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Electrokinetic oscillatory flow and energy
conversion of viscoelastic fluids in
microchannels: a linear analysis
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We studied the electrokinetic flow of viscoelastic fluids subjected to an oscillatory pressure
gradient. Under the assumption of laminar unidirectional flow, the constitutive and motion
equations of fluids are in the linear regime. Since the surface potentials are assumed to
be small, the Poisson–Boltzmann equation is linearised. Resonance behaviours appear
in the flow when the elastic effect of fluids is dominant. Based on the interaction of
viscoelastic shear waves, we explain the mechanism of resonance and derive the critical
Deborah number, Dec = 1/4, which dictates the occurrence of resonance. Using the
Maxwell fluid model, the resonance enhances the electrokinetic effects and dramatically
increases the electrokinetic energy conversion efficiency. However, by employing the
Oldroyd-B fluid model, we reveal that the amplification of efficiency is suppressed even
for a very small Newtonian solvent contribution. This could be one of the reasons for
the unavailability of reports on experimental verification regarding the high efficiency
predicted by Bandopadhyay & Chakraborty (Appl. Phys. Lett., vol. 101, 2012, 043905).
The damping effect of solvent viscosity is more significant for higher-order resonances.
The effects of multiple relaxation times on the resonance behaviours are investigated and
the results indicate that Dec still dominates the occurrence of resonances for streaming
potential field and flow rate.

Key words: microfluidics, viscoelasticity

1. Introduction

The transport processes where a charged mobile layer interacts with or induces electric
fields due to the relative motion between substrate and solution are collectively termed
electrokinetics (Hunter 2000). In recent decades, electrokinetic phenomena, including
electro-osmosis, streaming potential, electrophoresis and sedimentation potential, have
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attracted significant attention and provided many applications in micro- and nanochannels
(Schoch, Han & Renaud 2008; Sparreboom, van den Berg & Eijkel 2010; Guan, Li &
Reed 2014). The presence of a charged layer close to a solid–liquid interface is pivotal to
all electrokinetic phenomena. Most solids spontaneously acquire surface electric charges
when brought into contact with a polar medium (Li 2004; Masliyah & Bhattacharjee
2006). These charges are screened by the accumulation of counter-ions near the surface,
to form a Stern layer and a diffuse layer, which constitute the so-called electrical double
layer (EDL). The characteristic thickness of the EDL is commonly known as the Debye
length (Jian et al. 2017). The charged walls of a channel are increasingly important in
micro-/nanoscales because of the higher surface-to-volume ratio (Bocquet & Charlaix
2010). When a liquid is forced to flow through a channel by applying a pressure difference,
there is a net flux of ions downstream in the EDL adjacent to the channel walls. This is
called streaming current or advection current. The accumulation of charges at the channel
downstream creates an electrical potential difference between the two ends of the channel.
This potential difference is termed the streaming potential, and it depends on the surface
charge, electrolyte concentration and channel dimension (Das, Guha & Mitra 2013). This
streaming potential field, in turn, generates a current known as the conduction current,
which flows against the direction of the pressure-driven flow. The total current within the
cell is only zero if there is no external path for the current, which is often referred to as
electroneutrality of current (Goswami & Chakraborty 2010).

Streaming potential phenomena are relevant in suspension rheology (Russel 1978;
Sherwood 1980), geophysical two-phase flows through fine porous media (Boléve et al.
2007; Sherwood 2007, 2008, 2009; Lac & Sherwood 2009) and accurate measurement
of zeta potentials (Lyklema 1995). They provide a mechanism for converting mechanical
energy into electrical energy. Such a mechanism is called electrokinetic energy conversion
(EKEC). The idea of harvesting electrical energy from a fluidic system is not new (Osterle
1964). However, it has attracted significant attention recently owing to rapid advancements
in micro- and nanofluidics (Daiguji et al. 2004; van der Heyden et al. 2006, 2007; Xuan
& Li 2006; Wang & Kang 2010; Chang & Yang 2011; Gillespie 2012; Siria et al. 2013).
Especially, nanoscale fluidic devices allow probing of the regime of EDL overlaps where
the EKEC efficiency is expected to be the highest (Pennathur, Eijkel & van den Berg
2007). Although the energy harnessed from a single nanochannel may be rather small, this
effect can be substantially magnified by employing arrays of nanopores or macroscopic
nanoporous materials (Yang et al. 2003; Daiguji et al. 2006).

Currently, experimental EKEC efficiency is relatively low. For example, the highest
efficiency of about 3 % was reported by van der Heyden et al. (2007) for a channel of
75 nm in height with a dilute KCl aqueous solution in a steady pressure-driven flow.
To improve the EKEC efficiency, several studies have employed wall slip (Davidson &
Xuan 2008a; Ren & Stein 2008), soft nanochannels (Chanda, Sinha & Das 2014; Patwary,
Chen & Das 2016), steric effect (Bandopadhyay & Chakraborty 2011), time-periodic
pressure (Goswami & Chakraborty 2010), polymer addition (Nguyen et al. 2013),
buffer anion effect (Mei, Yeh & Qian 2017), transverse magnetic fields (Munshi &
Chakraborty 2009) and layering of large ions near the wall–liquid interface (Gillespie
2012). Bandopadhyay & Chakraborty (2012) reported a mechanism for very large
augmentation in the energy-harvesting capabilities of nanofluidic devices through the
combined deployment of viscoelastic fluids and oscillatory driving pressure forces. They
found that when the forcing frequency of a pressure-driven flow matches with the inverse
of the relaxation time scale of a typical viscoelastic fluid, the EKEC efficiency could be
highly amplified due to the complex interplay between fluid rheology and ionic transport
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within the EDL, which can be attributed to the viscoelastic resonance phenomenon.
Specifically, they predicted that for a slit-type microchannel (κh = 500, with half-channel
height h and Debye length 1/κ), the conversion efficiency can be of the order of 10 %,
and that for a nanochannel (κh = 10), without considering the surface conductance, the
conversion efficiency could even be higher than 95 %. This result is controversial, and the
mechanism of enhancement needs to be further explored. On the one hand, as remarked
by Nguyen et al. (2017), the efficiency defined by Bandopadhyay & Chakraborty is
the thermodynamic efficiency, where no actual power is delivered by the system. The
maximal efficiency at maximal output power in a load resistor is more relevant, and it is
to the tune of 24 % for a nanochannel (Nguyen et al. 2017). Within the linear response
regime of electrokinetic flows, it is proved that this maximum efficiency cannot exceed
50 % based on thermodynamic analyses (Xuan & Li 2006; Ding, Jian & Tan 2019). On
the other hand, the model used by Bandopadhyay & Chakraborty is a simple Maxwell
one that is a considerable simplification of viscoelastic fluids and only valid at low
shear rates and frequencies (Castrejón-Pita et al. 2003). Some significant deviations in
the Maxwell behaviour are observed for intermediate- and high-frequency regimes for
wormlike micellar solutions due to the Rouse-like behaviour of the individual entangled
segments (Yesilata, Clasen & Mckinley 2006) and additional solvent stress (Casanellas &
Ortín 2012).

To clarify the fundamental aspects of resonance phenomena in electrokinetic oscillatory
flows of viscoelastic fluids, we employ a generic constitutive model and provide a detailed
analysis in the linear regime. In practice, a viscoelastic fluid is usually a suspension
formed by various polymers or a solution with fine additives. The macroscopic description
of viscoelastic fluids combines elastic behaviour, represented by an elastic spring, and
viscous behaviour, represented by a dissipative dashpot. Depending on the precise
configuration of these primary elements, one can obtain different constitutive equations
(e.g. the Maxwell, Oldroyd-B, Giesekus, Phan-Thien–Tanner and Johnson–Segalman
models). For polymer aqueous solutions, the effect of solvent composition can be
investigated using the Oldroyd-B model, which represents a solution of a Maxwellian
viscoelastic fluid with a single relaxation time λ solved in a Newtonian solvent with
constant viscosity (Bird, Armstrong & Hassager 1987).

The laminar oscillatory flows of Maxwell and Oldroyd-B viscoelastic fluids have been
investigated by Casanellas & Ortín (2011), and they exhibit many interesting features
absent in the flows of Newtonian fluids. Barnes, Townsend & Walters (1969) investigated
the effect of an oscillatory pressure gradient around a non-zero mean in straight cylinders.
The experimental results obtained for dilute aqueous solutions of polyacrylamide show
a dramatic increase in the mean flow rate at particular values of the mean pressure
gradient, because of the ‘resonance’ effect between fluid elasticity and oscillatory driving.
Their observations qualitatively agree with their theoretical predictions based on the
power series expansion of the velocity and shear rate of a fluid characterised by apparent
viscosity. Several authors used different fluid models to study the mechanisms for flow
enhancement (Barnes, Townsend & Walters 1971; Davies, Bhumiratana & Bird 1978;
Phan-Thien 1978, 1980, 1981; Manero & Walters 1980; Phan-Thien & Dudek 1982a,b;
Siginer 1991; Andrienko, Siginer & Yanovsky 2000; Herrera 2010).

The steady and transient flows of most polymeric solutions and melts cannot be
adequately described by single-mode differential constitutive equations (Bird et al. 1987).
Thus, there is a need to employ multimode constitutive equations to obtain a better
description of real fluids, which possess a spectrum of relaxation times instead of a single
characteristic time scale. The concept has existed for more than a century in the form
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of the generalised Maxwell model for linear viscoelasticity (Sadek & Pinho 2019). In
particular, the Rouse-like behaviour of dilute polymer solutions, as previously mentioned,
can be expressed by the generalised Maxwell model. Prost-Domasky & Khomami (1996)
analysed the start-up of plane Couette flow and large-amplitude oscillatory shear flow of
single-mode and multimode Maxwell fluids as well as Oldroyd-B fluids using analytical
or semi-analytical methods. Andrienko et al. (2000) investigated the resonance behaviour
of a fluid described by the upper-convected Maxwell (UCM) model with a discrete
spectrum of relaxation times. Moyers-Gonzalez, Owens & Fang (2008, 2009) proposed a
non-homogeneous haemorheological model for human blood, where the effect of multiple
relaxation times was introduced. Sadek & Pinho (2019) presented an analytical solution
for the electro-osmotic oscillatory flow of multimode UCM fluids in small-amplitude
oscillatory shear.

In this work, we introduce a multimode model to investigate the streaming potential and
EKEC of viscoelastic fluids. The strain–stress relationship is expressed as follows:

T = T s + T p,

T s = ηsγ̇ , T p =
N∑

k=1
T k,

T k + λk
∇

T k = ηkγ̇ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

Here, T denotes the Cauchy stress tensor, which is decomposed into a polymer
contribution T p and a Newtonian solvent contribution T s, and γ̇ = ∇V + (∇V )† is
the rate-of-strain tensor with the fluid velocity V . The superscript ∇ denotes the
upper-convected derivative and

∇
T = ∂T

∂t
+ V · ∇T − (∇V )† · T − T · ∇V . (1.2)

In (1.1), the symbols N, λk and ηk (k = 1, . . . ,N) denote the number of relaxation times
in the spectrum, the kth relaxation time and the kth partial viscosity, respectively, and ηs is
the constant viscosity of the Newtonian solvent. The contribution of polymer viscosity can
be expressed in terms of the partial viscosity as ηp = ∑

ηk, and the total viscosity of the
solution is given by the sum of the solvent and polymer contributions, η = ηs + ηp. The
solvent viscosity fraction, ηs/η, is denoted by X, which is also known as the dimensionless
retardation time (Casanellas & Ortín 2011).

This model is a multimode formulation of the UCM model. An important feature of
this model is that it allows for a spectrum of relaxation times and contains the Newtonian
solvent stress. For N = 1 (i.e. single relaxation time), the Oldroyd-B model is obtained.
Furthermore, for N = 1 and X = 0, the Newtonian solvent contribution vanishes and this
model is simplified to the UCM model. The other limiting behaviour is attained at
X = 1, where the elastic contribution of the polymer vanishes and the Newtonian relation
is recovered. For unidirectional flows, the presented model has a linear strain–stress
equation, and it fails in predicting nonlinear features (e.g. shear-thinning behaviour) that
appear at considerably large shear rates in viscoelastic fluids. It is a good approximation
of viscoelastic fluids at small shear rates and can capture the resonance behaviour of
viscoelastic fluids, which is of interest to us.

Two relevant dimensionless numbers in viscoelastic flows are the Deborah (De) and
Weissenberg (Wi) numbers (Morozov & van Saarloos 2007). The Deborah number sets
the interplay between the characteristic relaxation time of fluids and the viscous diffusion
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time, and it is defined as

De = λmaxη/ρh2 = λmax/tv, (1.3)

where λmax is the largest relaxation time, ρ the fluid density, h the channel dimension and
tν = ρh2/η the characteristic time of purely viscous effects. The above definition of De
generalises that employed by del Río, de Haro & Whitaker (1998) for multiple relaxation
times. As De → 0, the fluid relaxes much faster than the typical time scale of the flow and
the Newtonian flow behaviour is recovered. For De> 1, the relaxation time of the fluid is
larger than the time scale of the flow and the fluid elasticity dominates the flow behaviour.
In shear flows, viscoelastic fluids are also subject to shear-driven normal stresses. The ratio
of the normal and shear stresses quantifies the nonlinear response of the viscoelastic fluid,
and it is proportional to Wi (Galindo-Rosales et al. 2014), which is defined based on the
largest relaxation time and the maximum local shear rate in this paper as

Wi = λmaxγ̇max. (1.4)

Analogous to the Reynolds (Re) number in Newtonian fluids, as Wi increases, different
flow regimes can be explored in viscoelastic fluids (Morozov & van Saarloos 2007). For
Wi< 1, the fluid exhibits laminar shear flows and the fluid response to external forces is
expected to be linear, whereas, for Wi> 1, nonlinearities start to manifest. In the high-Wi
regime, elastic instability and secondary flows are likely to appear (Torralba et al. 2007).

In this study, we focused on the electrokinetic phenomena induced by an oscillatory flow
based on the viscoelastic model, including the effects of a Newtonian solvent and multiple
relaxation times. Some restrictions, such as low Wi and surface potential, have been
proposed to keep the fluid response to the pressure gradient and streaming potential in the
linear regime, which makes it relatively easy to solve the governing equations, and thereby
allows a detailed mathematical analysis of the resonance behaviour. The remainder of this
paper is organised as follows. In § 2 the problem of the study is formulated and analytical
solutions of the fluid velocity and EDL potential are presented. The streaming potential and
EKEC efficiency are expressed and further analysed. The elastic resonance behaviours of
related physical quantities are presented and characterised in § 3. The effects of solvent
viscosity and multiple relaxation times on the resonance behaviours are investigated in
§§ 3.1 and 3.2, respectively. The validity of the linear analysis is examined in § 4. Finally,
the study is summarised and concluded in § 5.

2. Theoretical formulation

We consider the electrokinetic transport between two infinitely large parallel plates with
a separation of 2h. The fluid medium is viscoelastic, modelled by (1.1), and it is driven
by a harmonically oscillating pressure gradient (figure 1). A Cartesian system (x, y, z) is
constructed, such that the x–z plane is parallel to the surface of the plate with the origin at
the middle of the microchannel, the x axis is consistent with the direction of the pressure
gradient (axial direction) and the y axis is perpendicular to the plates (transverse direction).
The flow is expressed by the Navier–Stokes equation with an additional electrical body
force and the continuity equation for an incompressible fluid:

ρ
∂V
∂t

+ ρ(V · ∇)V = −∇p + ∇ · T + F EK,

∇ · V = 0.

}
(2.1)
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Figure 1. Schematic diagram of a microchannel filled with a fluid medium. The EDL forms at the interior of
negatively charged walls. Periodic pressure gradient is applied along the channel in the x direction.

In the above equation, V = (u, v, w) denotes the fluid velocity vector and F EK is the
electrokinetic body force, which is given by (Karniadakis, Beskok & Aluru 2005)

F EK = ρeE − 1
2

E · E∇ε + 1
2
∇
(
ρ
∂ε

∂ρ
E · E

)
, (2.2)

where ε is the permittivity of the medium, E is the electric field which is related to the
electric potential φ by E = −∇φ, ρe = e

∑
i zini is the local net charge density, e is the

electronic charge and ni and zi are the number density and valence of ion i, respectively.
Considering the constant permittivity of the medium, (2.2) reduces to F EK = ρeE.

When a fluid contains charged ionic species, the movement or mass transfer of the
anions and cations in the fluid flow is of interest. Generally, the ionic flux satisfies the
advection–diffusion–migration equation (i.e. the Nernst–Planck equation), given by

ji = niV − Di∇ni − zieniDi

kBT
∇φ. (2.3)

Here, Di is the diffusivity of ions in the solution, kB the Boltzmann constant, T the absolute
temperature and φ the total electric potential. The first term on the right-hand side of (2.3)
is the flux due to bulk convection, the second term is that due to concentration gradient
(i.e. diffusion process) and the last term is that due to migration.

2.1. Electric potential distribution
The electric potential at a location (x, y) in the channel, given by φ(x, y, t), arises due to
the superposition of the induced external electric potential (streaming potential) and the
potential due to surface charges on the microchannel walls (EDL potential). Assuming
that the EDL potential is independent of the axial position in the microchannel (which is
valid for long microchannels, neglecting any end effects), the total electric potential can
be expressed as follows:

φ(x, y, t) = ψ( y)+ [φ0 − xEs(t)], (2.4)

where ψ(y) is the EDL potential due to the EDL at the equilibrium state corresponding to
no fluid motion and no external electric field, φs ≡ φ0 − xEs(t) is the streaming electric
potential at a given axial location due to the electric field strength Es in the absence of
the EDLs, φ0 is the reference value of the potential at x = 0 and Es is the streaming
potential field that is independent of the position but dependent on time since Es is closely
related to the fluid velocity, which is time-dependent (see §§ 2.2 and 2.3). Note that (2.4) is
analogous to (8.2) of Masliyah & Bhattacharjee (2006), where Es is independent of time.
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The local net charge density ρe is related to the electric potential φ through the Poisson
equation as follows:

∇2φ = −ρe

ε
. (2.5)

Introducing (2.4) into the Poisson equation, we obtain the following equation for the slit
microchannel:

d2ψ

dy2 = −ρe

ε
. (2.6)

Considering the zero flux of ions in the y direction at equilibrium, (2.3) gives

ji,y = niv − Di
dni

dy
− zieniDi

kBT
dψ
dy

= 0. (2.7)

Furthermore, as v= 0 for laminar parallel flows, one can derive the Boltzmann distribution
for the ionic number concentration near a charged surface from (2.7), i.e.

ni = ni∞ exp
(

−zieψ
kBT

)
, (2.8)

where ni∞ denotes the bulk number density of ion i at the neutral state where ψ = 0.
Combining (2.6) and (2.8), we obtain the Poisson–Boltzmann equation for the slit
microchannel as follows:

d2ψ

dy2 = −e
ε

∑
i

zini∞ exp
(

−zieψ
kBT

)
. (2.9)

Since it is difficult to analytically solve the full set of electrokinetic equations, three
main approximation methodologies have been developed over the years, which are
appropriate for low surface electric potential, weak field or flow and thin double layers,
respectively. For example, the thin-double-layer limit was employed by Yariv, Schnitzer
& Frankel (2011), Schnitzer, Frankel & Yariv (2012) and Schnitzer & Yariv (2016) to
investigate streaming potential phenomena. However, this approximation cannot be applied
to nanochannels where the EDL thickness is comparable to the size of the channel. In this
study, we employed the low-surface-potential assumption, i.e. |zieψ/kBT| < 1, so that the
Debye–Hückel approximation can be applied to (2.9) to obtain the following equation (see
Masliyah & Bhattacharjee 2006):

d2ψ

dy2 = κ2ψ, (2.10a)

where

κ2 = e2

εkBT

∑
i

ni∞z2
i . (2.10b)

The Debye length is 1/κ , which characterises the EDL thickness (typically ≈ 10 nm).
Equation (2.10a) is the linearised version of the Poisson–Boltzmann equation and gives
a satisfactory EDL potential profile (even when linearisation is unjustifiable).
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With the above basic geometry, the EDL potential varies only along the y axis, and the
appropriate boundary conditions are

ψ = ζ, at y = ±h, (2.10c)

where ζ is the zeta potential at the walls. Thus, the solution to (2.10a) subject to the
conditions in (2.10c) is given as follows:

ψ( y) = ζ
cosh(κy)
cosh(κh)

, −h ≤ y ≤ h. (2.11)

To determine the streaming potential field in (2.4), the velocity field and the condition
of electroneutral current are required. The expression of the streaming potential field and
its analysis are presented in § 2.3.

2.2. Fluid velocity and flow rate
For the velocity field, the laminar regime is achieved by applying a small driving (Wi< 1),
which corresponds to small amplitudes of the imposed pressure gradient (Casanellas &
Ortín 2011, 2012). Thus the flow is parallel to the walls and along the x direction. The
velocity is assumed to be V = (u(y, t), 0, 0) and the continuity equation is satisfied
automatically. The strain–stress relationship (1.1) of viscoelastic fluids is linear for this
unidirectional flow, and on substituting it into the Navier–Stokes equation, we obtain

ρ
∂u
∂t

= −∂p
∂x

+ ηs
∂2u
∂y2 +

N∑
k=1

∂τk

∂y
+ ρeEs,(

1 + λk
∂

∂t

)
τk = ηk

∂u
∂y
,

⎫⎪⎪⎬
⎪⎪⎭ (2.12a)

where τk is the xy component of T k and Es = −∂φs/∂x is the streaming potential field
along the x direction, which is considered to be uniform in the channel. Assuming
a harmonic pressure gradient, ∂p/∂x = cos(ωt)dp0/dx = Re(dp0/dx exp(iωt)) using
complex variables, where dp0/dx is the amplitude of the applied pressure gradient and
ω the frequency of oscillation. The velocity field, stress tensor and streaming potential
field can be written in complex forms as follows:

u( y, t) = Re(u0( y) eiωt), τk( y, t) = Re(τ 0
k ( y) eiωt), Es(t) = Re(E0 eiωt),

(2.12b)
where Re denotes the real part of a complex number. Substituting these expressions into
(2.12a), we obtain

iρωu0 = −dp0

dx
+ ηs

d2u0

dy2 +
N∑

k=1

dτ 0
k

dy
+ ρeE0,

(1 + iωλk)τ
0
k = ηk

du0

dy
.

⎫⎪⎪⎬
⎪⎪⎭ (2.13)

Introducing the following dimensionless groups:

Y = y
h
, Ψ = ψ

ζ
, X = ηs

η
, ξk = ηk

η
, ω̄ = ωλmax, K = κh,

Ē0 = E0

Em
, ū0 = u0

um
, with um = −h2

η

dp0

dx
and Em = − h2

εζ

dp0

dx
,

⎫⎪⎪⎬
⎪⎪⎭ (2.14)

919 A20-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.380


Electrokinetic oscillatory flow and energy conversion

and eliminating τ 0
k from (2.13), we obtain

d2ū0

dY2 − iω̄
De

(
X +

N∑
k=1

ξk

1 + iωλk

)−1

ū0

=
(

X +
N∑

k=1

ξk

1 + iωλk

)−1 [
−1 + K2Ē0

cosh(KY)
cosh(K)

]
. (2.15)

Here, ρe = −εκ2ψ is used, ω̄ is the non-dimensional frequency, K the inverse of the
normalised EDL thickness and De the Deborah number defined in (1.3). Furthermore,
by defining the dimensionless parameter

α =
√

− iω̄
De

(
X +

N∑
k=1

ξk

1 + iωλk

)−1/2

, (2.16)

the solution to (2.15) subject to the no-slip conditions at walls can be expressed as follows:

ū0(Y) = De
iω̄

[
1 − cos(αY)

cos(α)

]
− α2DeK2Ē0

iω̄(K2 + α2)

[
cosh(KY)
cosh(K)

− cos(αY)
cos(α)

]
Δ= ūP0(Y)+ ūE0(Y) · Ē0. (2.17)

Equation (2.17) gives the complex amplitude of the axial velocity. The first term is the
liquid velocity due to the imposed pressure gradient and the second term represents the
additional convective transport of the fluid medium due to the induced streaming potential
field. Then, the complex amplitude of the dimensionless flow rate (per unit width of the
channel) scaled by hum is given as follows:

Q̄0 = 2
∫ 1

0
ū0(Y) dY = 2De

iω̄

[
1 − tan(α)

α

]
− 2α2DeK2Ē0

iω̄(K2 + α2)

[
tanh(K)

K
− tan(α)

α

]
Δ= Q̄P0 + Q̄E0. (2.18)

2.3. Streaming potential field and scaling laws
As stated in the Introduction section, when a flow is driven by a pressure gradient,
a streaming current and streaming potential can be established and pressure-to-voltage
energy conversion can be achieved. Using (2.3), the current density in the x direction can
be expressed as

ix = e
∑

i

ziji,x + σStern

h
Es = eu

∑
i

zini − e
∑

i

Dizi
∂ni

∂x
+ e2

kBT
Es
∑

i

z2
i Dini + σStern

h
Es.

(2.19)
An additional term (the last term), which accounts for the Stern layer conductance with a
surface conductivity σStern , is introduced into the traditional equation of current density
(Davidson & Xuan 2008b). The total current per unit width of the slit channel is given by

I = 2
∫ h

0
ix dy. (2.20)

For simplicity, we consider a symmetric electrolyte (z+ = −z− = z) with the same
ionic diffusion coefficients D. In the present flow system, it is assumed that the ionic
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concentration does not vary along the length of the channel. Consequently, ∂ni/∂x = 0
and the second term of (2.19) is eliminated. Thus, the current density reduces to

ix = zeu(n+ − n−)+ e2z2D
kBT

Es(n+ + n−)+ σStern

h
Es

= ρe u + σb cosh
(

zeψ
kBT

)
Es + σStern

h
Es, (2.21a)

where the Boltzmann distribution in (2.8) is employed, and the local (σ ) and bulk (σb)
conductivities of the fluid are expressed as follows:

σ = σb cosh
(

zeψ
kBT

)
and σb = 2e2z2n∞D

kBT
. (2.21b)

Note that the factor cosh(zeψ/kBT) reflects the influence of diffuse charge cloud on the
bulk conductivity.

Applying the Taylor series for the cosh term in (2.21b),

cosh
(

zeψ
kBT

)
= 1 + 1

2!

(
zeψ
kBT

)2

+ O(ψ4), (2.22)

we find that the local conductivity is a modification of O(ζ 2) in the case of bulk
conductivity because of the presence of the diffuse layer. Therefore, the effect of diffuse
charges on bulk conductivity can be ignored when assuming a low surface potential; then,
σ ≈ σb.

To evaluate the relative importance of Stern layer conductance and bulk conductance,
we introduce the Dukhin number, Du = σStern/hσb. From (2.21b), we have that Du =
σStern/hΛcb, where cb is the ionic concentration of the bulk fluid andΛ = 2e2z2NAD/kBT
is the molar conductivity with NA the Avogadro number. To examine quantitatively the
effect of Stern layer conductance, we consider a KCl solution with cb = 10−4 M as an
example. The ionic diffusion coefficient D is approximately equal to 1.9 × 10−9 m2 s−1

(Daiguji et al. 2004). The molar conductivity Λ is calculated to be 0.0144 S m2 mol−1

at temperature T = 298 K (Davidson & Xuan 2008b). The half-height of the channel
h = 1 μm. The value of σStern ranges from 10 to 30 pS, according to the experiment of
van der Heyden et al. (2007). Thus, the Dukhin number is between 0.01 and 0.03. This
indicates that the Stern layer conductance has an important effect only at very small
channel size and extremely low ionic concentration (< 10−4 M). Here, we ignore the
influence of the Stern layer conductance.

Integrating the current density over the channel section in (2.20) and applying the
complex forms in (2.12b), the complex amplitude of the total ionic current can be obtained:

I0 = 2
∫ h

0
ρeu0 dy + 2hσbE0. (2.23a)

From this, the amplitudes of the streaming and conduction currents through the channel
can be obtained, respectively, as

Is0 = 2
∫ h

0
ρeu0 dy and Ic0 = 2hσbE0. (2.23b)

Using the condition of electroneutral current (Is0 + Ic0 = 0), dimensionless variables
(2.14) and velocity field (2.17), the amplitude of the dimensionless streaming potential
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field can be expressed as

Ē0 =
∫ 1

0 Ψ (Y)ūP0(Y) dY

R − ∫ 1
0 Ψ (Y)ūE0(Y) dY

, (2.24)

where

R = ηD
εζ 2 (2.25)

is the inverse ionic Péclet number, characterising the ratio of the conduction current to
the streaming current (Chakraborty & Das 2008; Chanda et al. 2014). Using the analytical
solutions of the velocity and the EDL potential Ψ , we obtain∫ 1

0
Ψ (Y)ūP0(Y) dY = αDe

iω̄(K2 + α2)

[α
K

tanh(K)− tan(α)
]

(2.26a)

and ∫ 1

0
Ψ (Y)ūE0(Y) dY

= − α2K2De
iω̄(K2 + α2)

[
2K + sinh(2K)

4Kcosh2(K)
− K sinh(K) cos(α)+ α cosh(K) sin(α)

(K2 + α2) cosh(K) cos(α)

]
.

(2.26b)

For viscous fluids (e.g. Newtonian fluids), the effect of the induced streaming potential
on the velocity is negligible compared with that of the pressure gradient (i.e. ū0 ≈ ūP0)
(see figure 5 for low De). Thus, the streaming potential field in (2.24) can be approximated
as

Ē0 ≈ 1
R

∫ 1

0
Ψ (Y)ūP0(Y) dY. (2.27)

From the definition of R, it can be deduced that Ē0 is proportional to ζ 2. This indicates
that the contribution of streaming potential to the velocity is of O(ζ 2) in (2.17). However,
if fluid elasticity dominates the flow behaviour, resonances may occur and result in a very
large increase in the amplitudes of the flow rate and streaming potential (figures 6 and 7).
At this time, the effect of the streaming potential field on the velocity is significant and
cannot be ignored (see figure 5 for high De). As a result, the approximation (2.27) and
thereby the relationship Ē0 ∝ R−1 or Ē0 ∝ ζ 2 will no longer hold.

Figure 2 shows the variations of the maximum amplitude of streaming potential field,
defined by Ē0,max = max|Ē0(ω)|, with the ionic Péclet number R−1 at different De. Here,
the maximum amplitude occurs at the first-order resonance frequency (see figures 7a
and 8b). At other frequencies, similar behaviour can also be observed. For comparison,
both (2.24) and (2.27) are employed in figure 2. Using the physical properties D =
1.9 × 10−9 m2 s−1, η = 1.0 × 10−3 kg m−1 s−1, ε = 7 × 10−10 C V−1 m−1 and ζ = 20
mV, we obtain R ≈ 7. To extend the analysis, R is considered to range from 0.5 to 10
(equivalently, R−1 from 0.1 to 2). We observe that when the fluid viscosity dominates the
flow behaviour (represented by low De), the variations of the streaming potential given by
the two equations (2.24) and (2.27) are consistent, and a linear relationship, Ē0,max ∝ R−1,
can be invoked as expected. However, the approximation (2.27) gradually fails with
increasing De due to the occurrence of elastic resonance and significant deviations from
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Figure 2. Scaling relations between the dimensionless streaming potential field and the ionic Péclet number
R−1 at different Deborah number, where Ē0,max = max|Ē0(ω)| with Ē0 provided by (2.24) (solid line) and the
approximation (2.27) (dashed line). (a) K = 15, X = 0; (b) K = 5, X = 0.1.
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ax
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Figure 3. Scaling relations between the dimensionless streaming potential field and EDL thickness K−1

at different Deborah number, where Ē0,max = max|Ē0(ω)| with Ē0 provided by (2.24) (solid line) and the
approximation (2.27) (dashed line). (a) R = 5, X = 0; (b) R = 1, X = 0.1.

the linear relationship can be observed in the streaming potential field (the resonance
behaviour is analysed in detail in § 3).

In figure 3, we show the scaling relations between the streaming potential field Ē0,max
and the dimensionless EDL thickness K−1 at different De. For viscous fluids (low De),
there exist two distinct scaling regimes. For K−1 < 1, Ē0,max increases with K−1 at
Ē0,max ∼ K−2, which is termed the quadratic regime by Das et al. (2013). For K−1 > 1, i.e.
large EDL thickness relative to the channel size, Ē0,max is saturated and shows no further
variation with K−1. Hence, this regime is called the saturation regime (Das et al. 2013).
When the elasticity of fluid is dominant (represented by high De, e.g. De = 10), a new
regime, in addition to the above two, is observed. This regime occurs near K−1 ≈ 1 (the
onset of EDL overlap) and does not appear in the case of viscous fluids (see the dashed
line in figure 3). In this third regime, Ē0,max increases with K−1 at Ē0,max ∼ K−1. It is
called the linear regime.
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Electrokinetic oscillatory flow and energy conversion

2.4. Electrokinetic energy conversion
Now, consider such a fluid system connected to an external load (with resistance RL). Due
to the establishment of streaming current and potential, the mechanical energy is converted
into electric energy through the external load. This fluid system can be treated as a battery
with an ideal current source plus an internal resistance Rch, and an equivalent circuit has
been presented (see, e.g. van der Heyden et al. 2007). The streaming current (Is) is the
current that passes through the circuit when the external resistance RL is zero, i.e. Is can be
viewed as the short-circuit current in a circuit where the voltage�φ is zero. The streaming
potential (�φs) is equal to the voltage on RL when the value of RL is infinite, i.e. �φs can
be viewed as an open-circuit voltage in a circuit where the current I is zero. For a circuit,
the instantaneous output power Wout = I�φ, where I is the current through RL and �φ is
the voltage across RL. Maximum power transfer occurs at RL = Rch (Olthuis et al. 2005;
van der Heyden et al. 2007). In that case, the current through the external load is half
of the streaming current, i.e. I = Is/2, and the voltage across RL is half of the streaming
potential, i.e. �φ = �φs/2. Note that in our system, the current and voltage vary with
time. The time-averaged maximum output power over a cycle can be expressed as follows:

Wout,max = 1
4
〈IsΔφs〉 = ω

8π

∫ 2π/ω

0
Is(t)Δφs(t) dt. (2.28)

With the complex forms Is(t) = Re(Is0 eiωt) = (Is0 eiωt + I∗
s0 e−iωt)/2 and Es(t) =

Re(E0 eiωt) = (E0 eiωt + E∗
0 e−iωt)/2 (* indicating complex conjugate), the expression

�φs(t) = −lEs(t) with length l of the channel and Is0 = −Ic0 = −2hσbE0, we obtain

Wout,max = 1
4 hlσb|E0|2. (2.29)

With the flow rate Q = Re(Q0 eiωt) through the channel under a pressure difference
�p = l∂p/∂x = lRe(dp0/dx exp(iωt)), the time-averaged hydrodynamic power is given
by

Win = 〈Q(−Δp)〉 = − l
2

dp0

dx
Re(Q0). (2.30)

Note that the negative sign in the above expression is because the direction of fluid flow
is consistent with that of pressure reduction. Furthermore, from (2.29), (2.30) and the
non-dimensional forms (2.14) and (2.18), the efficiency of the maximum power transfer
can be calculated:

ξ = Wout,max

Win
= RK2|Ē0|2

2Re(Q̄0)
. (2.31a)

It is worth noting that maximum EKEC efficiency has been defined and calculated in
different ways in the literature. For example, Xuan & Li (2006) calculated the maximum
conversion efficiency based on thermodynamics, whereas van der Heyden et al. (2006)
calculated it based on the circuit. A few researchers (Chanda et al. 2014; Buren et al.
2018; Koranlou, Ashrafizadeh & Sadeghi 2019) defined the efficiency ξ in terms of a
purely pressure-driven volume flow rate without the retardation induced by the back
electro-osmotic transport.

In our recent study (Ding et al. 2019), we demonstrated the equivalence of
thermodynamic and electric circuit analyses for calculating the maximum conversion
efficiency in the linear response regime. Here, the calculation of maximum EKEC
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Figure 4. EKEC efficiencies calculated by different definitions for Maxwell fluids (X = 0) at different De,
where (a) the definition (2.31a) is used and (b) the definition (2.31b) with purely pressure-driven volume flow
rate is used. Note that the meaning of the abscissa 2h/λ0 can be found in § 3.

efficiency based on the circuit is adopted. For comparison, we also express the maximum
EKEC efficiency based on the purely pressure-driven flow rate as follows:

ξ ′ = 1
4

〈IsΔφs〉
〈Qp(−Δp)〉 = RK2|Ē0|2

2Re(Q̄p0)
, (2.31b)

where

Q̄p0 = 2De
iω̄

[
1 − tan(α)

α

]
(2.32)

is the purely pressure-driven dimensionless flow rate (see also (2.18)).
For viscous fluids, because the effect of induced streaming potential on velocity is

negligible compared with the effect of pressure gradient, Q̄0 ≈ Q̄p0. Thus, the efficiencies
calculated using (2.31a) and (2.31b) are approximately equal (Olthuis et al. 2005; Berli
2010; Ding et al. 2019). For viscoelastic fluids with resonance behaviour, the effect of
streaming potential on the velocity cannot be ignored, and these two different definitions of
EKEC efficiency result in significant differences. In particular, when (2.31b) is employed
to calculate the EKEC efficiency, it predicts (incorrectly) maximum efficiency above
100 % (see figure 4), which violates the law of thermodynamics. This implies that the
conversion efficiency defined by the purely pressure-driven flow rate does not apply to this
condition.

3. Resonance phenomenon in electrokinetic transport

Bandopadhyay & Chakraborty (2012) predicted that EKEC efficiency may become greatly
amplified due to the resonance phenomenon of viscoelastic fluids when subjected to a
periodic external force. However, their model is valid only in a narrow range of parameters
(e.g. low shear rates and frequencies), and the effects of resonance on the flow of liquid
and streaming potential field in microfluidic channels are still unclear to a large extent.
Using a viscoelastic fluid model that accounts for the effects of Newtonian solvent and
multiple relaxation times, we address this issue at medium and high frequencies, which is
especially important because the resonance phenomena usually occur in this range. It is
worth noting that a low shear rate is still assumed in our situation so that the problem is in
the linear regime, and thus it can be treated analytically.
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Electrokinetic oscillatory flow and energy conversion

The laminar oscillatory flows of single-mode Maxwell and Oldroyd-B fluids between
two infinitely large parallel plates were analysed by Casanellas & Ortín (2011) from
the perspective of viscoelastic shear waves. This perspective gives new physical insight,
which is useful in understanding the mechanism of resonance phenomena. We employ
this method to explore the resonance behaviour in periodic viscoelastic electrokinetic
flows, and further extend it to the case of multimode oscillatory flows. First, we prove that
the time-periodic pressure-driven electrokinetic flow is equivalent to the flow that results
from synchronous oscillatory sidewalls with the same frequency, which is observed in
the reference frame of the sidewalls. This proof is given in Appendix A. Note that this
equivalence holds only in the linear regime (see Appendix A). Then, the flow can be
regarded as the result of interference in the time and space of the shear waves generated
by the oscillatory sidewalls. The dimensionless parameter α defined in (2.16) plays a key
role in the analysis. Obviously, α is a complex number. It can be rewritten as

α = Re(α)+ i · Im(α) = 2πh
λ0

− i
h
x0
, (3.1)

where λ0 and x0 are the wavelength and damping length, respectively, of the transverse
wave and are given by

λ0

2π
=
√

2h2De
ω̄

√√√√ Ω2
1 +Ω2

2

Ω2 +
√
Ω2

1 +Ω2
2

, x0 =
√

2h2De
ω̄

√√√√ Ω2
1 +Ω2

2

−Ω2 +
√
Ω2

1 +Ω2
2

,

(3.2a,b)
where

Ω1 = X +
N∑

k=1

ξk

1 + (ωλk)
2 and Ω2 =

N∑
k=1

ωλkξk

1 + (ωλk)
2 . (3.3a,b)

The viscosity ratios X and ξk satisfy the relation X +∑N
k=1 ξk = 1. Furthermore, we obtain

that ∣∣∣∣Re(α)
Im(α)

∣∣∣∣ = 2πx0

λ0
= Ω2

Ω1
+
√

1 +
(
Ω2

Ω1

)2

. (3.4)

The ratio 2πx0/λ0 depends on the value of Ω2/Ω1 and is larger than unity, except for
Newtonian fluids (X = 1), where ξk = 0, and thus Ω2/Ω1 = 0. In particular, for Maxwell
fluids (X = 0, N = 1),∣∣∣∣Re(α)

Im(α)

∣∣∣∣ = 2πx0

λ0
= ω̄ +

√
1 + ω̄2 � 1 for large ω̄. (3.5)

The fact that this ratio is larger than unity is important and reveals that viscoelastic shear
waves are always underdamped. In contrast, transverse oscillations of Newtonian fluids are
overdamped, thereby making resonance impossible.

Now, we are concerned with the situation of resonance. From the expression of velocity
(2.17), we deduce that resonance occurs at cos(α) = 0. From the Euler formula,

cos(α) = eIm(α) + e−Im(α)

2
cos(Re(α))+ i

e−Im(α) − eIm(α)

2
sin(Re(α)), (3.6)

so

cos(α) = 0 ⇔ Im(α) = 0 and Re(α) = nπ − π

2
, n = 1, 2, . . . (3.7)
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Figure 5. Normalised axial velocity profiles of Maxwell fluids (X = 0) across the channel at different De, with
(solid line) and without (dashed line) the streaming potential effect. (a) 2h/λ0 = 5/2, ωt = 0; (b) 2h/λ0 = 5/2,
ωt =π/2; (c) 2h/λ0 = 3, ωt = 0; and (d) 2h/λ0 = 3, ωt =π/2.

However, Im(α) = −h/x0 = 0 is an unrealistic requirement, so we resort to a weaker
version:

cos(α) ≈ 0 ⇔ |Im(α)| � 1 and Re(α) = nπ − π

2
, n = 1, 2, . . . (3.8)

Next, we analyse the meanings of the two conditions in (3.8) based on viscoelastic shear
waves. Here, we introduce a viscoelastic Stokes parameter:

Λve = h
x0

= |Im(α)|, (3.9)

as defined in Casanellas & Ortín (2011). This parameter Λve represents the ratio of the
transverse size of a system to the extension of the viscoelastic shear waves generated
either by the oscillatory pressure gradient or by the moving sidewalls. ‘Narrow’ systems
correspond to Λve< 1, where the viscoelastic shear waves extend through the whole
system, and ‘wide’ systems correspond to Λve> 1, where the shear waves are attenuated
at the centre of the channel. For ‘narrow’ systems, the viscoelastic shear waves generated
at both plates are superposed, and they originate an interference pattern inside the fluid
domain. This leads to resonance behaviour with a very large increase in the velocity
amplitude at particular frequencies (see figure 5). In contrast, for ‘wide’ systems, the
interaction of the shear waves is weak, viscous behaviour manifests and no resonance
occurs. Thus, one of the conditions in (3.8) for resonance (i.e. |Im(α)|< 1) implies a
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Electrokinetic oscillatory flow and energy conversion

‘narrow’ system from the perspective of viscoelastic shear waves. The other condition
for resonance reads

2h
λ0

= n − 1
2
, n = 1, 2, . . . , (3.10)

which implies that the size of the channel 2h is a half-integer multiple of the wavelength
λ0. Equation (3.10) indicates the constructive interference of the shear waves. The number
n can be called the resonance order. In contrast, the condition

2h
λ0

= n, n = 1, 2, . . . (3.11)

implies the destructive interference of the shear waves. Further illustrations for the
constructive and destructive interferences are given in Appendix A.

From these conditions, it could be readily found that the resonance behaviour is closely
related to the set-up dimensions, fluid parameters and applied driving frequency.

3.1. Single-mode Maxwell and Oldroyd-B fluids
To facilitate the analysis of the role of elasticity, we first investigate the resonance
phenomenon in electrokinetic transport based on single-mode Maxwell and Oldroyd-B
fluids. Such analyses are useful in the investigation of multimode viscoelastic fluids.

In these special cases, the wavelength and damping length of the transverse waves
reduce to

λ0

2π
=
√

2h2De
ω̄

√
1 + X2ω̄2

(1 − X)ω̄ +
√
(1 + ω̄2)(1 + X2ω̄2)

(3.12)

and

x0 =
√

2h2De
ω̄

√
1 + X2ω̄2

(X − 1)ω̄ +
√
(1 + ω̄2)(1 + X2ω̄2)

, (3.13)

which reproduce the results of Casanellas & Ortín (2011) for Oldroyd-B fluids (note
the differences in the definitions and symbols of the dimensionless variables used). The
viscoelastic Stokes parameter can be rewritten in terms of De, non-dimensional frequency
ω̄ and solvent viscosity fraction X as follows:

Λve = 1√
De

f (ω̄,X), (3.14)

with

f (ω̄,X) =
√
(X − 1)ω̄2 + ω̄

√
(1 + ω̄2)(1 + X2ω̄2)

2(1 + X2ω̄2)
. (3.15)

Particularly, for Maxwell fluids (X = 0), we have

| f (ω̄,X = 0)| =
√
ω̄
√
(1 + ω̄2)− ω̄2

2
=
√

ω̄

2(
√
(1 + ω̄2)+ ω̄)

≤ 1
2

(3.16)

and
f (ω̄,X = 0) ≈ 1

2 as ω̄ � 1. (3.17)

As described by the Maxwell model, viscoelastic fluids have different flow regimes
depending on the value of De (de Haro, del Río & Whitaker 1996; del Río et al. 1998).
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A critical value, Dec = 1/11.64, which determines whether a dissipative behaviour prevails
or a resonance appears at a given frequency, was obtained by de Haro et al. (1996)
through numerical calculations for permeability in porous media. In this paper, we derive a
different critical value of De from a physical point of view within parallel plate geometry.
Based on the viscoelastic Stokes parameter (3.14) and the accurate bound (3.16), we deduce
that

Λve = h
x0
< 1 ⇔ De >

1
4

(3.18)

for any ω̄ in the case of Maxwell fluids. Thus, the critical Deborah number can be
obtained as Dec = 1/4. For small De (De<Dec), the damping length is small relative to
the half-height of the channel and the conventional viscous effect dominates. However,
beyond this critical value, the damping length is large relative to the half-height and the
fluid system exhibits viscoelastic behaviour. These two flow regimes correspond to ‘wide’
and ‘narrow’ systems, respectively.

To gain some insight into the importance of the above analysis, we present some
numerical calculations in the following illustrations, where the typical values of the
parameters K = 15 and R = 5 have been adopted for microchannels (see (2.25) for the
definition of R). The profiles of normalised axial velocity ū for Maxwell fluids at different
De, with and without the streaming potential effect, are shown in figure 5. In figures 5(a)
and 5(b), we show the velocity profiles that satisfy the third-order resonance condition (i.e.
2h/λ0 = 5/2) at two time phases, ωt = 0 and ωt = π/2, respectively. Figures 5(c) and 5(d)
correspond to the destructive interference condition, 2h/λ0 = 3, at the same time phases
(ωt = 0 and ωt = π/2, respectively). It can be found that for De>Dec, the elastic effect
manifests and the oscillating profile is maintained from plate to plate, because of the large
damping length. For larger De, the elastic effect is more significant. Furthermore, when
the constructive interference condition (3.10) is satisfied simultaneously, resonance occurs
and the amplitude of the velocity is greatly amplified. At resonance, the velocity is in phase
with the harmonic pressure gradient, i.e. the velocity is maximum at ωt = 0 and minimum
at ωt = π/2 (figure 5a,b). Conversely, outside the resonance (figure 5c,d), the velocity
is nearly in quadrature with the pressure gradient and the behaviour is reversed, i.e. the
velocity is maximum at ωt = π/2 and minimum at ωt = 0. In addition, at resonances, the
presence of the streaming potential tends to decrease the magnitude of velocity, especially
for large De. For example, the velocity is reduced by about 40 % at De = 10 and ωt = 0
(see figure 5a).

Figure 6 shows variations of the amplitude of the normalised flow rate at different
De, where two variables are used as the horizontal axes. The appearance of elastic
resonance behaviour depends on De. When De>Dec, resonance may occur at some
special frequencies or values of 2h/λ0 (see (3.10)), whereas, for De<Dec, resonance does
not occur and the flow rate amplitude drops rapidly to zero. As reported by Casanellas
& Ortín (2011), the advantage of the choice of 2h/λ0 instead of the non-dimensional
frequency ω̄, for the horizontal axis, is to make the location of the resonant peaks universal
(independent of the fluid parameters and set-up dimensions). The increased frequency
ω̄ corresponds to the reduced wavelength λ0 and, thus, the increased ratio 2h/λ0. In the
following illustrations, we adopt 2h/λ0 instead of the frequency as the horizontal axis,
unless otherwise specified. It is observed that the resonance greatly enhances flow rate
(several orders of magnitude higher than that of Newtonian fluids). The occurrence of
resonance and its locations can be characterised under the conditions given in (3.18)
and (3.10), respectively, regardless of whether the streaming potential effect is included
(figure 6b). Besides, the streaming potential effect tends to suppress the resonance
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Newtonian

(a) (b)

2h/λ0

Figure 6. Variations of the non-dimensional flow rate of Maxwell fluids at different De, where two variables
are used as the horizontal axis: (a) non-dimensional frequency ω̄; (b) 2h/λ0, with (solid line) and without
(dashed line) the streaming potential effect. For comparison, the flow rate for Newtonian fluids (De = 0) is also
plotted in (b).
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(a) (b)
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De = 0.25

De = 0.1

Newtonian

ξ

Figure 7. Resonance behaviours of (a) non-dimensional streaming potential and (b) EKEC efficiency ξ with
2h/λ0 for Maxwell fluids at different De.

behaviour and makes the flow rate vary smoothly with resonances, especially for large
De.

Figure 7(a) shows the variations of the magnitude of the normalised streaming potential
with 2h/λ0 at different De. The resonance behaviour of the streaming potential can be
observed, and it is determined under the conditions in (3.10) and (3.18). At resonances, the
amplitude of the streaming potential is greatly amplified, and it is further enhanced as De
increases. This explains why the influence of the streaming potential is more pronounced
at resonances, as shown in figure 6(b). The EKEC efficiency ξ for Maxwell fluids as a
function of 2h/λ0 is depicted in figure 7(b). The viscoelastic behaviour of fluids improves
the EKEC efficiency. The resonance further amplifies the efficiency by several orders of
magnitude compared with that of Newtonian fluids. Here, the maximum efficiency is up
to 19 % in the range of the parameters. As shown in figures 6 and 7, as 2h/λ0 (or the
frequency) increases, the peak values of the flow rate and streaming potential decrease.
The maximum peak appears at the first-order resonance. However, this is not true for the
EKEC efficiency; as the frequency increases, the peak values of the EKEC efficiency
gradually increase and eventually tend to saturation (see figure 7b).
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X = 0.1
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2h/λ0

Figure 8. Variations of (a) non-dimensional flow rate, (b) non-dimensional streaming potential and (c) EKEC
efficiency ξ with the ratio 2h/λ0 for Oldroyd-B fluid (De = 10). Different lines correspond to different values
of the viscosity ratio X.
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2h/λ0 2h/λ0
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De = 0.25
De = 0.1

Figure 9. Variations of the non-dimensional flow rate for (a) different N (De = 100) and (b) different De
(N = 10). Here the solvent viscosity effect is excluded (X = 0).

Figures 5–7 show the elastic resonance phenomena in the electrokinetic flow of Maxwell
fluids (X = 0) driven by a periodic pressure gradient for different De. Next, we investigate
the effect of solvent viscosity using the Oldroyd-B fluids model with positive viscosity
ratio X for a fixed De (figure 8). Note that the critical De (Dec = 1/4) derived based on
the Maxwell fluids model is still applicable to the case of Oldroyd-B fluids. As shown

919 A20-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.380


Electrokinetic oscillatory flow and energy conversion

in figure 8, the contribution of the Newtonian solvent tends to suppress the resonance
behaviours of the flow rate and streaming potential in the electrokinetic flow. This is a
result of viscous damping, and it has been observed in different contexts (Andrienko et al.
2000; Casanellas & Ortín 2011).

In particular, the high-order resonance phenomena are extremely sensitive to the effect
of solvent viscosity. For a small ratio X of Newtonian solvent viscosity to the total viscosity
of the solution (e.g. X = 0.01), the peaks corresponding to the high-order resonances are
dramatically reduced and even disappear completely. Note that high-order resonances
occur at high frequencies for fixed channel dimensions and fluid properties. This shows
that the effect of solvent viscosity is more important in the high-frequency regime.
Besides, the relatively large solvent viscosity effect (e.g. X = 0.5) results in a shift in the
position of the first-order resonance to a lower frequency relative to the case of X = 0, as
given in (3.10). Furthermore, EKEC efficiency is dramatically reduced due to the solvent
viscosity effect. For example, the maximum efficiency drops rapidly from 19 % to 6 %
when X increases from 0 to 0.01 at a fixed De of 10 (figure 8c). In electrokinetic flows
of actual viscoelastic fluids (e.g. polymer solutions), the effect of the Newtonian solvent
is inevitable (Yesilata et al. 2006). Hence, in practice, it is almost impossible to achieve
the high efficiency predicted by Bandopadhyay & Chakraborty (2012) and Nguyen et al.
(2017), although utilising the resonance behaviour of viscoelastic fluids can improve the
energy conversion efficiency to some extent.

3.2. Multimode viscoelastic fluids
As explained in the Introduction section, using a multimode model allows a more
realistic description of fluid memory by a spectrum of relaxation times. We consider
the electrokinetic transport of multimode viscoelastic fluids with the constitutive equation
(1.1). This model contains the constants λk and ηk (k = 1, . . . , N). We adopt the convention
λ1 > λ2 > λ3 . . ., and to reduce the total number of parameters, we employ the following
expressions to generate the relaxation time and viscosity of each mode (Bird et al. 1987):

λk = λ

kβ
, ηk = η0

λk∑
k
λk
, (3.19a,b)

where η0 is the zero-shear-rate viscosity, λ a time constant and β a dimensionless quantity.
In our computations, we adopt β = 2, which approximates the value obtained from the
Rouse molecular theory to dilute polymer solutions (Prost-Domasky & Khomami 1996).
Note that in this model, ηp = ∑

ηk = η0, λk decreases as k increases and the largest
relaxation time λmax = λ.

Figure 9(a) shows the variations in the magnitude of the non-dimensional flow rate
with 2h/λ0 for various N values. The peak values of resonances decrease with an increase
in N. This can be attributed to the emergence of a relatively smaller relaxation time,
and a role similar to that of the Newtonian solvent component is played by the smallest
relaxation time for large N. As N increases, the peak values of high-order resonances
dramatically reduce, and even disappear, whereas the first-order resonance behaviour
can still be observed for De>Dec, although its peak value also decreases. However,
unlike the solvent viscosity effect that causes a deviation in the resonance location, in
the multimode case, the position of resonances is well characterised by condition (3.10),
and no significant deviation occurs (see also figure 10). The dependence of the resonance
behaviour of flow rate on De is displayed in figure 9(b). We observe that Dec = 1/4 derived
from the single-mode Maxwell fluid model is still applicable to the multimode case.
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Figure 10. Variations of the non-dimensional streaming potential with 2h/λ0 for different parameters:
(a) De = 100, X = 0; (b) De = 100, X = 0.01; (c) N = 30, X = 0; and (d) N = 10, X = 0.

When De>Dec, resonance occurs, whereas for De<Dec, the resonance disappears and
the amplitude of the flow rate drops rapidly to zero with frequency.

The variations of the magnitude of the non-dimensional streaming potential and EKEC
efficiency with 2h/λ0 for different parameters N, De and X are depicted in figures 10 and
11, respectively. Multiple relaxation times suppress the elastic resonance behaviours of the
streaming potential and EKEC efficiency relative to those of single-mode Maxwell fluids.
Similar to the flow rate, the occurrence of resonance in the streaming potential field is
dominated by the critical Deborah number. When De<Dec, the resonance disappears and
the amplitude of streaming potential field drops to zero with frequency (see figures 10c
and 10d). This can be explained as follows: the largest relaxation time determines the
elastic nature of the fluid; thus, the Deborah number defined based on the largest relaxation
time can capture well the appearance of elastic resonance phenomena. However, in the
multimode case, the occurrence of resonance for efficiency is complex. It is dominated by
De and N. For small De or large N (e.g. N> 10 in figure 11), the resonance behaviour of
efficiency disappears.

4. Validity of the linear analysis

In this paper, we investigate the electrokinetic phenomena of viscoelastic fluids driven by a
periodic pressure gradient based on the multimode model, which includes the single-mode
Maxwell and Oldroyd-B constitutive equations as particular cases. We assumed that the
fluid is in laminar oscillatory flow so that the constitutive and motion equations of fluids
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Figure 11. Variations of EKEC efficiency ξ with 2h/λ0 for multimode viscoelastic fluids at different values of
N, X and De: (a) De = 10, X = 0; (b) De = 10, X = 0.01; and (c) N = 10, X = 0.01.

were reduced to the linear ones, and thus the fields of velocity and streaming potential
can be solved analytically. Generally, the instability and transition of viscoelastic flows
may occur in large-amplitude oscillatory shears, which depend on the geometry of the
channel, Wi and Re. In microscale flows, Re is usually small and can be ignored. It is the
Weissenberg number (Wi) that plays an important role in this basic geometry, and a critical
Weissenberg number (Wic) related to the stability can be introduced. Typically, Wic ∼ O(1)
(Torralba et al. 2007). For Wi<Wic, the fluid is expected to be in parallel shear flows with
straight streamlines. Above this threshold nonlinearities and elastic instabilities start to
become manifest. In this section, we investigate the validity of our linear analysis based
on this threshold.

According to the definition, we have

Wi = λmaxγ̇max = λmaxmax
{∣∣∣∣∂u
∂y

∣∣∣∣
}

= λmaxh
η

dp0

dx
max

{∣∣∣∣dū0

dY

∣∣∣∣
}
, (4.1)

where the local shear rate is computed by the velocity gradient and the dimensionless
variables have been used. The dimensionless velocity gradient is readily available by
differentiating (2.17). For simplicity, we first consider the case of single-mode fluids, i.e.
λmax = λ. Using the Cox–Merz rule, η � G0λ with a constant G0, an empirical relation
that allows the relating of complex properties obtained under oscillatory shear experiments
with steady shear flow measurements (Bird et al. 1987), we get

Wi = h
G0

dp0

dx

∥∥∥∥dū0

dY

∥∥∥∥ , (4.2)
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Figure 12. Variations of ‖dū0/dY‖ with 2h/λ0 for single-mode viscoelastic fluids at different values of X
(De = 100). Note that X = 1 corresponds to the Newtonian fluids case.

De X ‖dū0/dY‖ Y1 �p* (bar)

100 0 139.28 1 0.14
0.001 118.58 0.95 0.17
0.01 50.94 0.92 0.39
0.1 8.45 0.97 2.37
0.9 1.09 1 18.30

10 0 19.45 0.96 1.03
0.001 19.00 0.96 1.05
0.01 15.76 0.96 1.27
0.1 6.10 0.98 3.28
0.9 1.07 1 18.68

Table 1. Maximum values of the dimensionless velocity gradient at the first-order resonance for different De
and X. Here Y1 represents the position of the maximum value across the channel and �p* represents the
maximum pressure difference applied to the system, where Wic = 1 has been used. Note that for X = 0.9, the
fluid behaviour is close to that of Newtonian fluids.

with the norm ‖dū0/dY‖ = max{|dū0(Y)/dY|}. Figure 12 illustrates the variations of
‖dū0/dY‖ with 2h/λ0 for different values of X. Obviously, the peaks of the velocity
gradient (or shear rate) are experienced at resonances, and the largest peak is at
the first-order resonance. Furthermore, the largest values corresponding to different
parameters are given in table 1. The constant G0 depends on rheological properties of
fluids, and its value varies from 0.45 to 30.2 Pa according to small-amplitude oscillatory
shear experiments of wormlike micellar fluid samples (see Yesilata et al. 2006).

In order to keep the fluid response in the linear regime, the Weissenberg number is
required to be less than the corresponding critical value, as stated above. This implies that
the magnitude of the imposed pressure gradient must satisfy

dp0

dx
<

G0Wic
h

∥∥∥∥dū0

dY

∥∥∥∥
−1

. (4.3)
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Accordingly, the pressure difference through the channel is required to be less than �p∗,
where �p∗ = lG0Wic‖dū0/dY‖−1 with l being the length of the channel. For illustrative
computations, we consider the length (l) and height (h) of the channel to be 100 mm and
1 μm, respectively, and G0 = 20 Pa. The results are shown in table 1. It can be found
that the value of ‖dū0/dY‖ increases with De and decreases with X, which is consistent
with the effects of parameters De and X on the viscoelastic behaviour. The maximum
velocity gradient occurs near the walls (see table 1). The critical pressure difference,�p∗,
is small when the viscoelastic effect of fluids is significant (e.g. large De and very small
X). However, when the fluid behaviour is close to that of Newtonian fluids, this critical
value increases significantly.

Finally, we consider multimode viscoelastic fluids containing a spectrum of relaxation
times (N> 1), where the resonance behaviour is weakened compared with the single-mode
case (N = 1). The peaks of velocity gradient or shear rate at resonances are reduced.
Therefore, the critical pressure difference that determines the fluid in laminar oscillating
flows is increased compared with the single-mode case.

5. Summary and conclusions

In this study, we investigated the resonance phenomenon in the electrokinetic transport
of viscoelastic fluids that include the realistic effects of Newtonian solvents and multiple
relaxation times. Under some assumptions (e.g. low EDL potential and small Wi), the
governing equations of fluid velocity and electric potential were reduced to a set of
linear equations that can be solved analytically. In the analytical solutions, we introduced
a complex dimensionless parameter α, which plays a key role in the analysis. With
the equivalence between the time-periodic pressure-driven flow and the flow induced
by synchronous oscillatory sidewalls in the linear regime, the meaning of α can be
explained on the basis of viscoelastic shear waves generated by oscillatory sidewalls. Its
real part represents the ratio of the height of the channel to the wavelength of the shear
waves and the imaginary part represents the ratio of the half-height of the channel to
the damping length of the shear waves. By means of the imaginary part of α, one can
define a viscoelastic Stokes parameter that determines whether the waves generated at the
opposite walls interfere. If interference occurs, its form (i.e. constructive or destructive
interference) depends on the real part of α. When the conditions for constructive
interference are satisfied, resonance appears. Furthermore, the following conclusions can
be drawn.

First, based on the interaction of viscoelastic shear waves, we explained the mechanism
of the resonance and obtained a critical Deborah number, Dec = 1/4, which dominates
the occurrence of resonance and is universal for parallel plate geometries, regardless of
whether the streaming potential effect is included. The streaming potential effect does
not change the ‘locations’ of resonances but weakens their strength. Above this threshold
(Dec), resonances appear at particular frequencies and result in a dramatic amplification
of the amplitudes of the flow rate and streaming potential. Particularly, the resonances
further amplify the EKEC efficiency by several orders of magnitude, compared with
the case of Newtonian fluids. A maximum efficiency of approximately 19 % can be
achieved in the range of the parameters. Besides, the concept of resonance order was
introduced to accurately describe the behaviour of resonances corresponding to different
driving frequencies. The locations of resonant peaks with different orders are determined
universally by 2h/λ0.
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Second, the effect of solvent viscosity was examined using the Oldroyd-B fluid model.
The Newtonian solvent contribution tends to suppress the resonance behaviours of the flow
rate, streaming potential and EKEC efficiency in the electrokinetic flow. This is a result of
viscous damping. For example, the maximum efficiency drops rapidly from 19 % to 6 %
at an extremely small ratio of solvent to solution viscosity (X = 0.01). This implies that
the solvent viscosity effect greatly hinders the realisation of high efficiency predicted by
Bandopadhyay & Chakraborty (2012) and Nguyen et al. (2017). In addition, the high-order
resonance phenomena are extremely sensitive to the effect of solvent viscosity. For small
X, the peaks corresponding to the high-order resonance are dramatically reduced and even
disappear.

Third, we investigated the streaming potential and EKEC of viscoelastic fluids using
a multimode model that allows for a spectrum of relaxation times and viscosities.
Multiple relaxation times showed an inhibitory effect on the elastic resonance behaviours
for the streaming potential field and EKEC efficiency compared with those of the
single-mode model. Their peak values at resonances decrease with an increase in the
number of relaxation times in the spectrum, which is attributed to the emergence of
a relatively smaller relaxation time. For the streaming potential field and flow rate,
the occurrence of resonance behaviours is still dominated by Dec. The locations of
resonances are also well characterised by 2h/λ0. In the multimode case, the occurrence
of resonance behaviour for EKEC efficiency is complex. It is dominated by De and
the mode number N. For small De or large N, the resonance behaviour of efficiency
disappears.

Besides, we identified three distinct regimes for the scaling relations between the
dimensionless streaming potential field Ē0,max and EDL thickness K−1 at high De: when
the EDL thickness is much less than the half-height of the channel (e.g. K−1 < 0.1),
Ē0,max exhibits a quadratic growth trend with respect to K−1 (quadratic regime); when
the EDL thickness is comparable to the half-height of the channel (i.e. K−1 ≈ 1), Ē0,max

increases linearly with K−1 (linear regime); for larger overlapped values of the EDL
thickness (e.g. K−1 > 10), Ē0,max saturates and does not vary with K−1 (saturation
regime).

Finally, we examined the validity of the linear analysis, which requires small
driving amplitudes. Based on a threshold Weissenberg number, the maximum pressure
gradient (or pressure difference) applied to fluid systems can be estimated. If the
driving amplitudes exceed this maximum value, nonlinear rheology (e.g. shear-thinning
behaviour) becomes relevant and this demands further studies. Our future work will focus
on the nonlinear features of elastic resonances in the electrokinetic flow of viscoelastic
fluids.
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Appendix A. Equivalence between time-periodic pressure-driven electrokinetic flow
and flow induced by synchronous oscillatory sidewalls

The governing equations of fluid flow driven by a periodic pressure gradient are given by

ρ
∂V
∂t

+ ρ(V · ∇)V = −∇p + ∇ · T + F EK,

T = T s + T p,

T s = ηsγ̇ , T p =
N∑

k=1
T k,

T k + λk
∇

T k = ηkγ̇ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

subject to the no-slip boundary conditions

V |walls = 0. (A2)

Here F EK = ρeE represents electric field force and γ̇ = ∇V + (∇V )† is the rate-of-strain
tensor.

Under the assumption of unidirectional flow, (A1) and (A2) reduce to

ρ
∂u
∂t

= −∂p
∂x

+ ηs
∂2u
∂y2 +

N∑
k=1

∂τk

∂y
+ ρeEs,(

1 + λk
∂

∂t

)
τk = ηk

∂u
∂y
,

u|walls = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A3)

where u(y, t) is the axial velocity and ∂p/∂x = A cos(ωt) is the harmonic pressure gradient
independent of position. The nonlinear convection term in (A1) has vanished, and thus the
problem is in the linear regime.

On the other hand, consider the electrokinetic flow induced by the synchronous
oscillatory sidewalls with the same frequency. Under the same assumption of
unidirectional flow, the governing equations can be written as

ρ
∂ ũ
∂t

= ηs
∂2ũ
∂y2 +

N∑
k=1

∂τk

∂y
+ ρeEs,(

1 + λk
∂

∂t

)
τk = ηk

∂ ũ
∂y
,

ũ|walls = B sin(ωt),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A4)

where B is the amplitude.
After introducing the transformation ũ = u + B sin(ωt) with B = A/ρω, one can readily

find that the equations in (A4) are the same as those in (A3). This implies that the
time-periodic pressure-driven electrokinetic flow is equivalent to the flow that results from
the synchronous oscillatory sidewalls with the same frequency, observed in the reference
frame of the sidewalls. Here it is worth noting that the oscillating reference frame is
not an inertial frame of reference. For an incompressible flow in which the density ρ is
a constant, the inertial body force term ρωBcos(ωt), generated after the transformation
ũ = u + Bsin(ωt) in (A4), can be regarded as a pressure gradient ∂p/∂x = ρωBcos(ωt),
and thus can be included in the Navier–Stokes equations, thereby recovering exactly the
same formulation as in (A3) with fixed sidewalls. The above equivalence does not depend
on the geometry of channel section. However, we point out that if beyond the linear regime
(e.g. the convection term does not vanish), this equivalence will no longer hold.
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(a) (b)

2h/λ0 = 2
1

2
– 2h/λ0 = 2

Figure 13. Schematic diagram for the interference phenomenon of viscoelastic shear waves generated at
opposite walls. (a) The constructive interference of the shear waves where the size of the channel 2h is a
half-integer multiple of the wavelength λ0. (b) The destructive interference of the shear waves where the size
of the channel is an integer multiple of the wavelength. Here, the damping of shear waves is ignored and the
arrows indicate the direction of wave propagation.

Based on this equivalence, the flow can be viewed as the result of the interference in
time and space of the shear waves generated by the oscillatory sidewalls. In figure 13, we
show a schematic diagram for the interference phenomenon of viscoelastic shear waves
generated at opposite walls. Here, the damping of viscoelastic shear waves is ignored and
we focus on the interference behaviour.
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