimensional independent Brownian motions and D
is a p2 × p2 matrix defined in Proposition 3.1.

Corollary 6.4. Assume that, for all n ∈N,
∑�nT�

i=1 �n
i Y (k)�n

i Y (l) �= 0 almost surely for k, l =
1, . . . , p. Then, under the assumptions of Corollary 6.1, we have(∑�nt�

i=1 �
n
i Y (k)�n

i Y (l)∑�nT�
i=1 �n

i Y (k)�n
i Y (l)

)
k,l=1,...,p

u.c.p.−−−→
(

R̄(k,l)
t

R̄(k,l)
T

)
k,l=1,...,p

and{√
n

(∑�nt�
i=1 �

n
i Y (k)�n

i Y (l)∑�nT�
i=1 �n

i Y (k)�n
i Y (l)

− R̄(k,l)
t,n

R̄(k,l)
T,n

)
k,l=1,...,p

}
t∈[0,T]

st−→ D1/2
{(

1

R̄(k,l)
T

∫ t

0
σ (k)

s σ (l)
s dB(k,l)

s − R̄(k,l)
t

(R̄(k,l)
T )2

∫ T

0
σ (k)

s σ (l)
s dB(k,l)

s

)
k,l=1,...,p

}
t∈[0,T]

in D([0, T],Rp2
), where the B(k,l)

s are one-dimensional independent Brownian motions and D
is a p2 × p2 matrix defined in Proposition 3.1.

6.2. The gamma kernel

Here we explore an example of the multivariate process {Gt}t∈[0,T] which satisfies the
assumptions presented in Section 4. We will focus on the gamma kernel (see [7]) because
it plays a central role in the modelling of (atmospheric) turbulences, which is one of the main
objectives of the development of BSS processes. We will show that the process obtained from
using the gamma kernel in the kernel matrix satisfies our assumptions. Consider the stochastic
process {Gt}t∈[0,T] defined as

Gt :=
⎛⎜⎝G(1)

t
...

G( p)
t

⎞⎟⎠=
∫ t

−∞

⎛⎜⎝g(1,1)(t − s) . . . g(1,p)(t − s)
...

. . .
...

g( p,1)(t − s) . . . g( p,p)(t − s)

⎞⎟⎠
⎛⎜⎝dW(1)

s
...

dW( p)
s

⎞⎟⎠ ,
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where g(i,j)(t) = tδ
(i,j)

e−λ(i,j)t1[0,∞)(t) and the W(i) are independent Gaussian Ft-Brownian
measures on R, for i, j = 1, . . . , p. We consider the case of independent Brownian measures
for the sake of clarity and remark that the extension to the dependent case is immediate from
our computations. Thus, we have G(i)

t =∑p
j=1

∫ t
−∞ g(i,j)(t − s) dW( j)

s and

E[G(i)
t+hG( j)

t ] =
p∑

l=1

∫ t

−∞
g(i,l)(t + h − s)g( j,l)(t − s) ds

=
p∑

l=1

∫ ∞

0
g(i,l)(x + h)g( j,l)(x) dx

=
p∑

l=1

e−λ(i,l)h
∫ ∞

0
(x + h)δ

(i,l)
xδ

( j,l)
e−(λ(i,l)+λ( j,l))x dx.

It is important to note that if δ(i,j) ∈ ( − 1
2 , 0) ∪ (0, 1

2 ) then
∫ t
−∞ g(i,j)(t − s) dW( j)

s is not
a semimartingale (see [7] and [17]). We will first investigate Assumption 4.2 and then
Assumption 4.1. Observe that, by stationarity,

r(n)
i,j (k)

:=E

[
�n

1G( j)

τ
( j)
n

�n
1+kG(i)

τ
(i)
n

]

= 2E[G( j)
1/nG(i)

(1+k)/n] −E[G( j)
1/nG(i)

k/n] −E[G( j)
0 G(i)

(1+k)/n]

(2E[(G( j)
0 )2] − 2E[G( j)

1/nG( j)
0 ])1/2(2E[(G(i)

0 )2] − 2E[G(i)
1/nG(i)

0 ])1/2

=
∑p

l=1

∫∞
0 [2g(i,l)(x+k/n)g( j,l)(x)−g(i,l)(x+(k−1)/n)g( j,l)(x)−g(i,l)(x+(k+1)/n)g( j,l)(x)] dx

2(
∑p

l=1

∫∞
0 [(g(i,l)(x))2−g(i,l)(x+1/n)g(i,l)(x)] dx)1/2(

∑p
l=1

∫∞
0 [(g( j,l)(x))2−g( j,l)(x+1/n)g( j,l)(x)] dx)1/2 .

(6.1)

Remark 6.2. Since
∫∞

0 [(g(i,l)(x))2 − g(i,l)(x + 1/n)g(i,l)(x)] dx> 0 for any i, l = 1, . . . , p,
(6.1) is bounded below by

∑p
l=1

∣∣∣∣ ∫∞
0 [2g(i,l)(x+k/n)g( j,l)(x)−g(i,l)(x+(k−1)/n)g( j,l)(x)−g(i,l)(x+(k+1)/n)g( j,l)(x)] dx

2(
∫∞

0 [(g(i,l)(x))2−g(i,l)(x+1/n)g(i,l)(x)] dx)1/2(
∫∞

0 [(g( j,l)(x))2−g( j,l)(x+1/n)g( j,l)(x)] dx)1/2

∣∣∣∣. (6.2)

From here, it is possible to see that the results and examples of [17] directly apply to our
framework because each summand in (6.2) is the correlation coefficient ‘r(n)

i,j (k)’ in their work.

Using the results in the supplementary material of [17] (see also Equation (12) of [9,
p. 234]), the numerator in (6.1) is given by

p∑
l=1

K(i,j),(l)
1 e−λ(i,l)k/n

∞∑
r=0

(1 + δ( j,l))r

(δ(i,l) + δ( j,l) + 2)r

1

r! (λ(i,l) + λ( j,l))r

×
(

2

(
k

n

)r+δ(i,l)+δ( j,l)+1

−
(

k − 1

n

)r+δ(i,l)+δ( j,l)+1

eλ
(i,l)/n

−
(

k + 1

n

)r+δ(i,l)+δ( j,l)+1

e−λ(i,l)/n
)
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+
p∑

l=1

K(i,j),(l)
2 e−λ(i,l)k/n

∞∑
r=0

(δ(i,l))r

(δ(i,l) + δ( j,l))r

1

r! (λ(i,l) + λ( j,l))r

×
(

2

(
k

n

)r

−
(

k − 1

n

)r

eλ
(i,l)/n −

(
k + 1

n

)r

e−λ(i,l)/n
)
,

where

K(i,j),(l)
1 := �(δ( j,l) + 1)�( − 1 − δ( j,l) − δ(i,l))

�( − δ(i,l))
, K(i,j),(l)

2 := �(δ( j,l) + δ(i,l) + 1)

(λ(i,l) + λ( j,l))δ( j,l)+δ(i,l)+1
,

and where (a)n := a(a + 1) · · · (a + n − 1) =∏n−1
q=0 (a + q) = �(a + n)/�(a), with (a)0 := 1.

Furthermore, let δ̄ := minl=1,...,p δ
( j,l) + δ(i,l). It is possible to see that, as n → ∞, the

numerator is of order (1/n)1+δ̄ , because δ(i,l) < 1
2 for every i, l = 1, . . . , p in order to be in

the nonsemimartingale case.
Moreover, regarding the denominator we observe that, for every l = 1, . . . , p,∫ ∞

0

[
(g(i,l)(x))2 − g(i,l)

(
x + 1

n

)
g(i,l)(x)

]
dx

= �(2δ(i,l) + 1)

(2λ(i,l))2δ(i,l)+1
− K(i,i),(l)

1 e−λ(i,l)/n
∞∑

r=0

(1 + δ(i,l))r

(2δ(i,l) + 2)r

1

r! (2λ(i,l))r
(

1

n

)r+2δ(i,l)+1

− K(i,i),(l)
2 e−λ(i,l)/n

∞∑
r=0

(δ(i,l))r

(2δ(i,l))r

1

r! (2λ(i,l))r
(

1

n

)r

,

and using the facts that

e−λ(i,l)x = 1 − λ(i,l)x + O(x2) and K(i,i),(l)
2 = �(2δ(i,l) + 1)

(2λ(i,l))2δ(i,l)+1
,

this equals (be careful: below we have summations from r = 0 as well as from r = 1 and r = 2)

− K(i,i),(l)
1 e−λ(i,l)/n

∞∑
r=0

(1 + δ(i,l))r

(2δ(i,l) + 2)r

1

r! (2λ(i,l))r
(

1

n

)r+2δ(i,l)+1

−
(

1 − λ(i,l) 1

n
+ O

(
1

n2

))
K(i,i),(l)

2

×
∞∑

r=1

(δ(i,l))r

(2δ(i,l))r

1

r! (2λ(i,l))r
(

1

n

)r

−
(

− λ(i,l) 1

n
+ O

(
1

n2

))
K(i,i),(l)

2

= −K(i,i),(l)
1

(
1 − λ(i,l) 1

n
+ O

(
1

n2

)) ∞∑
r=0

(1 + δ(i,l))r

(2δ(i,l) + 2)r

1

r! (2λ(i,l))r
(

1

n

)r+2δ(i,l)+1

−
(

1 − λ(i,l) 1

n
+ O

(
1

n2

))
K(i,i),(l)

2

∞∑
r=2

(δ(i,l))r

(2δ(i,l))r

1

r! (2λ(i,l))r
(

1

n

)r

−
(

1 − λ(i,l) 1

n
+ O

(
1

n2

))
K(i,i),(l)

2 λ(i,l)
(

1

n

)
−
(

− λ(i,l) 1

n
+ O

(
1

n2

))
K(i,i),(l)

2
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= −K(i,i),(l)
1

(
1 − λ(i,l) 1

n
+ O

(
1

n2

)) ∞∑
r=0

(1 + δ(i,l))r

(2δ(i,l) + 2)r

1

r! (2λ(i,l))r
(

1

n

)r+2δ(i,l)+1

−
(

1 − λ(i,l) 1

n
+ O

(
1

n2

))
K(i,i),(l)

2

∞∑
r=2

(δ(i,l))r

(2δ(i,l))r

1

r! (2λ(i,l))r
(

1

n

)r

+ O

(
1

n2

)
.

Now, let δ̂ := minl=1,...,p δ
(i,l) + minl=1,...,p δ

( j,l). From the above computations, it is possible

to see that, as n → ∞, the denominator in (6.1) is of order (1/n)1+δ̂ . Therefore, looking at the
order as n → ∞, that (6.1) reduces to (1/n)δ̄−δ̂ . Observe that δ̄ − δ̂ ≥ 0 by definition. Hence,
if δ̄ > δ̂ then limn→∞ (r(n)

i,j (k))2 = 0. While, if δ̄ = δ̂, we have, for any k ∈N,

lim
n→∞ (r(n)

i,j (k))2 = C(2kδ̄+1 − (k − 1)δ̄+1 − (k + 1)δ̄+1)2 <∞, (6.3)

where C ∈R is a finite constant independent of k. Hence, the first part of Assumption 4.2 is
satisfied.

Let R̄(i,j),(l)(t) := ∫∞
0 [(g(i,l)(x))2 + (g( j,l)(x))2 − 2g(i,l)(x+t)g( j,l)(x)] dx; thus, E[(G(i)

s+t −
G( j)

s )2] =∑p
l=1 R̄(i,j),(l)(t). Recall that a function L : (0,∞) →R is called slowly varying at

0 when the identity limt→0+{L(λt)/L(t)} = 1 holds for any fixed λ> 0. If L is continuous on
(0,∞), we have

|L(t)| ≤ Ct−α, t ∈ (0, λ], (6.4)

for any α > 0 and any λ> 0 (where the constant C> 0 depends on α and λ; see [6]). Now,
consider the following conditions.

(A1) R̄(i,i),(l)(t) = t1+2δ(i,l)
L(i,i,l)

0 (t) for some δ(i,l) ∈ ( − 1
2 ,

1
2 ) and some positive slowly varying

at 0 function L(i,i,l)
0 , which is continuous on (0, ∞), for every l = 1, . . . , p.

(A2) (R̄(i,j),(l))′′(t) = tδ
(i,l)+δ( j,l)−1L(i,j,l)

2 (t) for some slowly varying at 0 function L(i,j,l)
2 , which

is continuous on (0, ∞), for every l = 1, . . . , p.

(A3) Define L̃(i,j,l)
0 (t) :=

√
L(i,i,l)

0 (t)L( j,j,l)
0 (t). There exists d ∈ (0, 1) such that, for every l =

1, . . . , p,

lim sup
t→0+

sup
y∈(t,td)

L(i,j,l)
2 (y)

L̃(i,j,l)
0 (t)

<∞.

The following result is the multivariate version of Lemma 1 of [6].

Lemma 6.1. Suppose that conditions (A1)–(A3) hold. Let β := maxl=1,...,p δ
(i,l) + δ(i,l) +

1, and let ε > 0 with ε < 2 − β. Define the sequence r(k) by r(k) = (k − 1)β+ε−2, k ≥
2, and r(0), r(1) ≥ C, with C> r(n)

i,j (0), r(n)
i,j (1). Then there exists a natural number n0(ε)

such that |r(n)
i,j (k)| ≤ Cr(k), k ≥ 0, for all n> n0(ε). Furthermore, let β + ε − 2<− 1

2 . Then∑∞
k=1r2(k)<∞.

Proof. Observe that

r(n)
i,j (k) =

p∑
l=1

R̄(i,j,l)((k − 1)/n) − 2R̄(i,j,l)(k/n) + R̄(i,j,l)((k + 1)/n)

2
√

(
∑p

l=1 R̄(i,i,l)(1/n))(
∑p

l=1 R̄( j,j,l)(1/n))
.
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Under conditions (A1)–(A2), for 2 ≤ k ≤ n, by (6.2) and the mean value theorem (applied
twice), we have

|r(n)
i,j (k)| ≤

p∑
l=1

∣∣∣∣12
(

1

n

)1−δ(i,l)−δ( j,l)
(R̄(i,j),(l))′′((k + θn

k )/n)

L̃(i,j,l)
0 (1/n)

∣∣∣∣
=

p∑
l=1

∣∣∣∣12
(

1

n

)1−δ(i,l)−δ( j,l)(
k + θn

k

n

)δ(i,l)+δ( j,l)−1 L(i,j,l)
2 ((k + θn

k )/n)

L̃(i,j,l)
0 (1/n)

∣∣∣∣, (6.5)

where |θn
k |< 1. In particular, for 2 ≤ k ≤ �n1−d�, by condition (A3), we obtain

|r(n)
i,j (k)| ≤ C′(k − 1)δ

(i,l)+δ( j,l)−1 ≤ C′(k − 1)β−2,

where C′ is a positive constant. Moreover, for �n1−d� ≤ k ≤ n, using (6.4), we have

|r(n)
i,j (k + 1)| ≤

p∑
l=1

∣∣∣∣12kδ
(i,l)+δ( j,l)−1 L(i,j,l)

2 ((k + θn
k )/n)

L̃(i,j,l)
0 (1/n)

∣∣∣∣
≤

p∑
l=1

∣∣∣∣12kδ
(i,l)+δ( j,l)−1+εn(d−1)ε L(i,j,l)

2 ((k + θn
k )/n)

L̃(i,j,l)
0 (1/n)

∣∣∣∣
≤ C′′kδ(i,l)+δ( j,l)−1+ε

≤ C′′kβ+ε−2,

where C′′ is a positive constant. The last statement is an immediate consequence. �
Remark 6.3. Our proof uses the same arguments as in the proof of Lemma 1 of [6]. We have
an additional factor (1/n)1−δ(i,l)−δ( j,l)

in (6.5), which appears to have been forgotten on one
occasion in the proof of Lemma 1 of [6].

Now, we need to check that in our example conditions (A1)–(A3) are satisfied and that
r(n)

i,j (0) and r(n)
i,j (1) are uniformly bounded. First, it is easy to see that |r(n)

i,j (0)| ≤ 1 since it is the
correlation function of �n

1G(i) and �n
1G( j). Furthermore, from (6.3), r(n)

i,j (k) is a converging
sequence and, hence, bounded, for any k ∈N. Thus, |r(n)

i,j (1)|, |r(n)
i,j (1)|<C, where C is a

positive constant independent of n. Condition (A1) is the same as condition (A1) for the
univariate case in [7] (see [5] for more details); thus, it is satisfied for the gamma kernel
example. For (A2), we have∫ ∞

0
g(i,l)(x + t)g( j,l)(x) dx

= K(i,j),(l)
1 e−λ(i,l)t

∞∑
r=0

(1 + δ( j,l))r

(δ(i,l) + δ( j,l) + 2)r

1

r! (λ(i,l) + λ( j,l))rtr+δ(i,l)+δ( j,l)+1

+ K(i,j),(l)
2 e−λ(i,l)t

∞∑
r=0

(δ(i,l))r

(δ(i,l) + δ( j,l))r

1

r! (λ(i,l) + λ( j,l))rtr

for any l = 1, . . . , p, and taking the second derivative we obtain

(R̄(i,j),(l))′′(t) = tδ
(i,l)+δ( j,l)−1[ − 2(δ(i,l) + δ( j,l) + 1)(δ(i,l) + δ( j,l))K(i,j),(l)

1

+ O( min (t1−δ(i,l)−δ( j,l)
, t))].

https://doi.org/10.1017/apr.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.30


712 R. PASSEGGERI AND A. E. D. VERAART

Hence, (A2) is satisfied. Finally, from [7] (see also the supplementary material of [17]), we
have limt→0+ L̃(i,i,l)

0 = 2−1−2δ(i,l)
�( 1

2 − δ(i,l))/�( 3
2 + δ(i,l)), and so

lim
t→0+ L̃(i,j,l)

0 = 2−1−δ(i,l)−δ( j,l)

√
�(1/2 − δ(i,l))�(1/2 − δ( j,l))

�(3/2 + δ(i,l))�(3/2 + δ( j,l))
=: K(i,j),(l)

0 .

Thus, we have

lim sup
t→0+

sup
y∈(t,td)

L(i,j,l)
2 (y)

L̃(i,j,l)
0 (t)

≤ lim sup
t→0+

−2(δ(i,l) + δ( j,l) + 1)(δ(i,l) + δ( j,l))K(i,j),(l)
1 + C( min (td(1−δ(i,l)−δ( j,l)), td))

L̃(i,j,l)
0 (t)

= −2(δ(i,l) + δ( j,l) + 1)(δ(i,l) + δ( j,l))K(i,j),(l)
1

K(i,j),(l)
0

<∞
for some C> 0 and every l = 1, . . . , p. Therefore, (A3) and, so, Assumption 4.2 are satisfied.

Given the fact that our π (m,l)
n has the same structure as πn in [7], then the same arguments

used in [7] hold here and we can conclude that if δ(m,l) ∈ ( − 1
2 ,

1
2 ) for every m, l = 1, . . . , p

then Assumption 4.1 is satisfied.
Combining the ranges obtained, we conclude that, when δ(i,j) ∈ ( − 1

2 ,
1
2 ) with

max
l=1,...,p

δ(i,l) + δ( j,l) < 1
2

for every i, j = 1, . . . , p, then all the results presented in this work apply to our example.

7. Conclusion

In this paper we introduced the multivariate BSS process and studied the joint asymptotic
behaviour of its realised covariation, presenting limit theorems, feasible results, and an explicit
example. We also provided central limit theorems and weak laws of large numbers for general
multivariate Gaussian processes with stationary increments. There are at least two directions
which will be worth exploring in more detail in the future.

First, is it possible to find feasible estimates for the asymptotic variance of the multivariate
BSS processes? That is, can ‘second-order" feasible results be obtained in addition to the ‘first-
order" feasible results we already presented?

Second, we considered the asymptotic theory for BSS processes also outside the semi-
martingale setting. In doing so, we concentrated on a particular scenario (as described by the
assumptions on the deterministic function g in Assumption 4.1). However, one can imagine
other scenarios which lead to BSS processes (or other volatility modulated Gaussian processes)
beyond the semimartingale framework. Can similar asymptotic results for the (scaled) realised
covariation be obtained in such settings?

Appendix A. The matrices D and V for the BSS process

In this appendix we specify the explicit structure and value of the matrices D and Vs. The
reason why we put them into the appendix is that in order to present them we need some
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combinatorial arguments which are easy but tedious, and they are similar for the different
cases presented in Section 4.

A.1. Case I

Let D1/2 ∈ Mp6×p6
(R) be defined as

(D)z,y := lim
n→∞

1

n

n−1∑
h=1

(n − h)(r(n)
kz,rz,mz;ky,ry,my

(h)r(n)
lz,qz,wz;ly,qy,wy

(h)

+ r(n)
lz,qz,wz;ky,ry,my

(h)r(n)
kz,rz,mz;ly,qy,wy

(h)

+ r(n)
ky,ry,my;kz,rz,mz

(h)r(n)
ly,qy,wy;lz,qz,wz

(h)

+ r(n)
ky,ry,my;lz,qz,wz

(h)r(n)
ly,qy,wy;kz,rz,mz

(h))

+ (r(n)
kz,rz,mz;ky,ry,my

(0)r(n)
lz,qz,wz;ly,qy,wy

(0)+ r(n)
lz,qz,wz;ky,ry,my

(0)r(n)
kz,rz,mz;ly,qy,wy

(0)),

where, for each of the p6 × p6 combinations of (z, y), there is a unique combination of
((rz,mz, qz,wz, kz, lz), (ry,my, qy,wy, ky, ly)) where each of these elements takes values in
{1, . . . , p}. Let ν(r,m, q,w) be any permutation of the set of the different combinations of
r,m, q,w ∈ {1, . . . , p}, and let νs(r,m, q,w) determine the sth element of ν(r,m, q,w). Note
that ν(r,m, q,w) has a certain order for its element, which is not relevant for us since we only
care about the consistent use of the order adopted. Recall that by the notation ( · )ν(r,m,q,w) we
mean that the sth component of the vector is νs(r,m, q,w). Then the association is given by

(z, y) ↔
((
νz−�(z−1)/p4�p4 (r,m, q,w),

⌊�(z − 1)/p4�
p

⌋
+ 1,

⌊
z − 1

p4

⌋
+ 1

− p

⌊�(z − 1)/p4�
p

⌋)
,(

νy−�(y−1)/p4�p4 (r,m, q,w),

⌊�(y − 1)/p4�
p

⌋
+ 1,

⌊
y − 1

p4

⌋
+ 1

− p

⌊�(y − 1)/p4�
p

⌋))
.

For a proof of this statement for the case p = 2, see the proof of Theorem 4.1; the extension to
the case p> 2 is trivial. Moreover, define for s ∈ [0, T] the p2 × p6 matrix

Vs :=

⎛⎜⎜⎜⎜⎝
σs 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 σs

⎞⎟⎟⎟⎟⎠ , (A.1)

where σs := (σ (r,m)
s σ

(q,w)
s )�ν(r,m,q,w), so it is a row vector of p4 elements (here the consistency of

the order of the elements of ν(r,m, q,w) is fundamental), and 0 is a row vector of p4 elements
containing only 0s. Hence, σs and 0 contain the same number of elements.

In the case of the vech notation, the association for D is the following. First, let us define,
for i ∈N,

χ (i) :=
⌊√

2i + 1

2

⌋
, ξ (i) := i − 1

2

⌊√
8i − 7 − 1

2

⌋(⌊√
8i − 7 − 1

2

⌋
+ 1

)
.
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Then we have

(z, y) ↔
((
νz−�(z−1)/p4�p4 (r,m, q,w), χ

(⌊
z − 1

p4

⌋)
, ξ

(⌊
z − 1

p4

⌋))
,(

νy−�(y−1)/p4�p4 (r,m, q,w), χ

(⌊
y − 1

p4

⌋)
, ξ

(⌊
y − 1

p4

⌋)))
. (A.2)

The association (A.2) comes from the fact that we have k = 1, . . . , p with k ≤ l. The cou-
ple (k, l) has the sequence (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4),
(5, 1), . . . , which is a fractal sequence of form given by (ξ (i), χ (i)), where i is the ith term
of the sequence. Concerning the matrix Vs, we have the same structure as (A.1). However, the
dimension is now p( p + 1)/2 × p5( p + 1)/2. The dimension and the value of the σs and of the
0 is the same as before and, hence, we are considering fewer of them (e.g. the number of σs is
p( p + 1)/2, while in (A.1) we had p2 of them).

A.2. Case II: first scenario

We have the same as in case I. The only difference is the use of r̄(n) instead of r(n).

A.3. Case II: second scenario

For this case, we have something similar to the previous sections, but simpler since there
are no variables r and q. Let D1/2 ∈ Mp4×p4

(R) be defined as

(D)z,y := lim
n→∞

1

n

n−1∑
h=1

(n − h)(r̃(n)
kz,mz;ky,my

(h)r̃(n)
lz,wz;ly,wy

(h) + r̃(n)
lz,wz;ky,my

(h)r̃(n)
kz,mz;ly,wy

(h)

+ r̃(n)
ky,my;kz,mz

(h)r̃(n)
ly,wy;lz,wz

(h) + r̃(n)
ky,my;lz,wz

(h)r̃(n)
ly,wy;kz,mz

(h))

+ (r̃(n)
kz,mz;ky,my

(0)r̃(n)
lz,wz;ly,wy

(0) + r̃(n)
lz,wz;ky,my

(0)r̃(n)
kz,mz;ly,wy

(0)),

where, for each of the p4 × p4 combinations of (z, y), there is a unique combination of
((mz,wz, kz, lz), (my,wy, ky, ly)). The association is given by

(z, y) ↔
((
μz−�(z−1)/p2�p2 (m,w),

⌊�(z − 1)/p2�
p

⌋
+ 1,

⌊
z − 1

p2

⌋
+ 1

− p

⌊�(z − 1)/p2�
p

⌋)
,(

μy−�(y−1)/p2�p2 (m,w),

⌊�(y − 1)/p2�
p

⌋
+ 1,

⌊
y − 1

p2

⌋
+ 1

− p

⌊�(y − 1)/p2�
p

⌋))
,

where μ(m,w) is any permutation of the set of all the possible combinations of m,w ∈
{1, . . . , p} (i.e. any permutation of the set ((1, 1), (1, 2), . . . , (1, p), (2, 1), (2, 2), . . . , (2, p),
. . . , ( p, p))) and μs(m,w) is the sth element of μ(m,w). Moreover, define for s ∈ [0, T] the
p2 × p4 matrix

Vs :=

⎛⎜⎜⎜⎜⎝
σ(1,1),s 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 σ( p,p),s

⎞⎟⎟⎟⎟⎠ , (A.3)
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where
σ(k,l),s := (σ (k,m)

s σ (l,w)
s )�μ(m,w)

and 0 is a row vector of p2 elements containing only 0s.
For the vech notation, the structures of the matrices D and V remain the same, but their

dimensions reduce. Similarly to the previous cases, the association is given by

(z, y) ↔
((
μz−�(z−1)/p2�p2 (m,w), χ

(⌊
z − 1

p4

⌋)
, ξ

(⌊
z − 1

p4

⌋))
,(

μy−�(y−1)/p2�p2 (m,w), χ

(⌊
y − 1

p4

⌋)
, ξ

(⌊
y − 1

p4

⌋)))
.

Concerning the matrix Vs, we have the same structure as (A.3). However, the dimension is now
p( p + 1)/2 × p3( p + 1)/2. The value of the σs and of the 0 is the same as before and, hence,
we are considering fewer of them (e.g. the number of σs is p( p + 1)/2, while in (A.3) we had
p2 of them).
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