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Abstract

We establish the moderate deviation principle for the solutions of a class of stochastic
partial differential equations with non-Lipschitz continuous coefficients. As an applica-
tion, we derive the moderate deviation principle for two important population models:
super-Brownian motion and the Fleming–Viot process.
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1. Introduction

Many problems in the field of applications can be modeled by measure-valued processes.
Among them are two of the most commonly studied population models, namely, super-Brownian
motion (SBM) and the Fleming–Viot process (FVP). These population models have been the
focus of numerous recent publications, among which is [6] in which the authors established
the central limit theorem for the two models. One of the interesting problems for these models
is to set the branching rate for SBM and a resampling rate for the FVP to tend to 0 and to
study the rate at which the population’s measure converges to a deterministic limit. This rate of
convergence is best given by the large deviation principle (LDP). In [7], we achieved the LDP
for SBM and FVP as the above mentioned rates go to 0 and obtained an explicit form of the
rate of convergence for each model. However, the topology introduced there is not a natural
one. Namely, we used the double quotient space due to the nonuniqueness of the controlled
partial differential equation (PDE) in the definition of the rate function. Here we achieve the
moderate deviation principle (MDP), which provides the convergence rate of the models as the
branching/resampling rate tends to 0 at a speed slower than that considered for the LDP. The
topology we will use is the standard one, and there is no need to introduce the quotient space.

The MDP for SBM has also been established by Schied in [13]. There the author used the
space C([0, 1]; M(Rd)) equipped with compact open topology, where M(Rd) is the space of
finite signed measures on R

d with the coarsest topology in which μ �→ 〈μ, f 〉 are continuous
for every bounded Lipschitz function on R

d . The main tool the author applied was the Gärtner–
Ellis theorem; see [3, Theorem 4.6.1]. Here we have used a similar space and have obtained
the same result; however, with a different approach. Other authors including those of [9], [10],
[15], and [16] have investigated the MDP for processes related to SBM. These processes include
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SBM with super-Brownian immigration and SBM with immigration governed by the Lebesgue
measure. Here we have also derived the MDP for the FVP, which, to the best of the authors’
knowledge, has not yet been shown in the literature.

In this paper we study the SBM and FVP based on their characterization by solutions to certain
stochastic partial differential equations (SPDEs). We formulate a general class of SPDEs by
observing the similarities between the two SPDEs and in Section 3 derive the MDP for this class
by applying [1, Theorem 6]. In Section 4 we then establish the MDP for the two population
models with the help of the contraction principle; see [4, Theorem 4.2.1]. We note that since the
formulation of SBM and FVP by SPDEs offered by [14] was given only for dimension 1 then
our result on the MDP is limited to this dimension. For higher dimensions further investigation
is required.

2. Notations and main results

Suppose that (�, F , P) is a probability space and {Ft } is a family of nondecreasing right-
continuous sub-σ -fields of F such that F0 contains all P-null subsets of �. We denote Cb(R)

to be the space of continuous bounded functions on R, and Cc(R) be the set of continuous
functions in R with compact support. In addition, for 0 < β ∈ R, we let Mβ(R) denote the set
of σ -finite measures μ on R such that∫

e−β|x| dμ(x) < ∞. (1)

We endow this space with the topology defined by a modification of the usual weak topology:
μn → μ in Mβ(R) if and only if for every f ∈ Cb(R),∫

R

f (x)e−β|x|μn(dx) →
∫

R

f (x)e−β|x|μ(dx).

This topology is given by the following modified Wasserstein distance:

ρβ(μ, ν) := inf

{∣∣∣∣
∫

R

f (x)e−β|x|(μ(dx) − ν(dx))

∣∣∣∣ : f ∈ C1
b(R), ‖f ‖∞ ∨ ‖f ′‖∞ ≤ 1

}
.

We denote the probability measures on R with the above topology by Pβ(R). Let (S, S) be
the measurable space defined as (S, S) := (C([0, 1]; R

∞), BC([0, 1]; R
∞))), where R

∞ is the
Polish space with the metric given as

d({xi}, {yi}) :=
∞∑
i=1

2−i (|xi − yi | ∧ 1).

Throughout this paper, we assume that β0 ∈ (0, β) and K is a constant which may take
different values in different lines. Also the notation � stands for the second derivative in the
spatial variable x. This notation will be used when both spatial and time variables are involved,
or when the dual operator will be needed. Otherwise, we will use the simpler notation f ′′. The
same convention is used for ∇, the first derivative in the spatial variable. For α ∈ (0, 1), we
consider the space Bα,β composed of all functions f : R → R such that for every m ∈ N there
exist constants K > 0 with the following conditions:

|f (y1) − f (y2)| ≤ Keβm|y1 − y2|α for all |y1|, |y2| ≤ m,

|f (y)| ≤ Keβ|y| for all y ∈ R (2)
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and with the metric

dα,β(u, v) =
∞∑

m=1

2−m(‖u − v‖m,α,β ∧ 1), u, v ∈ Bα,β,

where

‖u‖m,α,β = sup
x∈R

e−β|x||u(x)| + sup
y1 �=y2|y1|,|y2|≤m

|u(y1) − u(y2)|
|y1 − y2|α e−βm.

Note that the collection of continuous functions on R satisfying (2), referred to as Bβ , is a
separable Banach space with norm

‖f ‖β = sup
x∈R

e−β|x||f (x)|.

For the convenience of the reader, we now offer a quick introduction to the two population
models considered. In the SBM model each individual has an exponentially distributed lifetime
and the population evolves as a ‘cloud’. It is studied by taking a scaled limit of a branching
process with an associated branching rate. SBM with branching rate ε, denoted by με

t , is a
measure-valued Markov process that can be characterized by one of the following.

(i) For a fixed constant p > d , let φp(x) := (1 + |x|2)−p/2 for x ∈ R
d and

Cp(Rd) := {f ∈ Cb(R
d) : |f (x)| ≤ Kφp(x)}

then SBM, (με
t )t , is a measure-valued Markov process with transition probabilities given

by
E exp(−〈με

t , f 〉) = exp(− < με
0, n(t, ·) >) for f ∈ C+

p (Rd),

where n(·, ·) is the unique mild solution of the evolution equation

ṅ(t) = �n(t) − n2(t), n(0) = f.

(ii) The process (με
t ) as the unique solution to a martingale problem. For all f ∈ C2

b (R),

Mt(f ) := 〈με
t , f 〉 − 〈με

0, f 〉 −
∫ t

0

〈
με

s ,
1

2
�f

〉
ds

is a square-integrable martingale with quadratic variation

〈M(f )〉t = ε

∫ t

0
〈με

s , f
2〉 ds.

(iii) In [14] SBM was studied by its ‘distribution’ function-valued process uε
t defined as

uε
t (y) =

∫ y

0
με

t (dx) for all y ∈ R, (3)

and using (3), SBM was characterized by the following SPDE:

uε
t (y) = F(y) + √

ε

∫ t

0

∫ uε
s (y)

0
W(ds da) +

∫ t

0

1

2
�uε

s (y) ds, (4)

where F(y) = ∫ y

0 μ0(dx) is the ‘distribution’ function of μ0 and W is an Ft -adapted
space-time white noise random measure on R

+ × R with intensity measure ds da.
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On the other hand, FVP is a population model with its evolution based on the genetic types
of the individuals. It is a probability measure-valued diffusion process with mutation rate ε,
studied as a scaled limit of a step-wise mutation model in which the population size is assumed
to stay constant throughout time and individuals move in Z

d according to a continuous-time
simple random walk. As in the case for SBM, this population model denoted as με

t is a Markov
process and can be characterized by one of the following.

(i) Let M1([0, 1]) be the space of all probability measures on [0, 1] with weak topology and
Prohorov metric ρ. Furthermore, let A be the generator of a Markov process on E with
domain D(A). Then FVP is a Markov process with generator

Lg(με
t ) = f ′(〈με

t , φ〉)〈με
t , Aφ〉 + ε

2

∫
intφ(x)φ(y)Q(με

t , dx, dy) (5)

and domain

D = {g : g(με
t ) = f (〈με

t , φ〉), f ∈ C∞
b (R), φ ∈ D(A), με

t ∈ M1([0, 1])},
whereQ(με

t ; dx, dy) = με
t (dx)δx(dy)−με

t (dx)με
t (dy)with δx being the Dirac measure

at x ∈ E. Here E is the type space, A is the mutation operator, and the second term in
(5) describes the continuous sampling. If the mutation operator has the form Af (x) =
(ε/2)

∫
(f (y) − f (x))ν0(dy) with ν0 ∈ M1(E), then the FVP is said to have neutral

mutation. For more information on this characterization; see [2] and [8].

(ii) The process (με
t ) as a unique solution to the following martingale problem. For f ∈

C2
c (R),

Mt(f ) = 〈με
t , f 〉 − 〈με

0, f 〉 −
∫ t

0

〈
με

s ,
1

2
�f

〉
ds

is a continuous square-integrable martingale with quadratic variation

〈Mt(f )〉 = ε

∫ t

0
(〈με

s , f
2〉 − 〈με

s , f 〉2) ds.

(iii) An alternative formulation of FVP was also made in [14]. There, by using uε
t (y) =

με
t ((−∞, y]), FVP was proved to be given by the solution to the following SPDE:

uε
t (y) = F(y) + √

ε

∫ t

0

∫ 1

0
(1{a≤uε

s (y)} −uε
s (y))W(ds da) +

∫ t

0

1

2
�uε

s (y) ds. (6)

Based on context, ε > 0 represents the branching rate for SBM and the resampling rate for
the FVP. Note that the main difference between (4) and (6) is in the second term; therefore, in
[14] a general SPDE with small noise term of the form

uε
t (y) = F(y) + √

ε

∫ t

0

∫
U

G(a, y, uε
s (y))W(ds da) +

∫ t

0

1

2
�uε

s (y) ds (7)

was considered with conditions∫
U

|G(a, y, u1) − G(a, y, u2)|2λ(da) ≤ K|u1 − u2|, (8)
∫

U

|G(a, y, u)|2λ(da) ≤ K(1 + |u|2),
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where (U, U, λ) is a measure space such that L2(U, U, λ) is separable. Furthermore, u1, u2, u,

y ∈ R, F is a function on R, and G : U × R
2 → R. Here we prove the MDP for {uε

t } by
considering the LDP for {vε

t } given by

vε
t (y) := a(ε)√

ε
(uε

t (y) − u0
t (y)). (9)

Hence, we have

vε
t (y) = a(ε)

∫ t

0

∫
U

Gε
s (a, y, vε

s (y))W(ds da) + 1

2

∫ t

0
�vε

s (y) ds, (10)

where Gε
s(a, y, v) := G(a, y, (

√
ε/a(ε))v + u0

s (y)), a(ε) satisfies 0 ≤ a(ε) → 0, and
a(ε)/

√
ε → ∞ as ε → 0. To form the controlled PDE of (10), we replace the noise by

h ∈ L2([0, 1] × U, dsλ(da)) and obtain

vt (y) =
∫ t

0

∫
U

G(a, y, u0
s (y))h(s, a)λ(da) ds + 1

2

∫ t

0
�vs(y) ds. (11)

Note that for every h ∈ L2([0, 1] × U, dsλ(da)), (11) has a unique solution, which we denote
as γ (h) for a map γ : L2([0, 1] × U, dsλ(da)) → C([0, 1]; Bβ). We are now ready to state
the first result of this paper.

Theorem 1. If F ∈ Bα,β0 for α ∈ (0, 1
2 ) then the family {vε

. } given by (10) satisfies the LDP
in C([0, 1]; Bβ) with speed a(ε) and rate function

I (v) = 1

2
inf

{∫ 1

0

∫
U

|hs(a)|2λ(da) ds : v = γ (h)

}
, (12)

which implies that the family {uε
t } obeys the MDP.

Similar to [5] we consider the Cameron–Martin space which is defined as follows. Let
MS

β(R) be the space of signed measures μ = μ+ − μ− with μ± ∈ Mβ(R). Let D be the
Schwartz space of test functions with compact support in R and continuous derivatives of all
orders. Denote the dual space of real distributions on R by D∗. We say that the generalized
function ν ∈ D∗ is absolutely continuous with respect to the measure μ ∈ MS

β if there exists
a function g ≥ 0 which is locally μ-integrable and satisfies 〈ν, φ〉 = 〈μ, gφ〉, φ ∈ D . Then
we write g = dν/dμ and call g the Radon–Nikodym derivative of ν with respect to μ. The
Cameron–Martin space, H , is composed of ω ∈ C([0, 1]; MS

β(R)) satisfying the following
conditions:

(i) ω0 = 0;

(ii) the D∗-valued map t �→ ωt defined on [0,1] is absolutely continuous with respect to
time and let ω̇ and �∗ω be its generalized derivative and Laplacian, respectively;

(iii) for every t ∈ [0, 1], ω̇t −�∗ωt/2 ∈ D∗ is absolutely continuous with respect to μ0
t with

d(ω̇t − �∗ωt/2)/dμ0
t being the (generalized) Radon–Nikodym derivative;

(iv) d(ω̇t − �∗ωt/2)/dμ0
t is in L2([0, 1] × R, dsωt (dy)).
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Let H̃ be the space for which conditions for H hold with MS
β(R) replaced by the space of

measures P S
β (R), and with the additional assumption

〈
μ0

t ,
d(ω̇t − �∗ωt/2)

dμ0
t

〉
= 0,

where P S
β (R) is the set of signed measures μ with μ± ∈ Pβ(R). Denoting ωε

t (dy) :=
(a(ε)/

√
ε)(με

t (dy) − μ0
t (dy)), we have the following two theorems.

Theorem 2. Suppose that F ∈ Bα,β0 then SBM, {με
t }, obeys the MDP in C([0, 1]; MS

β(R))

with rate function

I (ω) =

⎧⎪⎨
⎪⎩

1

2

∫ 1

0

∫
R

∣∣∣∣d(ω̇t − �∗ωt/2)

dμ0
t

(y)

∣∣∣∣
2

μ0
t (dy) dt if μ ∈ H ,

∞ otherwise.

(13)

Theorem 3. Suppose that F ∈ Bα,β0 then FV, {με}, satisfies the MDP on C([0, 1]; P S
β (R))

with rate function

I (ω) =

⎧⎪⎨
⎪⎩

1

2

∫ 1

0

∫
R

∣∣∣∣d(ω̇t − �∗ωt/2)

dμ0
t (y)

∣∣∣∣
2

μ0
t (dy) dt if μ ∈ H̃ ,

∞ otherwise.

(14)

Proofs of Theorems 1–3 are given in Sections 3 and 4.

3. Moderate deviations for the general SPDE

Our goal in this section is to establish the MDP for (7), referred to as the general SPDE.
Note that by our assumption F ∈ Bα,β0 , we have

|u0
s (y)| ≤

∫
R

ps(x − y)|F(x)| dx ≤ Keβ0|y|,

where pt (x) = (1/
√

2πt) exp(−x2/2t) is the heat kernel. Therefore, Gε
s satisfies the following

conditions: ∫
U

|Gε
s(a, y, v1) − Gε

s(a, y, v2)|2λ(da) ≤ K|v1 − v2|,∫
U

|Gε
s(a, y, v)|2λ(da) ≤ K(1 + v2 + e2β0|y|) (15)

for y ∈ R and v, v1, v2 ∈ R given by (9).
Since the proof of the uniqueness of strong solutions to (7) established in [14] uses only

condition (8) then the same argument can be applied to (10) to achieve the uniqueness of strong
solutions. SPDE (10) can therefore be presented by its mild form:

vε
t (y) = a(ε)

∫
R

∫ t

0

∫
U

Gε
s (a, x, vε

s (x))pt−s(y − x)W(ds da) dx.

We show that this mild solution takes values in C([0, 1]; Bβ). To accomplish this we need the
subsequent lemma.
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Lemma 1. For β1 ∈ (β0, β) and every n ≥ 2,

M̃ := sup
0<ε<1

E sup
0≤s≤1

(∫
R

|vε
s (x)|2e−2β1|x| dx

)n

< ∞.

Proof. We adapt the argument in the proof of [14, Lemma 2.3] to the present setup. By
Mitoma [12], if

ρ(x) =
⎧⎨
⎩

C exp

( −1

1 − |x|2
)

, |x| < 1,

0, |x| ≥ 1,

where C is determined by
∫

R
ρ(x)dx = 1, then g(x) = ∫

R
e−|y|ρ(x − y) dy satisfies

K1e−|x| ≤ g(n)(x) ≤ K2e−|x|, (16)

where g(n)(x) is the nth derivative of g(x). Note that if we replace e−|y| with e−2β1|y| in the
definition of g(x) then the same estimates used to obtain (16) yield K1e−2β1|x| ≤ g(n)(x) ≤
K2e−2β1|x|; therefore, we can consider J (x) := ∫

e−2β1|y|ρ(x − y) dy < ∞ instead of e−β|x|
in the definition of Mβ(R) given by (1), where 0 < β ∈ R.

We denote the Hilbert space L2(R, J (x) dx) by X0. Then for every f ∈ C∞
c (R) ∩ X0, we

have

〈vε
t , f 〉X0 = a(ε)

∫
R

∫ t

0

∫
U

Gε
s (a, y, vε

s (y))f (y)J (y)W(ds da) dy +
∫ t

0

〈
1

2
�vε

s , f

〉
X0

ds.

(17)

Applying Itô’s formula again, this time to (17), we obtain

〈vε
t , f 〉2

X0
= 2a(ε)

∫ t

0
〈vε

s , f 〉X0

∫
U

∫
R

Gε
s(a, y, vε

s (y))f (y)J (y) dyW(ds da)

+
∫ t

0
〈vε

s , f 〉X0〈�vε
s , f 〉X0 ds

+ a(ε)2
∫ t

0

∫
U

(∫
R

Gε
s(a, y, vε

s (y))f (y)J (y) dy

)2

λ(da) ds.

Now we sum over a complete orthonormal system (CONS) of X0, {fj }j to obtain

‖vε
t ‖2

X0
= 2a(ε)

∫ t

0

∫
U

〈vε
s , G

ε
s (a, ·, vε

s (·))〉X0W(ds da) +
∫ t

0
〈vε

s , �vε
s 〉X0 ds

+ a(ε)2
∫ t

0

∫
U

∫
R

Gε
s(a, y, vε

s (y))2J (y) dyλ(da) ds.

By Itô’s formula,

‖vε
t ‖2p

X0
= 2a(ε)p

∫
U

∫ t

0
‖vε

s ‖2(p−1)
X0

〈vε
s , G

ε
s (a, ·, vε

s )〉X0W(ds da)

+
∫ t

0
p‖vε

s ‖2(p−1)
X0

〈vε
s , �vε

s 〉X0 ds

+ a(ε)2p

∫ t

0
‖vε

s ‖2(p−1)
X0

∫
U

∫
R

Gε
s(a, y, vε

s (y))2J (y) dyλ(da) ds

+ a(ε)p(p − 1)

∫ t

0

∫
U

‖vε
s ‖2(p−2)

X0
〈vε

s , G
ε
s (a, ·, vε

s (·))〉2
X0

λ(da) ds.
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Similar to Kurtz and Xiong [11], we can prove that

−
∫

R

vε
s (y)(vε

s )
′(y)J ′(y) dy = 1

2

∫
R

vε
s (y)2J ′′(y) dy ≤ K‖vε

s ‖2
X0

and

〈vε
s , �vε

s 〉X0 ≤ −
∫

R

(vε
s )

′(y)vε
s (y)J ′(y) dy ≤ K‖vε

s ‖2
X0

.

Hence, with the help of the Doob and Burkholder–Davis–Gundy inequalities, we have

E sup
0≤s≤t

‖vε
s ‖2p

X0
≤ Ka(ε)E

(∫ t

0

∫
U

‖vε
s ‖4(p−1)

X0
〈vε

s , G
ε
s (a, y, vε

s (y))〉2
X0

dsλ(da)

)1/2

+ KE

∫ t

0
‖vε

s ‖2p
X0

ds

+ Ka(ε)E

∫ t

0

∫
U

∫
R

‖vε
s ‖2(p−1)

X0
Gε

s(a, y, vε
s (y))2J (y) dy dsλ(da)

+ Ka(ε)E

∫ t

0

∫
U

‖vε
s ‖2(p−2)

X0
〈vε

s , G
ε
s (a, y, vε

s (y))〉2
X0

dsλ(da).

Now we apply Hölder’s inequality and (15) to arrive at

E sup
0≤s≤t

‖vε
s ‖2p

X0
≤ Ka(ε)E

(∫ t

0
‖vε

s ‖4p
X0

ds

)1/2

+ KE

∫ t

0
‖vε

s ‖2p
X0

ds

≤ Ka(ε)E sup
0≤s≤t

‖vε
s ‖p

X0

(∫ t

0
‖vε

s ‖2p
X0

ds

)1/2

+ KE

∫ t

0
‖vε

s ‖2p
X0

ds

≤ 1

2
E sup

0≤s≤t

‖vε
s ‖2p

X0
+ K1E

∫ t

0
‖vε

s ‖2p
X0

ds.

The conclusion then follows from Gronwall’s inequality. �
For our results, we also apply the lemma given below, the proof of which we have provided

in [7].

Lemma 2. Let {Xε
t (y)} be a family of random fields and suppose that β1 ∈ (β0, β). If there

exist constants n, q, K > 0 such that

E|Xε
t1
(y1) − Xε

t2
(y2)|n ≤ Kenβ1(|y1|∨|y2|)(|y1 − y2| + |t1 − t2|)2+q, (18)

then there exists a constant α > 0 such that

sup
ε>0

E

∣∣∣∣sup
m

sup
ti∈[0,1],|yi |≤m,i=1,2

|Xε
t1
(y1) − Xε

t2
(y2)|

(|y1 − y2| + |t1 − t2|)α e−βm

∣∣∣∣
n

< ∞.

As a consequence Xε
. ∈ C([0, 1]; Bβ) almost surely. Furthermore, if (18) holds and

sup
ε>0

E|Xε
t0
(y0)|n < ∞ for some (t0, y0) ∈ [0, 1] × R,

then

sup
ε>0

E

∣∣∣∣ sup
(t,y)∈[0,1]×R

e−β|y||Xε
t (y)|

∣∣∣∣
n

< ∞,

and the family {Xε· } is tight in C([0, 1]; Bβ).
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Lemma 3. The solution to (10) takes values in C([0, 1]; Bβ).

Proof. First we need the following inequalities established in [7]:

P1 := pt−s(y1 − x) − pt−s(y2 − x), P2 := pt1−s(y − x) − pt2−s(y − x),

∫
R

|P1|2e2β1|x| dx ≤ Ke2β1(|y1|∨|y2|)(t − s)−(1/2+α)|y1 − y2|α, (19)

∫ t1

0

∫
R

|P2|2e2β1|x| dx ds ≤ Ke2β1|y||t1 − t2|α, (20)

and ∫ t2

t1

∫
R

p2
t2−s(y − x)e2β1|x| dx ds ≤ K|t1 − t2|α/2e2β1|y|. (21)

We proceed by demonstrating two cases. In the first case, we fix t ∈ 0, 1] and let y1, y2 ∈ R

be arbitrary such that |yi | ≤ m for all i = 1, 2. Applying the Burkholder–Davis–Gundy and
Hölder inequalities, for n > 0, we obtain

E|vε
t (y1) − vε

t (y2)|n

= E

∣∣∣∣a(ε)

∫ t

0

∫
U

∫
R

P1G
ε
s(a, x, vε

s (x))W(ds da) dx

∣∣∣∣
n

≤ KE

(
a(ε)2

∫ t

0

∫
U

(∫
R

P1G
ε
s(a, x, vε

s (x)) dx

)2

ds da

)n/2

≤ KE

(
a(ε)2

∫ t

0

∫
U

∫
R

P
2
1e2β1|x| dx

∫
R

Gε
s(a, x, vε

s (x))2e−2β1|x| dxλ(da) ds

)n/2

≤ KE

(
a(ε)2

∫ t

0

∫
R

P
2
1e2β1|x| dx

∫
R

(1 + vε
s (x)2 + e2β0|x|)e−2β1|x| dx ds

)n/2

.

By (19), we have

E|vε
t (y1) − vε

t (y2)|n

≤ KE

(∫ t

0
e2β1(|y1|∨|y2|)(t − s)−(1/2+α)|y1 − y2|α

∫
R

vε
s (x)2e−2β1|x| dx ds

)n/2

≤ M̄Kenβ1(|y1|∨|y2|)|y1 − y2|nα/2.

For the second case, we consider y ∈ R to be fixed and assume t1, t2 ∈ [0, 1] to be arbitrary,
then by (20) and (21),

E|vε
t1
(y) − vε

t2
(y)|n

≤ KE

∣∣∣∣a(ε)

∫ t1

0

∫
R

∫
U

P2G
ε
s(a, x, vs(x))W(ds da) dx

∣∣∣∣
n

+ KE

∣∣∣∣a(ε)

∫ t2

t1

∫
R

∫
U

pt2−s(y − x)Gε
s (a, x, vs(x))W(ds da) dx

∣∣∣∣
n
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≤ KE

∣∣∣∣
∫ t1

0

∫
R

P
2
2e2β1|x| dx

∫
R

(K + vε
s (x)2)e−2β1|x| dx ds

∣∣∣∣
n/2

+ KE

∣∣∣∣
∫ t2

t1

∫
R

p2
t2−s(y − x)e2β1|x| dx

∫
R

(K + vε
s (x)2)e−2β1|x| dx ds

∣∣∣∣
n/2

≤ M̄K

∣∣∣∣
∫ t1

0

∫
R

P
2
2e2β1|x| dx

∣∣∣∣
n/2

+ M̄K

∣∣∣∣
∫ t2

t1

∫
R

p2
t2−s(y − x)e2β1|x| dx ds

∣∣∣∣
n/2

≤ Kenβ1|y||t1 − t2|αn/2 + Kenβ1|y||t1 − t2|αn/4

≤ Kenβ1|y||t1 − t2|αn/4,

where in the last step we have used the fact that |t1 − t2| < 1. �
We now prove Theorem 1 by applying a technique offered by Budhiraja et al. [1]. To

match the authors’ setup, we write (10) as an infinite sum of independent Brownian motions
as follows. Suppose that {φj }j is a CONS of L2(U, U, λ) then

B
j
t :=

∫ t

0

∫
U

φj (a)W(ds da), j = 1, 2, . . .

is a sequence of independent Brownian motions by Lévy’s characterization of Brownian mo-
tions. We can then present (10) in the following form:

vε
t (y) = a(ε)

∑
j

∫ t

0
G

ε,j
s (y, vε

s (y)) dB
j
s + 1

2

∫ t

0
�vε

s (y) ds, (22)

where G
ε,j
s (y, v) := ∫

U
Gε

s (a, y, v)φj (a)λ(da). Similarly, the controlled PDE (11) can be
written as

vt (y) =
∑
j

∫ t

0

∫
U

G(a, y, u0
s (y))k

j
s φj (a)λ(da) ds + 1

2

∫ t

0
�vs(y) ds,

where k
j
s := ∫

U
hs(a)φj (a)λ(da). By the same argument as in [14], (22) has a strong solution so

there exists a map gε : Bα,β0 ×S → C([0, 1]; Bβ) such that vε = gε(a(ε)B), where B = {Bj
t }.

We now define

SN(�2) :=
{
k ∈ L2([0, 1], �2) :

∫ 1

0
‖ks‖2

�2
ds ≤ N

}
. (23)

To verify the assumption imposed by [1, Theorem 6], let {kε} be a family of random variables
taking values in SN(�2) such that kε → k in distribution as ε → 0 and consider the SPDE

v
θ,ε
t (y) = θ

∑
j

∫ t

0

∫
R

pt−s(y − x)G
ε,j
s (x, vθ,ε

s (x)) dB
j
s dx

+
∑
j

∫ t

0

∫
R

pt−s(y − x)G
ε,j
s (x, vθ,ε

s (x))k
ε,j
s dx ds. (24)

We establish the tightness of {vθ,ε} as follows.
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Lemma 4. It holds that v
θ,ε
t (y) is tight in C([0, 1], Bβ).

Proof. According to Lemma 2, to achieve the tightness for {vθ,ε
t } it is sufficient to show (18)

for v
θ,ε
t and verify that supε>0 E|vθ,ε

t0
(y0)|n < ∞ for some (t0, y0) ∈ [0, 1] × R. Following

the same steps as in the proof of Lemma 1, we have

M̃ := sup
0<ε<1

E sup
0≤s≤1

(∫
R

|vθ,ε
s (x)|2e−2β1|x| dx

)n

< ∞. (25)

Note that (18) can be attained for the first term on the right-hand side of (24) by exactly the same
calculations performed in Lemma 3 with the use of M̃ given in (25) instead of M̄ of Lemma 1.
Thus, we focus on finding (18) for

ṽ
θ,ε
t (y) :=

∑
j

∫ t

0

∫
R

pt−s(y − x)G
ε,j
j (x, vθ,ε

s (x))k
ε,j
s dx ds.

Using the same method used in the proof of Lemma 3, we begin by fixing t ∈ [0, 1] and
assuming y1, y2 to be any real numbers such that |yi | ≤ m for i = 1, 2 and m ∈ N. Recall that
P1 := pt−s(y1 − x) − pt−s(y2 − x). With the help of the Cauchy–Schwartz inequality, (15),
and our result (19), we obtain the following estimates:

E|ṽθ,ε
t (y1) − ṽ

θ,ε
t (y2)|n

= E

∣∣∣∣
∫ t

0

∫
R

P1

∑
j

G
ε,j
s (x, vθ,ε

s (x))k
ε,j
s dx ds

∣∣∣∣
n

≤ E

∣∣∣∣
∫ t

0

∫
R

P1

(∑
j

G
ε,j
s (x, vθ,ε

s (x))2
)1/2

‖kε
s ‖�2 dx ds

∣∣∣∣
n

≤ E

∣∣∣∣
(∫ t

0

(∫
R

P1

√
K(1 + v

θ,ε
s (x)2 + e2β0|x|) dx

)2

ds

)1/2(∫ t

0
‖kε

s ‖2
�2

ds

)1/2∣∣∣∣
n

≤ E

∣∣∣∣
∫ t

0

(∫
R

P1

√
K(1 + v

θ,ε
s (x)2 + e2β0|x|) dx

)2

dx

∣∣∣∣
n/2

Nn/2

≤ Kenβ1(|y1|∨|y2|)|y1 − y2|αn/2,

where N > 0 is the constant given by (23). Furthermore, the case for 0 ≤ t1 < t2 ≤ 1 arbitrary
and y ∈ R fixed can be expressed as

E|ṽθ,ε
t1

(y) − ṽ
θ,ε
t2

(y)|n ≤ KE

∣∣∣∣
∫ t2

t1

∫
R

P2

∑
j

G
ε,j
s (x, vs(x))k

ε,j
s dx ds

∣∣∣∣
n

+ KE

∣∣∣∣
∫ t1

0

∫
R

p2
t2−s(y − x)

∑
j

G
ε,j
s (x, vs(x))k

ε,j
s dx ds

∣∣∣∣
n

≤ Kenβ1|y||t1 − t2|nα/4,

where P2 := pt1−s(y − x) − pt2−s(y − x). �

Thus, {vθ,ε
t } is tight and for the assumption of [1, Theorem 6] to be satisfied we let θ = 0

for its first part and θ = a(ε) for the second part and apply the Prohorov theorem and so, by
[1, Theorem 6], our Theorem 1 can be deduced.
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4. Moderate deviations for SBM and FVP

We devote this section to the proofs of Theorems 2 and 3. Recall that

ωε
t (dy) := a(ε)√

ε
(με

t (dy) − μ0
t (dy)),

where in the case of SBM, uε
t (y) := ∫ y

0 με
t (dx). Then, based on (9), we can write vε

t (y) :=∫ y

0 ωε
t (dx). Similarly, for the FVP we have uε

t (y) := ∫ y

−∞ με
t (dx) which leads to vε

t (y) :=∫ y

−∞ ωε
t (dx). Analogous to [7, Lemma 6], it follows that for the set of functions with finite

variations, A, the map ξ : Bβ ∩ A → MS
β(R) given as ξ(u)(B) = ∫

1B(y) du(y) for all
B ∈ B(R) is continuous. Therefore, map η : C([0, 1]; Bβ) → C([0, 1]; MS

β(R)) defined
as η(v)t = ξ(vt ) is also continuous. Since SBM and FVP can be written as ωε

t (dy) =
η(vε)t ([0, y]) and ωε

t (dy) = η(vε)t ((−∞, y]), respectively, then in both cases ωε
t (y) is a

continuous function of vε
t . Based on our LDP result for vε

t given in Theorem 1, we can
conclude by the contraction principle that {ωε

t } also satisfies the LDP for both models.
Our remaining task is to identify an explicit representation of the models’ MDP rate func-

tions. According to the contraction principle, rate functions for SBM and FVP are given by
inf{I (u) : u ∈ η−1(ω)}. Since η is injective, we then aim to find the rate functions following
the form given by (12).

As for SBM, (4) satisfies the general SPDE (7) with the following properties:

U = R, λ(da) = da, G(a, y, u) = 1{0≤a≤u} + 1{u≤a≤0} .

Then using the controlled PDE (11), we have

〈ωt , f 〉 = 〈∂xvt , f 〉
= −〈vt , f

′〉

= −
∫ t

0

∫ ∞

0

∫ u0
s (y)

0
hs(a)f ′(y) da dy ds −

∫ t

0

∫ 0

−∞

∫ 0

u0
s (y)

hs(a)f ′(y) da dy ds

−
∫ t

0

〈
1

2
�vs, f

′
〉

ds

=
∫ t

0

∫ ∞

0
hs(a)f ((u0

s )
−1(a)) da ds −

∫ t

0

∫ 0

−∞
hs(a)f ((u0

s )
−1(a)) da ds

+
∫ t

0

〈
1

2
ωs, �f

〉
ds

=
∫ t

0

∫ ∞

0
hs(u

0
s (y))f (y) du0

s (y) ds −
∫ t

0

∫ 0

−∞
hs(u

0
s (y))f (y) du0

s (y) ds

+
∫ t

0

〈
1

2
�∗ωs, f

〉
ds

=
∫ t

0
〈hs(u

0
s ) sgn(·)μ0

s , f 〉 ds + 1

2

∫ t

0
〈�∗ωs, f 〉 ds.

Thus,

ht (u
0
t (y)) sgn(y) = d(ω̇t − �∗ωt/2)

dμ0
t

(y).
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Note that ∫
R

|ht (a)|2 da =
∫

R

|ht (u
0
t (y))|2 du0

t (y) =
∫

R

|ht (u
0
t (y))|2 dμ0

t (y).

Letting the right-hand side of (13) be denoted as I0(μ), if I (μ) < ∞ then I (μ) given in (12)
with U = R is equal to I0(μ). For the I0(μ) < ∞ case we can reverse the above calculations
to obtain I0(μ) = I (μ).

Similarly for the FVP, since FVP satisfies the general SPDE (7) with

U = [0, 1], λ(da) = da, G(a, y, u) = 1{a<u} −u,

then
〈ωt , f 〉 = −〈vt , f

′〉

= −
∫ t

0

∫
R

∫ u0
s (y)

0
hs(a)f ′(y) da dy ds

+
∫ t

0

∫
R

∫ 1

0
u0

s (y)hs(a)f ′(y) da dy ds −
∫ t

0

〈
1

2
�vs(y), f ′

〉
ds

=
∫ t

0
〈hs(u

0
s )μ

0
s , f 〉 ds −

∫ t

0

〈∫ 1

0
hs(a) daμ0

s , f

〉
ds +

∫ t

0

〈
1

2
�∗ωs, f

〉
ds.

Thus,

ω̇t − 1

2
�∗ωt = ht (u

0
t (y))μ0

t −
∫ 1

0
ht (a) daμ0

t .

Our goal is to find the infimum of
∫ 1

0 |hs(a)|2 da over hs(a) satisfying (11). We note that if h

satisfies (11) then gs(a) := hs(a) − ∫ 1
0 hs(a) da also satisfies the same equation. It is well

known that the second moment is minimized when it is centralized. Therefore, we replace
hs(a) by gs(a) in the definition of the rate function and write it as

∫ 1

0
|gs(a)|2 da =

∫ 1

0

∣∣∣∣d(ω̇t − �∗ωt/2)

dμ0
t

(y)

∣∣∣∣
2

dμ0
t (y),

in (12) to arrive at (14) for the I (v) < ∞ case and based on a similar argument as in the case
of SBM we obtain (14). Thus, MDP is proved for the two models.
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