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We theoretically and experimentally investigate the mechanism underlying the generation
of upstream-propagating waves induced by a steady current over a horizontal bottom
with a patch of sinusoidal ripples. By considering the triad resonant wave–ripple
interactions involving two unsteady wave components (which have the same frequency
but different wavenumbers) and one bottom ripple component in the presence of a steady
uniform current, we derive the general condition under which unsteady upstream- and/or
downstream-propagating waves can be induced. The frequency and wavenumbers of
the induced propagating waves are given by the triad resonance condition in terms of
current speed, water depth and bottom ripple wavenumber. By means of a multiple-scale
perturbation analysis, we obtain the nonlinear amplitude evolution equations governing
the spatio-temporal evolution of resonance-generated waves. Based on these equations,
we find that the amplitude of the generated upstream-propagating waves is dramatically
amplified when the associated triad resonance occurs in the neighbourhood of the critical
current speed/frequency (corresponding to zero group velocity of unsteady waves in the
presence of a current). A series of laboratory experiments in a long wave flume with
wide ranges of current speeds and water depths are conducted to verify the theory.
The experiments confirm the observation of the phenomenon of upstream-propagating
wave generation in a steady flow over a rippled bottom. In particular, the experimental
measurements of the kinematics of upstream-propagating waves as well as the critical flow
condition for the observation of such wave generation compare well with the theoretical
prediction.
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1. Introduction

Understanding the characteristic behaviours of open channel flow over a rippled bottom
is a classical hydrodynamic problem. There has been a great deal of investigation of this
fundamental problem owing to the close relevance to the modelling and prediction of flow
dynamics and bottom morphological evolution in estuarine and near-shore regions. An
early study treated the relatively simple case of steady uniform flow over an infinitely
extended horizontal sinusoidal wavy bottom (Lamb 1932). Under the assumption of
potential flow, the first-order (in the wave steepness) solution of the steady free-surface
profile (also known as stationary waves) is well known. The solution contains a singularity
at which the steady wave amplitude becomes unbounded. The singularity corresponds
to the resonance flow speed that is equal to the phase speed of the propagating wave
with the same wavelength as the bottom ripple. The solution has been validated by
flume experiments for supercritical flows (Kennedy 1963). The inclusion of up to the
third-order wave–ripple interactions removes the singularity and yields a regularized
bounded nonlinear solution of steady wave profile in the neighbourhood of the resonance
flow speed (Mei 1969).

In addition to the stationary waves, Binnie (1960) observed, in flume experiments, the
presence of unsteady waves when a steady current passes through a channel with periodic
uneven sidewalls. To understand this phenomenon, interest then shifted to the fundamental
instability problem of stationary gravity waves associated with steady flow over a wavy
bottom (or sidewalls). Based on a linear stability analysis, Yih (1976) found that the
stationary wave is unstable to a pair of small downstream-propagating wave disturbances
of the same frequency for any bottom wavenumber kb if the Froude number of the flow
Fr ≡ U/(gh)1/2 > 1, where U represents the constant current speed, h the mean water
depth and g the gravitational acceleration. If Fr � 1, the instability is obtained only for
kb � kbc, where the cutoff wavenumber kbc is a function of F2

r . The inherent mechanics
of the instability is believed to be associated with the triad resonant interactions (Phillips
1966; Hasselmann 1967) among the two downstream-propagating wave disturbances and
the stationary surface wave or bottom ripples. Based on the nonlinear amplitude evolution
equations of the interacting waves in the resonant triad, Raj & Guha (2019) showed that
the amplitudes of both downstream-propagating disturbances can grow exponentially with
time by taking energy from the base stationary wave, confirming the result of Yih (1976).
Additionally, McHugh (1988) extended the stability analysis of Yih (1976) to the problem
of steady channel flow over periodic wavy walls and found, based on the argument of triad
resonances, the existence of multiple pairs of unsteady wave disturbances to which the
steady flow is unstable. The surface tension effect on the instability of steady flow over a
wavy bottom has also been investigated (McHugh 1992).

In a relatively small-scale flume experiment of steady flow over a bottom patch of
sinusoidal ripples, Kyotoh & Fukushima (1997) observed an interesting phenomenon that a
regular surface wave train of significant amplitude advancing against the incoming current
is produced when the steady flow reaches the critical speed, which varies with water
depth and bottom ripple wavenumber. The experimental data of the flow condition on
the observation of such upstream-advancing waves does not match that from the linear
instability result of Yih (1976). Kyotoh & Fukushima (1997) then postulated that the
observed upstream-advancing waves result from the nonlinear instability of the steady base
flow and aimed to corroborate the experimental data with the Benjamin–Feir instability.
Kyotoh & Fukushima (1997) analysed the modulational instability of the nonlinear steady
flow near the resonance flow speed (Mei 1969). The predicted flow condition for the
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nonlinear instability as well as the period of upstream-propagating waves do not agree
with the experimental data. The exact mechanism controlling the upstream-propagating
wave generation in the steady flow over a rippled bottom remains unclear and thus needs
to be investigated.

In this work, we carry out a theoretical and experimental investigation of the generation
mechanism of upstream-propagating waves in a steady uniform flow over a horizontal
rippled bottom. From the perspective of nonlinear resonant wave–wave interactions, we
examine the kinematic features of propagating waves that could be generated through
triad resonant wave–ripple interactions in the presence of a uniform current. By means
of a multiple-scale perturbation analysis, we study the temporal and spatial evolution
process of the wave generation and investigate the influence of flow and bottom ripple
parameters on the development of upstream-propagating waves. From the theoretical
analysis, we deduce that a significant upstream-propagating wave can be induced by
triad resonant wave–ripple interactions under the flow condition for which the group
velocity of the associated upstream-propagating waves is near zero over the rippled bottom.
To assist in understanding the wave generation mechanism and verify the theory, we
conduct relatively large-scale flume experiments with wide ranges of flow and bottom
parameter values. The generation of upstream-propagating waves in a steady flow over
a horizontal bottom with a patch of bottom ripples is observed. The experimental
measurements of the frequency and wavenumber of the upstream-propagating waves
as well as the corresponding flow conditions corroborate well with the theoretical
prediction.

The remainder of the paper is organized as follows. The general boundary-value problem
(BVP) governing the unsteady wave motion in the presence of a uniform constant current
is formulated in § 2. The triad resonant condition for the interaction of two surface wave
components and one bottom ripple component is examined in § 3. The theoretical results
of wave generation from the multiple-scale perturbation analysis are described in § 4.
The laboratory flume experiments and major experimental data are presented in § 5. The
comparisons of the experiments with the theory are made and discussed in detail in § 6.
Finally, § 7 contains the conclusions.

2. Problem statement

We consider the general two-dimensional problem of nonlinear wave propagation over a
horizontal bottom with a patch of sinusoidal ripples in the presence of a uniform current.
Figure 1 shows a schematic diagram of the problem. We define a right-handed Cartesian
coordinate system O–xz, in which the origin O is located on the mean water line, the x-axis
points in the horizontal direction and the z-axis is positive upwards. The positions of the
free surface and bottom are denoted by z = η(x, t) and z = −h + ζ(x), respectively, where
t is time, η(x, t) represents the instantaneous wave elevation, ζ(x) describes the rippled
bottom variation and h is the mean water depth. The current is assumed to move along the
x-direction with a speed of U.

In the context of potential flow assumptions, the fluid motion is described by the velocity
potential Φ(x, z, t), which can be decomposed into two parts,

Φ(x, z, t) = Ux + φ(x, z, t), (2.1)

where the term Ux represents the velocity potential of the uniform current and φ(x, z, t)
denotes the perturbation velocity potential associated with the wave motion in the flow.
The BVP governing the wave motion consists of the Laplace equation
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Figure 1. Schematic diagram of wave propagation over a patch of corrugated bottom in the presence of a
uniform current.

∇2φ = 0, −h + ζ(x) � z � η(x, t), (2.2)

where ∇ ≡ (∂/∂x, ∂/∂z), the nonlinear kinematic and dynamical free-surface boundary
conditions,

ηt + (U + φx)ηx = φz, z = η(x, t), (2.3)

φt + Uφx + 1
2(φ

2
x + φ2

z )+ gz = 0, z = η(x, t), (2.4)

and the impervious condition on the rippled bottom,

φz = (U + φx)ζx, z = −h + ζ(x). (2.5)

In the present study, we assume that the bottom ripples contain a monochromatic
wave component with ζ(x) = (b/2) eikbx + c.c., where b and kb are the amplitude and
wavenumber of the bottom ripples, respectively, and c.c. denotes the complex conjugate
of the preceding term. The steepness of the bottom ripples is assumed to be small, i.e.
kbb � 1.

The wave motion can be further split into steady and unsteady components: φ(x, z, t) ≡
φs(x, z)+ φu(x, z, t) and η(x, t) ≡ ηs(x)+ ηu(x, t), where φs/φu and ηs/ηu represent the
velocity potential and free-surface elevation of the steady/unsteady wave motion. The BVP
for the steady wave motion directly follows from the neglect of the time-dependent terms in
(2.2), (2.3), (2.4) and (2.5). It is well known that for an infinitely extended rippled bottom,
the solution of the linearized steady problem is singular at the resonance current speed
equal to the phase speed of the surface waves with a wavenumber of kb (Richardson 1920;
Lamb 1932). By accounting for up to the third-order nonlinear wave–ripple interactions,
Mei (1969) regularized the singularity and derived a uniformly valid solution in the
neighbourhood of the resonance current speed by the use of high-order perturbation
analysis.

Substitution of the steady and unsteady decompositions of φ and η into (2.2), (2.3), (2.4)
and (2.5) (with the steady wave quantities subtracted) yields the nonlinear BVP for φu
and ηu, governing the unsteady wave motion. The associated linear homogeneous problem
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Figure 2. (a) Schematic illustration of four wavenumber solutions of the dispersion relation (2.8) for given
ω, U and h: f (k) = (ω − kU)2 (——) and g|k| tanh |k|h (— · —). The six pairs of free unsteady wave
components that can possibly form resonance triads with the bottom ripples are marked. (b) Dimensionless
critical frequency Ωc = ωc(h/g)1/2 as a function of the Froude number Fr = U/(gh)1/2.

provides the solution of freely propagating waves in water of constant depth in the presence
of a uniform current:

φ(1)u = − igA
2(ω − kU)

cosh(|k|(z + h))
cosh(|k|h) exp(i(kx − ωt))+ c.c. (2.6)

and

η(1)u = A
2

exp(i(kx − ωt))+ c.c., (2.7)

where A is the complex wave amplitude. The frequency ω and wavenumber k are related
by the dispersion relation

(ω − kU)2 = g|k| tanh(|k|h). (2.8)

It is known that, for a given U, four real wavenumber solutions of the dispersion relation
(2.8) exist if ω is smaller than the critical frequency ωc. The four solutions are given by
the intersections of two definite curves corresponding to the left- and right-hand sides
of (2.8), as illustrated in figure 2(a). For clarity in description, the four wavenumbers
are respectively denoted as k1, k2, k3 and k4 with k2 < k1 < k3 < k4 (Mei, Stiassnie &
Yue 2005). In general, k1, k2 < 0 while k3, k4 > 0. At ω = ωc, wavenumbers k1 and k2
are equal. For ω > ωc, wavenumbers k1 and k2 become pure complex numbers and only
two real solutions (k3 and k4) of (2.8) exist. The normalized critical frequency, Ωc ≡
ωc(h/g)1/2, is a function of the Froude number Fr ≡ U/(gh)1/2, which is displayed in
figure 2(b) for a wide range of Fr. In the deep-water limit (Mei et al. 2005), ωc(h/g)1/2 →
(4Fr)

−1 as Fr → 0. We note that, as in deep water, both the crest and the energy of the
k1 wave propagate upstream, since it has negative phase and group speeds; the crest of the
k2 wave moves upstream, while the wave energy moves downstream, since this wave has a
negative phase speed but a positive group speed; and the crest and energy of the k3 and k4
waves propagate downstream, as their phase and group speeds are positive.

The interest of the present study is on the influences of nonlinear interactions of current,
surface waves and bottom ripples on the development of upstream-propagating waves
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when a steady current passes over a rippled bottom. We shall address this problem from the
perspective of resonant unsteady wave interactions with bottom ripples and steady waves.

3. Triad resonance condition

In the presence of a steady current, similarly to the classical Bragg scattering of surface
wave by bottom ripples (Mei 1985; Mei et al. 2005), the second-order triad resonance
involving two unsteady surface wave components and one bottom ripple (or steady surface
wave) component can occur under the condition

km − kn = kb and ωm − ωn = 0, (3.1a,b)

where km/n and ωm/n are the wavenumbers and frequencies of the mth and nth unsteady
wave components. The wavenumber km/n and the corresponding frequency ωm/n must
satisfy the dispersion relation (2.8). Without loss of generality, we assume ωm/n > 0, while
km/n could be positive or negative. The condition (3.1a,b) directly follows from the general
triad resonance condition for three surface wave components (Phillips 1966) by treating the
bottom ripple as a steady wave component with positive wavenumber (kb > 0) and zero
frequency.

To satisfy the condition (3.1a,b), the surface wave components must be two of the four
free wave components (of wavenumbers k1, k2, k3 and k4) that correspond to the same
frequencyω. There are possibly six wavenumber combinations that can form the resonance
triads (McHugh 1988, 1992; Raj & Guha 2019) with the corresponding condition given by

(1) k3 − k1 = kb and ω3/1 = ω, (4) k4 − k2 = kb and ω4/2 = ω,

(2) k3 − k2 = kb and ω3/2 = ω, (5) k4 − k1 = kb and ω4/1 = ω,

(3) k4 − k3 = kb and ω4/3 = ω, (6) k1 − k2 = kb and ω1/2 = ω.

⎫⎪⎬
⎪⎭
(3.2)

The wavenumber combinations in these six cases are sketched in figure 2(a). For given U,
kb and h, the frequency and wavenumbers of the two unsteady wave components in the
resonance triad can be obtained from the following relations:

knU + αn
√

gkn tanh(knh) = kmU + αm
√

gkm tanh(kmh) ,

km = kn + kb,

ω = knU + αn
√

gkn tanh(knh) ,

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

with (m, n) = (3, 1) for (1), (m, n) = (3, 2) for (2), (m, n) = (4, 3) for (3), (m, n) = (4, 2)
for (4), (m, n) = (4, 1) for (5) and (m, n) = (1, 2) for (6), and with α1/2/3 = 1 and α4 =
−1. Specifically, we first solve for kn from the first equation of (3.3), and then obtain km
and ω from the second and third equations of (3.3), respectively.

For given Fr and kbh, it can be shown that there are at most two of the six triads that
can exist (McHugh 1988, 1992). Figure 3 displays the specific region in the domain of
Fr and kbh inside which each of the six triads exists. The boundary curves separating
neighbouring regions can be specifically defined. By rewriting the first equation of (3.3)
in the form

kbU = αn
√

gkn tanh(knh)− αm
√

gkm tanh(kmh) , (3.4)

we can easily figure out the boundary beyond which the meaningful solution of kn for the
triad (m) does not exist. The boundary curve between triads (2) and (3) is found to be
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Figure 3. The specific regions in the domain of Fr and kbh for each of the six triads: (a) for triads (1), (2) and
(3); and (b) for (4), (5) and (6). The solid and dashed lines separate the neighbouring regions, and the dotted
line defines the outer boundary of the region for triad (4).

given by the same boundary curve as between triads (5) and (6), Fr = [tanh(kbh)/kbh]1/2.
The outer boundary of triad (4), beyond which no triad (4) exists, is given by Fr =
[tanh(kbh/2)/(kbh/2)]1/2. The boundaries separating the regions of triads (1) and (2)
as well as that of (4) and (5) are determined by imposing an extra condition k1 = k2 in
addition to (3.4). One sees from figure 2(a) that k1 = k2 is obtained when the curve for the
left-hand side quantity of (2.8) is tangential to the curve for the right-hand side quantity of
(2.8), corresponding to the following condition:

tanh(knh)+ knh(1 − tanh2(knh)) = −2Fr
√

knh tanh(knh) . (3.5)

From (3.4) and (3.5), we find the boundary of triads (1) and (2) and that of (4) and (5), as
shown in figure 3.

For illustration, figures 4 and 5 display the dimensionless wavenumber kmh and the
corresponding dimensionless frequency Ω for one of the two unsteady wave components
in the resonant triad (with km − kn = kb) as a function of the Froude number Fr with three
sample dimensionless bottom wavenumbers (kbh = 3.0, 6.0 and 9.0) for all six triads. For
fixed kbh, the triad transits from (1) to (2) and then to (3) as well as from (6) to (5) and then
to (4) as Fr increases from zero to infinity. The wavenumber of the other wave component
in the triad can be obtained from the relation kn = km − kb.

4. Multiple-scale perturbation analysis

4.1. Amplitude evolution equations of resonant interacting waves
In order to understand the wave generation mechanism due to the triad resonance, we
derive the amplitude evolution equations of the interacting wave components by means of
the classical multiple-scale perturbation analysis. Since the procedure of the multiple-scale
analysis for wave resonance is standard (Mei 1985; Kirby 1988; Mei et al. 2005), we
only outline the key procedures and intermediate results of the analysis in appendix A.
For illustration, we consider a general resonant triad in the presence of a steady uniform
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Figure 4. Dimensionless (a) wavenumber kmh and (b) frequency Ω = ω(h/g)1/2 for one of the two unsteady
wave components in the resonant triad (with km − kn = kb) as a function of Fr with three dimensionless bottom
wavenumbers kbh = 3.0, 6.0 and 9.0 for triad (1) (- - -), (2) (· · · · · · ) and (3) (——).
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Figure 5. Dimensionless (a) wavenumber kmh and (b) frequency Ω = ω(h/g)1/2 for one of the two unsteady
wave components in the resonant triad (with km − kn = kb) as a function of Fr with three dimensionless bottom
wavenumbers kbh = 3.0, 6.0 and 9.0 for triad (6) (- - -), (5) (——) and (4) (· · · · · · ).
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current, which is formed by two propagating surface wave components (with wavenumbers
km and kn) and one stationary bottom ripple component (with wavenumber kb), under the
exact resonance condition (km − kn = kb and ωm = ωn = ω). The total wave solution of
the velocity potential for the resonant triad can be expressed in the form

φ(1)(x, z, t) = − gAm

ω − kmU
cosh(km(z + h))

cosh(kmh)

[
i
2

exp(i(kmx − ωt))
]

− gAn

ω − knU
cosh(kn(z + h))

cosh(knh)

[
i
2

exp(i(knx − ωt))
]

− Ub
g cosh(kbz)+ U2kb sinh(kbz)
g sinh(kbh)− U2kb cosh(kbh)

[
i
2

exp(ikbx)
]

+ c.c., (4.1)

where Am and An are the complex amplitudes of the propagating waves. The third term on
the right-hand side of (4.1) represents the velocity potential associated with the stationary
wave resulting from the uniform current passing over bottom ripples. At the resonance, Am
and An have slow x and slow t dependences.

Through a multiple-scale perturbation analysis summarized in appendix A, we obtain
the following coupled equations governing the evolution of Am and An:

∂Am(x, t)
∂t

+ Cm
∂Am(x, t)
∂x

= iAn(x, t)P,

∂An(x, t)
∂t

+ Cn
∂An(x, t)
∂x

= iAm(x, t)Q,

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

where the group velocities of the propagating wave components, Cm and Cn, and the
interaction coefficients P and Q are respectively given by (A26), (A27), (A28) and (A29).
The two equations in (4.2) can be decoupled to yield the separate second-order partial
differential equations for Am(x, t) and An(x, t):

∂2Am(x, t)
∂t2

+ (Cm + Cn)
∂2Am(x, t)
∂x∂t

+ CmCn
∂2Am(x, t)
∂x2 + PQAm(x, t) = 0,

∂2An(x, t)
∂t2

+ (Cm + Cn)
∂2An(x, t)
∂x∂t

+ CmCn
∂2An(x, t)
∂x2 + PQAn(x, t) = 0.

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

With proper boundary and initial conditions, we can solve the above equations to obtain the
solutions of Am(x, t) and An(x, t). It should be noted that the above equations are similar to
those derived in Kirby (1988), who studied the current effects on Bragg resonant reflection
of surface water waves by sand bars. The specific cases addressed in Kirby (1988) are
associated with triads (1) and (5) with the k3 or k4 wave component as the incident wave
and the k1 component as the reflected wave. The present study focuses on the growth of
unsteady waves (from small initial disturbances) in steady current interaction with bottom
ripples without incident waves.
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Triad no. Wavenumber combination Parameter PQ Temporal evolution behaviour

1 k3 − k1 = kb � 0 Stable
2 k3 − k2 = kb � 0 Stable
3 k4 − k3 = kb < 0 Unstable
4 k4 − k2 = kb < 0 Unstable
5 k4 − k1 = kb < 0 Unstable
6 k1 − k2 = kb � 0 Stable

Table 1. Temporal stability of steady flow over the infinitely extended horizontal rippled bottom derived
based on the triad resonance.

4.2. Temporal evolution
If the rippled bottom extends indefinitely in the x-direction, we can consider Am(x, t) and
An(x, t) to be independent of x. In this special case, equations (4.3) reduce to

d2Am(t)
dt2

= −PQAm(t),

d2An(t)
dt2

= −PQAn(t).

⎫⎪⎪⎬
⎪⎪⎭ (4.4)

For given initial values of Am(0) = Am0 and An(0) = An0, we solve (4.4) for Am(t) and
An(t) to obtain

Am(t) = 1
2

(
Am0 + iAn0P

γ

)
eγ t + 1

2

(
Am0 − iAn0P

γ

)
e−γ t,

An(t) = 1
2

(
An0 + iAm0Q

γ

)
eγ t + 1

2

(
An0 − iAm0Q

γ

)
e−γ t,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5)

where the parameter γ is defined as

γ =
√

−PQ . (4.6)

If PQ � 0, γ is imaginary (or zero) so that |Am(t)| and |An(t)| are bounded in time.
If PQ < 0, γ is positive real so that |Am(t)| and |An(t)| can grow exponentially with
time. These indicate that the steady flow over the rippled bottom is stable (unstable) to a
small disturbance consisting of wave components with wavenumbers km and kn under the
condition of PQ � 0 (PQ < 0). For all the six resonant triads, we numerically evaluate
the value of PQ and present the temporal stability features in table 1. The result with triad
(3) is consistent with the finding of Yih (1976) based on the linear instability analysis. The
characteristic behaviour of the present result for flow over rippled bottoms is similar to
that of McHugh (1986) for flow over wavy sidewalls.

4.3. Spatial evolution
When the bottom contains a finite-length patch of ripples, the interest is on the spatial
amplitude variation of the interacting waves after long-time triad resonant interactions.
This corresponds to solving for the steady-state solutions of Am(x, t) = Am(x) and
An(x, t) = An(x). After removing the terms containing time derivatives in (4.3), we obtain
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the spatial evolution equations for Am(x) and An(x):

d2Am(x)

dx2 = − PQ

CmCn
Am(x),

d2An(x)

dx2 = − PQ

CmCn
An(x).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

With two boundary conditions for each Am and An, the above second-order differential
equations can be solved to give the solutions of Am(x) and An(x). Depending on the
situation, the boundary conditions are specified in terms of the amplitude and/or the slope
of the amplitude of the wave at the ends of the rippled bottom patch.

Since our interest in this work is on the generation mechanism of upstream-propagating
waves by steady flow over a rippled bottom, we consider here the resonant triad with
wavenumber combination (6). In this triad, the k1 wave propagates upstream while the
(energy of the) k2 wave propagates downstream. The bottom ripples are assumed to be
located within 0 � x � L, outside of which the bottom is horizontal. For the boundary
conditions, we consider that, at the downstream end of the rippled bottom patch (x = L),
the k2 wave has a small amplitude A2(x = L) = a2 and the k1 wave has a negligibly small
amplitude A1(x = L) = 0 (as the generation of the k1 wave by the triad resonance starts
at x = L). From (4.2), these amplitude boundary conditions also imply the following
conditions for the slope of the amplitude: dA2/dx(x = L) = 0 and dA1/dx(x = L) =
ia2P/C1. With these boundary conditions, we solve (4.7) to obtain the solution of A1(x)
and A2(x) given by

A1(x) = i
a2P

θC1
sinh(θ(x − L)) and A2(x) = a2 cosh(θ(x − L)), (4.8a,b)

where the parameter θ is defined as

θ =
√

− PQ

C1C2
. (4.9)

If PQ/C1C2 � 0, then θ is imaginary (or zero) and A1,2(x) are sine and/or cosine
functions of x whose amplitudes are bounded. If PQ/C1C2 < 0, then θ is positive real so
that A1,2(x) can grow exponentially in x. Similar results for other triads can be obtained.
Table 2 presents the spatial stability features of steady flow over the infinitely extended
rippled bottom associated with all the six resonant triads.

As a numerical illustration, we consider one of the experimental cases to be described
in the next section, for which we have L/λb = 7.5, h/λb = 0.8 and εb ≡ kbb = 0.602,
where λb = 2π/kb. For this bottom ripple configuration, figure 6 displays the values of
P, Q, C1 and C2 as functions of Fr for the resonant triad (6). Both P and Q are positive,
and, as expected, C2 is positive while C1 is negative. As a result, the parameter θ is real
and positive, as shown in figure 7(a). The amplitudes of the generated unsteady waves
A1,2(x) thus achieve an exponential growth with the interaction distance L − x. Figure 7(b)
plots the maximum amplitude of the upstream-propagating k1 wave obtained at x = 0 as a
function of Fr, which is seen to decrease with increasing Fr.

We note that, since PQ is always positive, the parameter γ is pure imaginary from
(4.6). In the case of bottom ripples that are uniformly extended to infinity, the unsteady
wave components in the triad (6) do not grow exponentially with time. This indicates
that the steady flow is temporally stable to the disturbance dominated by k1 and k2
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Triad no. Wavenumber combination Parameter
PQ

CmCn
Spatial evolution behaviour

1 k3 − k1 = kb < 0 Unstable
2 k3 − k2 = kb � 0 Stable
3 k4 − k3 = kb < 0 Unstable
4 k4 − k2 = kb < 0 Unstable
5 k4 − k1 = kb � 0 Stable
6 k1 − k2 = kb < 0 Unstable

Table 2. Spatial stability of steady flow over the infinitely extended horizontal rippled bottom derived based
on the triad resonance.
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Figure 6. (a) Dimensionless group velocities C1/
√

gh (——) and C2/
√

gh (- - -), and (b) dimensionless
interaction coefficients P̃ = P

√
h/g (——) and Q̃ = Q

√
h/g (- - -) as functions of Fr for resonant triad (6).

(Here L/λb = 7.5, h/λb = 0.8 and εb = 0.602.)
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Figure 7. (a) Spatial growth rate θ and (b) maximum amplitude of the generated upstream-propagating wave,
|A1(0)/a2|, as functions of Fr for resonant triad (6). (Here L/λb = 7.5, h/λb = 0.8, and εb = 0.602.)
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Figure 8. (a) Dimensionless group velocities C1/U (——) and C2/U (- - -), and (b) dimensionless interaction
coefficients P̃ = P

√
h/g (——) and Q̃ = Q

√
h/g (- - -) as functions of current speed detuning U/U from

the exact resonance of triad (6). (Here L/λb = 7.5, h/λb = 0.8, Fr = 0.30 and εb = 0.602.) The vertical line
(— · —) represents the critical wave-flow condition.

–0.2 –0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

–0.2 –0.1 0 0.1 0.2 0.3
0

5

10

15

θL

�U/U �U/U

(a) (b)

|A
1
(0

)/
a 2

|

Figure 9. (a) Spatial growth rate θ and (b) maximum amplitude of generated upstream-propagating wave,
|A1(0)/a2|, as functions of current speed detuning ΔU/U from the exact resonance of triad (6). (Here L/λb =
7.5, h/λb = 0.8, Fr = 0.30 and εb = 0.602.) The vertical line (— · —) represents the critical wave-flow
condition.

wave components. On the other hand, the above results show that the steady flow is
spatially unstable to the k1 and k2 wave disturbance. This cannot be obtained by the
temporal instability analysis (Yih 1976; Raj & Guha 2019).

If the resonance condition is not satisfied exactly, the detuning effect should be included
in the solution. For illustration, we consider the detuning case in which the frequency (ω)
of the generated unsteady waves is fixed while the current speed is shifted by a small
amount ΔU from the speed U under the exact resonance condition (ω,U). The current
speed detuning ΔU causes the wavenumber detunings Δk1 and Δk2 in k1 and k2, which
can be calculated from the dispersion relation (with the use of ω and U + ΔU). Since ω
is invariant, the evolution equations for A1(x) and A2(x) are found to take the same form
as (4.7) but with the coefficients evaluated at the detuning condition (i.e. ω, U + ΔU,
k1 + Δk1, k2 + Δk2). Taking the exact resonance at Fr = 0.3 (cf. figure 7b) as an example,
we examine the solution of the resonance-generated upstream-propagating wave amplitude
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as a function of the current speed detuning ΔU. Figure 8 shows C1, C2, P and Q while
figure 9 shows the growth rate θ and maximum amplitude of the upstream-propagating
wave |A1(0)| as functions of ΔU. It is seen that |A1(0)| becomes unbounded when
the detuned current speed approaches the critical speed Uc (associated with the critical
frequency ωc = ω considered). (The relation between Uc and the critical wave frequency
ωc is shown in figure 2b.) The singular behaviour of |A1(0)| results from the fact that θ
becomes infinitely large as both C1 and C2 approach zero at Uc. These results indicate
that, despite not at the exact resonance, the generation of upstream-propagating waves is
substantially amplified in the neighbourhood of the critical current speed Uc (or critical
frequency ωc) due to the continuous buildup of energy in time for the unsteady k1 and k2
waves from the near-resonant triad interaction. We remark that the exact resonance does
not occur at the critical flow condition under which k1 = k2, so that the triad resonance
condition cannot be satisfied exactly.

5. Flume experiment

5.1. Experimental apparatus and set-up
To assist in understanding the phenomenon and verify the theoretical analysis of
upstream-propagating wave generation in steady flow over a rippled bottom, we conducted
a series of laboratory experiments in a relatively large-scale wave flume. The experimental
set-up and configurations were optimized on the basis of Kyotoh’s preliminary observation
of upstream-advancing waves in a rather small wave flume (Kyotoh & Fukushima 1997).
While the design and initial stage of the experiments as well as some preliminary
qualitative observations were reported in Fan et al. (2016), the experimental set-up was
improved and the experiments were recalibrated for better accuracy afterwards. The
quantitative experimental results presented in this paper have not been reported elsewhere.
For clarity and completeness, we summarize the latest primary experimental set-up,
apparatus and calibrations below.

Figure 10 displays a sketch of the flume experiment set-up. Unlike in Kyotoh &
Fukushima (1997), where the flume bottom was inclined to produce the incoming flow, we
chose to use a horizontal flume bottom with a steady incoming flow generated by a water
pump installed under the flume. The longitudinal distance between the upstream flow inlet
and the downstream flow outlet is 51.0 m. The width and height of the flume are 1.0 m
and 1.5 m, respectively. A patch of rippled wooden bottom consisting of seven-and-a-half
sinusoidal ripples was installed in the relatively downstream side of the flume. The length
of the rippled patch is Lb = 1.80 m, with the ripple wavelength equal to λb = 0.24 m.
Four different ripple amplitudes of b = 0.040, 0.0305, 0.0265 and 0.023 m were used in
the experiments. The corresponding ripple steepnesses are εb ≡ kbb = 2πb/λb = 1.047,
0.798, 0.694 and 0.602, respectively. The centre of the rippled patch is 33.0 m away from
the upstream flow inlet. The rippled patch was embedded into the flume’s flat bottom so
that the average water depth is nearly equal to that over the flat bottom in the flume.

For each rippled bottom configuration, a wide range of water depths and incoming
flow velocities, as displayed in table 3, were tested to ensure the observation of
upstream-propagating waves. The range of parameters considered in table 3 is mainly for
intermediate and shallow depths. In order to measure the free-surface oscillation, a total
of 26 capacitive wave gauges were installed along the transverse centreline of the flume,
17 of which were uniformly set above the rippled bottom with a horizontal spatial interval
of 0.12 m (equal to a half of the ripple wavelength), as shown in figure 10. For measuring
the upstream-propagating waves, six wave gauges were set as three pairs upstream of the
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Flow inlet

Flow direction

Sinusoidal wavy bottom

Flow outletReversible pump

33 m

0.30 m 0.30 m

3.0 m 3.0 m 3.0 m Rippled patch Lb = 1.80 m (0.24 m × 7.5) 3.75 m 3.0 m

0.30 m 0.30 m

18 m

Figure 10. Sketch of the flume experiment set-up.

εb h/λb = 0.5 h/λb = 0.6 h/λb = 0.7 h/λb = 0.8 h/λb = 0.9 h/λb = 1.0

0.602 0.20–0.35 0.24–0.35 0.26–0.33 0.28–0.33 — —
0.694 0.20–0.32 0.20–0.33 0.23–0.33 0.24–0.33 0.24–0.33 —
0.798 — 0.15–0.33 0.15–0.33 0.15–0.33 0.15–0.33 0.20–0.33
1.047 — 0.20–0.30 0.18–0.28 0.18–0.28 0.18–0.28 0.18–0.28

Table 3. Ranges of Froude number Fr for different combinations of bottom ripple steepness and water depth
that were tested with the observation of upstream-propagating waves in the experiments.

rippled bottom. Their distances from the upstream edge of the rippled patch are 3.0 m,
6.0 m and 9.0 m, respectively. In each pair, the distance between the wave gauges is set to
be 0.30 m in order to calculate the wavelength of the upstream-propagating waves. (Note
that this distance is much less than the wavelength of the observed upstream-propagating
waves.) Besides these, another pair and one single wave gauges were placed downstream
at 3.75 m and 6.75 m from the downstream edge of the rippled bottom, respectively. In
the experiments, the flow conditions in the flume were calibrated before each test. The
relationship between flow volume and voltage of the water pump’s converter was acquired
and utilized to calculate the input voltage for each experimental case.

5.2. Experimental results
We observed in the experiments that, for given rippled bottom configuration and water
depth, unsteady waves that propagate against the steady incoming current are generated
when the current reaches a narrow critical range of speed. For the current speed outside
the critical range, such unsteady wave generation was not observed. For given ripple
wavenumber, the critical range of current speed for upstream-propagating wave generation
varies with water depth and ripple amplitude; and the frequency of the generated
upstream-propagating waves is dependent on the current speed and water depth.

Figure 11 displays sample time variations and corresponding amplitude spectra of the
free-surface elevations far upstream of the rippled bottom, above the rippled bottom
and downstream of the rippled bottom in the case with εb = 0.798, h/λb = 0.6 and
Fr = 0.280. In the upstream location and over the rippled bottom, the free-surface
elevation shows the presence of a dominant wave component at the same frequency
ω = 2πf = 4.75 rad s−1. Downstream, the free-surface elevation is composed of
small broad-banded wave components without a clear dominant component. Figure 12
shows a sample instantaneous free-surface pattern with the presence of monochromatic
upstream-propagating waves.

Figure 13 plots the amplitude of the dominant component of the generated
upstream-propagating waves, which is measured in the upstream flat horizontal bottom,
as a function of current speed for different ripple steepnesses and water depths. The data
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Figure 11. Time variations (a–c) and amplitude spectra (d–f ) of the free-surface elevations (a,d) at the
upstream side of the rippled bottom (x/λb = −38.125), (b,e) above the rippled bottom (x/λb = 3.75) and (c,f )
at the downstream side of the rippled bottom (x/λb = 22.5). (Here h/λb = 0.6, Fr = 0.280 and εb = 0.798.)

(a) (b)

Figure 12. Instantaneous free-surface pattern upstream of the rippled bottom, showing the presence of
upstream-propagating waves for the experimental case in figure 11. (b) Close-up of the enclosed region in
panel (a).

show that the upstream-propagating waves with significantly large amplitude exist only in
the narrow critical range of current speed for a given ripple configuration and water depth.
The amplitude of the unsteady wave is negligibly small away from the critical range of
current speed. For given ripple steepness, the critical current speed is observed to increase
as the water depth decreases. For given water depth, the critical current speed is seen to
decrease as the ripple steepness increases. The wave generation phenomenon becomes
weaker at larger water depth in general. The upper limit of water depth for the observed
wave generation becomes larger with steeper bottom ripples.

Figure 14 depicts the period of upstream-propagating waves as a function of current
speed for different bottom steepnesses and water depths. The results indicate that the
period of the upstream-propagating waves is in the narrow range of 1.2 s to 1.5 s. The
wave period generally becomes larger with increasing current speed except at very shallow
water depth and steep bottom ripples, under which the wave motion over the rippled area
is strongly nonlinear.

Figure 15 displays the spatial variation of the generated unsteady wave amplitude over
the rippled bottom patch as well as upstream of the patch. In this figure, only representative
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Figure 13. Experimental data of the amplitude of upstream-propagating waves (over the upstream flat bottom)
as a function of the Froude number (Fr) for the bottom ripple steepness (a) εb = 0.602, (b) 0.694, (c) 0.798
and (d) 1.047 with water depth h/λb = 0.5 (�), 0.6 (� ), 0.7 (© ), 0.8 (	), 0.9 (+) and 1.0 (∗).

cases are plotted for clarity. For all the cases shown, the unsteady wave amplitude increases
rapidly from a near-zero value with distance from the downstream edge of the rippled
bottom and reaches a peak value at approximately one to two ripple wavelengths from the
upstream edge of the rippled bottom, and then reduces to a near-constant value over the
flat upstream bottom. The unsteady wave amplitude is seen to be negligibly small over the
downstream flat bottom.

Apart from the wave amplitude, we show in figure 16 the spatial variation of the
primary unsteady wave period over the rippled bottom patch for some representative
cases. The experimental data indicates that the periods of the generated (dominant)
unsteady wave components in all cases remain nearly invariant over the entire
rippled bottom. We note that, in the case of very shallow depth and steep ripples,
super-harmonic (double-frequency) wave components are also observed due to strong
nonlinear free-surface boundary effects.

6. Comparison between theory and experiment

In this section, we quantitatively compare the theoretical prediction with the experimental
data for the condition under which the upstream-propagating waves are produced when a
steady current passes over a rippled bottom patch. The spatial variation of the generated
unsteady wave amplitude by the theory is qualitatively compared with the experimental
measurements. The possible reasons causing the discrepancy between the theoretical
prediction and experimental data are discussed.
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Figure 14. Experimental data of the period of upstream-propagating waves (over the upstream flat bottom) as
a function of the Froude number (Fr) for the bottom ripple steepness (a) εb = 0.602, (b) 0.694, (c) 0.798 and
(d) 1.047 with water depth h/λb = 0.5 (�), 0.6 (� ), 0.7 (© ), 0.8 (	), 0.9 (+) and 1.0 (∗).

6.1. Period of generated upstream-propagating wave versus current speed
As discussed in § 3, resonant triads (1), (5) and (6) all involve the upstream-propagating
(k1) wave component. Among them, triad (5) can be excluded since the steady flow is
spatially stable to small unsteady wave disturbances that are contained in triad (5) (see
table 2). In principle, triads (1) and (6) could produce the k1 wave component. The
experimental data of the observed k1 wave period, however, clearly exclude the possible
participation of triad (1). We thus compare the theory with experiments for triad (6) only.

We first compare the frequency and wavenumber of the unsteady wave measured at the
upstream side of the rippled bottom patch in the flume with the theoretical prediction from
the resonance condition of triad (6). For the experimental data, the wave frequency is
chosen to be the peak frequency of the free-surface elevation spectrum. The wavenumber
is calculated from its relation with the frequency and phase speed. The phase speed of the
wave can be determined from the correlation coefficient of the wave elevation measured
at two neighbouring wave gauges (Kyotoh & Fukushima 1997).

In figures 17–21, we present the experimental data of the frequency of the observed
upstream-propagating waves versus the associated incoming current speed with different
ripple steepnesses and water depths. In relatively deep depth (h/λb = 0.9), the data for
the mildest ripple case (εb = 0.602) are not shown in figure 17 since the amplitude of
the upstream-propagating wave is negligibly small. In the shallow depth (h/λb = 0.5),
the data for the steep ripple cases (εb = 0.798 and 1.047) are not shown in figure 21
since the flow motion is strongly nonlinear and turbulent. In these figures, the theoretical
condition for the resonant triad (6), expressed as the relation between the frequency of the
upstream-propagating wave and the incoming current speed, is also shown for comparison
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Figure 15. Experimental data of the spatial variation of the unsteady wave amplitude over the rippled bottom
and upstream flat bottom with: (a) εb = 0.602 for h/λb = 0.5 and Fr = 0.320 (�), h/λb = 0.6 and Fr = 0.315
(� ), h/λb = 0.7 and Fr = 0.305 (© ) and h/λb = 0.8 and Fr = 0.300 (	); (b) εb = 0.694 for h/λb = 0.5 and
Fr = 0.300 (�), h/λb = 0.6 and Fr = 0.305 (� ), h/λb = 0.7 and Fr = 0.285 (© ) and h/λb = 0.8 and Fr =
0.285 (	); (c) εb = 0.798 for h/λb = 0.6 and Fr = 0.280 (� ), h/λb = 0.7 and Fr = 0.275 (© ) and h/λb = 0.8
and Fr = 0.270 (	); and (d) εb = 1.047 for h/λb = 0.6 and Fr = 0.250 (� ), h/λb = 0.7 and Fr = 0.240 (© ),
h/λb = 0.8 and Fr = 0.240 (	) and h/λb = 0.9 and Fr = 0.230 (+). (Note that the horizontal scale over the
flat bottom for x < 0 differs from that over the rippled bottom for x � 0.)

with the experimental data. The comparisons show that, in the cases with relatively
mild ripples and large water depths, the experimental data fall right on or very close to
the theoretical curves. In the cases with steeper ripples and shallow water depths, the
experimental data somewhat shift from the theoretical curves to the lower current speeds.
The discrepancy between the experimental data and the theoretical prediction becomes
larger as the ripple steepness increases and/or water depth decreases. We note that the
theory assumes a uniform incoming current while the experimental data use the average
flow velocity, which is equal to the flow flux divided by the mean water depth over the flat
bottom. Owing to the real-fluid effect in the experiments, the flow velocity near the free
surface is known to be larger in magnitude than the average velocity. This effect is stronger
for shallower depth. After taking this fact into account, the experimental data would move
towards larger current speeds, leading to better agreement with the theory than appeared
in figures 17–21.
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Figure 16. Experimental data of the spatial variation of the primary unsteady wave period over the rippled
bottom with: εb = 0.602, h/λb = 0.5 and Fr = 0.320 (�); εb = 0.694, h/λb = 0.6 and Fr = 0.305 (� ); εb =
0.798, h/λb = 0.7 and Fr = 0.275 (© ); and εb = 1.047, h/λb = 0.9 and Fr = 0.230 (+).
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Figure 17. Comparison of the frequency (Ω = ω(h/g)1/2) of the triad-resonance-generated
upstream-propagating wave as a function of current speed (Fr = U/(gh)1/2) between the experimental
measurements (� ) and the theoretical prediction from the resonance condition for triad (6) (——) in the case
of water depth h/λb = 0.9 and bottom ripple steepness (a) εb = 0.694, (b) 0.798 and (c) 1.047. The critical
flow condition over the rippled bottom region (- - -) is shown for reference.

Figure 22 shows the comparisons of the wavenumber of the upstream-propagating
waves as a function of the current speed between the experimental measurements and
the theoretical prediction from the resonance condition for triad (6). Consistent with
the frequency comparisons shown in figures 17–21, better agreements between the
experimental data and the theoretical prediction are obtained for the cases with mild
bottom ripples and/or relatively large water depths. As discussed above, if the real-fluid
effect on the surface current speed is accounted for, the experimental data in the cases
of steep bottom ripples and shallow water depth would be moved to larger values of Fr,
leading to better agreements with the theory.

The good agreements between the experimental data and the theory on the kinematics
of the upstream-propagating waves confirm that the triad resonance involving the unsteady
k1 and k2 waves as well as stationary bottom ripples (and/or the resulting steady waves)
is capable of producing upstream-propagating waves (i.e. with wavenumber k1) when a
steady current passes over a rippled bottom patch. The remaining question is why the
generation of upstream-propagating waves in the experiment is clearly observed only in a
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Figure 18. Comparison of the frequency (Ω = ω(h/g)1/2) of the triad-resonance-generated
upstream-propagating wave as a function of current speed (Fr = U/(gh)1/2) between the experimental
measurements (� ) and the theoretical prediction from the resonance condition for triad (6) (——) in the case
of water depth h/λb = 0.8 and bottom ripple steepness (a) εb = 0.602, (b) 0.694, (c) 0.798 and (d) 1.047. The
critical flow condition over the rippled bottom region (- - -) is shown for reference.

narrow range of current speeds but not for speeds outside this critical range, for which the
same type of triad resonances can also occur in theory.

The analysis in § 4.3 indicates that the amplitude of the upstream-propagating wave
can be significantly amplified if the triad resonance happens in the neighbourhood of the
critical wave-flow condition (described in terms of critical current speed Uc and critical
wave frequency ωc). Note that ωc is uniquely related to Uc as shown in figure 2(b). To
examine the role of the critical wave flow on the upstream-propagating wave generation
in the experiments, we need to estimate the (near-surface) current speed over the rippled
bottom patch where the triad resonant wave–ripple interactions occur. The average current
speed over the rippled bottom patch (Ũ) is actually larger than the ideal uniform current
speed (U) (used in the theoretical analysis) due to two factors associated with the real-fluid
effects in the flow over bottom ripples.

First, it is known from the existing numerical and experimental studies in the literature
that, when a uniform incoming flow passes over a sinusoidal rippled solid surface, flow
separation occurs in the case of relatively large ripple amplitudes (Zilker & Hanratty
1979; Buckles, Hanratty & Adrian 1984; Kuzan, Hanratty & Adrian 1989; Hudson,
Dykhno & Hanratty 1996; Shen et al. 2003). Since the time-averaged flow velocity in
the separated-flow region on the leeward side of ripples is much smaller than outside the
separated-flow region (Buckles et al. 1984), it is reasonable (and in fact conservative) to
assume that the effective depth over which the flow fluxes downstream is the distance from
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Figure 19. Comparison of the frequency (Ω = ω(h/g)1/2) of the triad-resonance-generated
upstream-propagating wave as a function of current speed (Fr = U/(gh)1/2) between the experimental
measurements (� ) and the theoretical prediction from the resonance condition for triad (6) (——) in the case
of water depth h/λb = 0.7 and bottom ripple steepness (a) εb = 0.602, (b) 0.694, (c) 0.798 and (d) 1.047. The
critical flow condition over the rippled bottom region (- - -) is shown for reference.

the crest of the ripples to the mean water surface, h − b. This would enlarge Ũ from U by
a factor of ξ1 = h/(h − b).

Second, the incoming current in the flume is actually a shear flow over the stationary
flat bottom so that the flow velocity near the free surface is larger than the depth-averaged
speed U. Figure 23 shows the experimental data of two sample vertical profiles of steady
current in the flume of a flat bottom. The approximate velocity profiles from the empirical
1/7th and 1/11th power laws for the fully developed boundary layers are also shown for
comparison. At relatively large water depth with smaller velocity, the velocity profile is
seen to match the 1/7th power law well. At shallow depth with larger velocity, the velocity
profile is better described by the 1/nth power law with n > 7, which is consistent with
the finding in the literature (Schlichting & Gersten 2017). For illustration, based on the
empirical 1/7th power law (White 2006), we obtain the displacement thickness δ∗ = h/8.
This effect would further enlarge Ũ from U by a factor of ξ2 = h/(h − δ∗) = 1.143. Upon
combining these two real-fluid effects, we have the relation Ũ = ξ1ξ2U.

In figures 17–21, we plot the critical wave-flow condition over the rippled bottom patch,
which is represented by the dashed line. We note that the theoretical resonance condition
for triad (6) and the experimental data points in these figures are displayed in terms of the
ideal (depth-averaged) uniform current velocity U (i.e. Fr = U/(gh)1/2). Thus, any point
on this dashed line represents that the wave flow over the rippled bottom has the critical
wave frequency (ωc) and critical current speed Ũc, while the corresponding uniform flow
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Figure 20. Comparison of the frequency (Ω = ω(h/g)1/2) of the triad-resonance-generated
upstream-propagating wave as a function of current speed (Fr = U/(gh)1/2) between the experimental
measurements (� ) and the theoretical prediction from the resonance condition for triad (6) (——) in the case
of water depth h/λb = 0.6 and bottom ripple steepness (a) εb = 0.602, (b) 0.694, (c) 0.798 and (d) 1.047. The
critical flow condition over the rippled bottom region (- - -) is shown for reference.
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Figure 21. Comparison of the frequency (Ω = ω(h/g)1/2) of the triad-resonance-generated
upstream-propagating wave as a function of current speed (Fr = U/(gh)1/2) between the experimental
measurements (� ) and the theoretical prediction from the resonance condition for triad (6) (——) in the
case of water depth h/λb = 0.5 and bottom ripple steepness (a) εb = 0.602 and (b) 0.694. The critical flow
condition over the rippled bottom region (- - -) is shown for reference.
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Figure 22. Comparison of the wavenumber (k1h) of the triad-resonance-generated upstream-propagating wave
as a function of current speed (Fr = U/(gh)1/2) between the theoretical prediction from the resonance
condition for triad (6) (——) and the experimental measurements with bottom ripple steepness εb = 0.602
(� ), 0.694 (∗), 0.798 (© ) and 1.047 (� ) and water depth (a) h/λb = 0.9, (b) 0.8, (c) 0.7, (d) 0.6 and (e) 0.5.
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Figure 23. Vertical profiles of horizontal velocity of the steady current in the flume with a flat bottom with
water depth (a) h/λb = 0.9 and (b) 0.6, where λb = 0.24 m. The symbols and curves represent the experimental
data from velocity gauges A (� ), B (� ) and C (© ) as well as the approximate velocity profiles from the 1/7th
(——) and 1/11th (· · · · · · ) power laws. (Gauges A, B and C are located at 1.5 m, 0.9 m and 0.3 m from the
upstream edge of the ripple patch.)

speed over the flat bottom is given by U = Ũc/(ξ1ξ2). We see in figures 17–21 that the
experimental data points are clustered in the close neighbourhood of the intersection of
the critical wave-flow curve and the triad resonance condition curve. In particular, the
experimental data points are seen to be right at this intersection point in the cases with mild
ripples and large water depths. This shows that the observable upstream-propagating waves
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(with a significantly large amplitude) are generated by the triad resonant wave–ripple
interactions only when the wave flow over the rippled bottom region is near the critical
condition associated with wave frequency ωc and current speed Ũc. For steeper ripples at
shallower water depth, the experimental data points are seen to slightly deviate from this
intersection point to lower current speed. This deviation may be due to several factors.
First, as mentioned above, since the experimental data points are plotted in terms of the
uniform depth-averaged flow speed U, they are shifted to somewhat lower speed due
to the shear flow effect. Second, the flow separation effect near the rippled bottom is
underestimated by the use of ξ1, especially at relatively shallow depth and steeper ripples.
Third, nonlinear ripple amplitude effects on the wave dispersion relation could influence
the theoretical prediction of the triad resonance condition (which is based on the linear
dispersion relation in the present study). Detailed understanding and quantification of these
real-fluid and higher-order nonlinear effects requires the use of expensive turbulent flow
computations, which is beyond the scope of this work.

Away from the neighbourhood of the intersection point, the triad resonant wave–ripple
interaction still occurs, but with the growth rate θ = O(1) (i.e. bounded). In this
case, as the analysis in § 4.3 shows, the maximum amplitude of the generated
upstream-propagating wave depends on the length (L) of the rippled bottom patch. As
a result, the generated upstream-propagating waves may not be observable in the physical
experiments if L is not sufficiently large. This is consistent with the feature of comparisons
between the experiment and the present theory in figures 17–21.

6.2. Spatial variation of upstream-propagating wave amplitude
The theoretical analysis in § 4.3 provides an asymptotic solution of the amplitudes,
(4.8a,b), of the interacting waves involved in the triad resonance or near-resonance. For
given bottom ripple properties and water depth, the current speed (Ũ) over the rippled
bottom patch and the amplitude of the k2 wave (a2) at the starting location (x = L) of
resonant wave–ripple interactions are needed to evaluate the theoretical solution of A1(x)
and A2(x). To compare the theoretical prediction with the experimental measurements,
we let a2 be the small experimental value of the unsteady wave amplitude at x = L.
To determine Ũ, we match the theoretical solution of the (maximum) unsteady wave
amplitude |A1(x)+ A2(x)| to the experimental data.

Figure 24 displays representative comparisons of the theoretical solution of |A1(x)+
A2(x)|, given by (4.8a,b), with the experimental data for two sample cases with
(a) εb = 0.602, h/λb = 0.8 and Fr = 0.30 and (b) εb = 0.694, h/λb = 0.7 and Fr =
0.285, respectively. For the theoretical solution, Ũ = 0.994Uc and Ũ = 0.985Uc are
used in cases (a) and (b), respectively. It is seen that the theoretical prediction agrees
with the experimental data very well over most of the rippled bottom patch (for
(2–2.5)λb � x � L), in particular, on the feature of exponential growth of A1,2(x) with
the interaction distance from the starting point (L − x). In the upstream end region of
the rippled patch (0 � x < (2–2.5)λb), unlike the theoretical solution, the experimental
data show that |A1(x)+ A2(x)| reverses the trend of exponential growth with L − x and
reduces to a value that matches the amplitude of upstream-propagating waves over the
flat bottom. The reason for the deviation of the experimental data from the theoretical
prediction (4.8a,b) is that, in the experiment, the current speed U over the upstream flat
bottom is slightly smaller than Ũ over the rippled patch so that A2 must decrease to vanish
at x = 0 since the k2 wave cannot exist in the upstream flat bottom. This would reduce the
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Figure 24. Comparison of the amplitude of unsteady waves, |A1(x)+ A2(x)|, over the rippled bottom patch
between the experimental measurement (© ) and the theoretical solutions (4.8a,b) (——) and (6.1a,b) (- - -) for:
(a) εb = 0.602, h/λb = 0.8 and Fr = 0.30; and (b) εb = 0.694, h/λb = 0.7 and Fr = 0.285.

growth of A1(x) by the triad resonance in the region near the upstream end of the rippled
bottom patch. This effect is, however, not considered in the theoretical solution (4.8a,b),
which is determined based on the boundary conditions at the downstream end only.

While it is an uneasy analytical practice to derive the theoretical solution that accounts
for the varying current speed effect over the entire rippled bottom patch, we can obtain an
asymptotic solution in the upstream end region of the rippled patch, which is controlled by
the boundary conditions at x = 0. We consider the boundary conditions: A2(x = 0) = 0
and A1(x = 0) = a1, with a1 being equal to the experimental measurement of the unsteady
wave amplitude at x = 0. From (4.2), we obtain the slope condition: dA1/dx(x = 0) = 0
and dA2/dx(x = 0) = ia1Q/C2. With these boundary conditions, we solve (4.7) for A1(x)
and A2(x) to obtain:

A1(x) = a1 cosh(θx) and A2(x) = ia1
Q

θC2
sinh(θx). (6.1a,b)

For comparison, these solutions (with Ũ = 0.994Uc and 0.985Uc, respectively, for cases
(a) and (b)) are also presented in figure 24. It is seen that the theoretical solution (6.1a,b)
matches the experimental data quite well in the upstream end region of the rippled patch
(0 � x < (1.5–2)λb). Together, the theoretical solutions (4.8a,b) and (6.1a,b) properly
reflect the distinctive growth feature of the unsteady waves by near-triad resonance over the
rippled bottom patch observed in the experiment. In addition, the results of Ũ = 0.994Uc
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and 0.985Uc in these two sample cases further confirm that the significant development of
the upstream-propagating wave can be achieved only when the associated triad resonance
occurs near the critical wave-flow condition over the rippled bottom.

7. Concluding remarks

We study the generation mechanism governing the formation of upstream-propagating
waves in a steady current that passes over a horizontal bottom with a patch of sinusoidal
ripples by the use of multiple-scale perturbation analyses and laboratory experiments.
In the context of potential flow assumptions, we examine the role of triad resonances
involving two unsteady wave components of the same frequency and one bottom ripple
(or steady wave) component in the presence of a uniform current. We identify the
conditions and their parametric domains of existence for six possible triads that can
form second-order resonant wave–ripple interactions. We derive the amplitude evolution
equations of interacting waves in the resonant triad, from which we deduce the temporal
and spatial stabilities of the steady flow over an infinitely extended rippled bottom. We
show that the triad resonant or near-resonant interactions in a steady flow over a finite
rippled bottom patch can generate unsteady waves that propagate upstream against the
incoming current. In particular, we find that the generation of upstream-propagating waves
can be dramatically amplified when the triad resonance (or near-resonance) occurs in the
neighbourhood of the critical wave-flow condition under which the group velocities of the
generated waves are near zero over the rippled bottom. This phenomenon is associated
with the spatial instability of the flow, which cannot be found from the temporal instability
analysis.

To verify and assist in understanding the theory, we conduct a series of
laboratory experiments in a relatively large-scale flume to observe the development of
upstream-propagating waves for wide ranges of ripple steepnesses, water depths and
current speeds. The frequency and amplitude of the induced unsteady waves along
the flume are acquired. It is observed that, for given rippled bottom configuration and
water depth, measurable upstream-propagating waves are produced only when the current
reaches a narrow range of critical speed. For given ripple wavenumber, the critical
current speed generally becomes smaller while the frequency of the upstream-propagating
waves is slightly larger for shallower water depth and/or steeper ripple steepness. The
comparisons between the flume experiments and the theoretical analyses show that
the frequency and wavenumber of the upstream-propagating waves observed in the
experiments match the theoretical prediction based on the triad resonance condition,
k1 − k2 = kb, where k1 is the wavenumber of the upstream-propagating wave (with
negative phase and group velocities), k2 is the wavenumber of the unsteady wave
whose phase/group velocity is negative/positive, and kb is the ripple wavenumber. The
comparisons also show that the upstream-propagating waves with appreciable amount
of energy, which are observable in the experiments, can be generated only when the
associated triad resonance happens near the critical wave-flow condition under which the
k1 and k2 waves have near-zero group velocities. This is due to the fact that, near the critical
wave-flow condition, the k1 and k2 waves can be significantly developed by taking energy
from the current through the triad resonant or near-resonant wave–ripple interactions over
the rippled bottom region and the k1 wave can then propagate upstream over the flat bottom
since the current speed over the flat bottom is slightly less than the critical velocity over the
rippled bottom (due to real-fluid effects). Consistent with this understanding, the spatial
variation of the generated unsteady waves over the rippled bottom predicted by the theory
compares well with the experimental measurements.
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We finally remark that the agreement between the theoretical prediction and
the laboratory measurements on the flow condition for the observation of induced
upstream-propagating waves becomes poorer in the cases of steep bottom ripples and
shallow water depths, in which the higher-order wave–ripple interactions and real-fluid
effects may play a more important role. To better understand such effects, it is necessary
to adopt simulations based on the Navier–Stokes equations, which are currently being
pursued.
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Appendix A. Derivation of amplitude evolution equations of interacting waves in a
resonant triad

We apply the multiple-scale perturbation analysis to derive the spatio-temporal evolution
equations for the amplitudes of interacting waves in a resonant triad under the general
resonance condition (3.1a,b). Upon introducing the slowly varying spatial and temporal
coordinate x̄ = εx and t̄ = εt and expanding the velocity potential and free-surface
elevation in perturbation series with respect to the small parameter ε � 1, we obtain

φ(x, z, t, x̄, t̄) = εφ(1)(x, z, t, x̄, t̄)+ ε2φ(2)(x, z, t, x̄, t̄)+ · · · (A1)

and
η(x, t, x̄, t̄) = εη(1)(x, t, x̄, t̄)+ ε2η(2)(x, t, x̄, t̄)+ · · · , (A2)

where ( )(m) = O(1), m = 1, 2, . . . , with the superscript m denoting the coefficient of the
mth-order quantity. Substituting the expansions in (A1) and (A2) into the nonlinear BVP,
(2.2)–(2.5), for the wave motion in the presence of a uniform current and expanding the
boundary conditions on the instantaneous free surface (and exact bottom) in Taylor series
with respect to the mean free surface z = 0 (and the mean bottom z = −h), we have the
field equation

ε[φ(1)xx + φ(1)zz ] + ε2[φ(2)xx + 2φ(1)x̄x + φ(2)zz ] + H.O.T. = 0, −h � z � 0, (A3)

where ‘H.O.T.’ denotes higher than second-order terms, the free-surface kinematic
boundary condition

ε[η(1)t + Uη(1)x − φ(1)z ] + ε2[η(2)t + η
(1)
t̄ + Uη(2)x + Uη(1)x̄ + φ(1)x η(1)x − φ(2)z − η(1)φ(1)zz ]

+ H.O.T. = 0, z = 0, (A4)

the free-surface dynamic boundary condition

ε[φ(1)t + Uφ(1)x + gη(1)] + ε2[φ(2)t + φ
(1)
t̄ + η(1)φ

(1)
tz + 1

2φ
(1)
x φ(1)x

+ Uφ(2)x + Uφ(1)x̄ + Uη(1)φ(1)xz + 1
2φ

(1)
z φ(1)z + gη(2)] + H.O.T. = 0, z = 0, (A5)
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and the bottom boundary condition

ε(φ(1)z − ζxU)+ ε2(φ(2)z + ζφ(1)zz − φ(1)x ζx)+ H.O.T. = 0, z = −h. (A6)

A.1. First-order problem
From (A3) to (A6), we obtain the first-order BVP for φ(1),

φ(1)xx + φ(1)zz = 0, −h � z � 0,

φ
(1)
tt + 2Uφ(1)xt + U2φ(1)xx + gφ(1)z = 0, z = 0,

φ(1)z = Uζx, z = −h,

⎫⎪⎪⎬
⎪⎪⎭ (A7)

and the first-order wave elevation η(1) given in terms of φ(1),

η(1) = −1
g

[
φ
(1)
t + Uφ(1)x

]
z=0

. (A8)

For the purpose of understanding the development of unsteady waves by taking energy
from the steady flow through a triad resonance, we consider the wave field consisting of
two unsteady wave components (with wavenumbers km and kn) and one stationary wave
component that results from the steady problem of current interaction with bottom ripples
(with wavenumber kb). From the resonance condition (3.1a,b), we have km − kn = kb and
ωm = ωn (≡ ω). The associated first-order velocity potential of the wave field takes the
form in (4.1). The free-surface elevation is given by

η(1)(x, t, x̄, t̄) = Am(x̄, t̄)
2

exp(i(kmx − ωt))+ An(x̄, t̄)
2

exp(i(knx − ωt))

+ −U2kbb
g sinh(kbh)− U2kb cosh(kbh)

1
2

exp(ikbx)+ c.c., (A9)

in which the amplitudes of two unsteady wave components Am(x̄, t̄) and An(x̄, t̄) are
dependent on slowly-varying spatial and temporal coordinates. To find the evolution
equations for Am(x̄, t̄) and An(x̄, t̄), we need to consider the BVP at the next order.

A.2. Second-order problem
From (A3) to (A6), we have the second-order BVP for φ(2),

φ(2)xx + φ(2)zz = D(2), −h � z � 0,

φ
(2)
tt + 2Uφ(2)xt + U2φ(2)xx + gφ(2)z = F(2), z = 0,

φ(2)z = B(2), z = −h,

⎫⎪⎪⎬
⎪⎪⎭ (A10)

in which the inhomogeneous forcing functions are given by

D(2) = −2φ(1)x̄x , (A11)

F(2) = −2[φ(1)t̄t + Uφ(1)x̄t + Uφ(1)xt̄ + U2φ
(1)
x̄x ]

− 2{φ(1)z [φ(1)t + Uφ(1)x ]z + φ(1)x [φ(1)t + Uφ(1)x ]x}
− η(1)[φ(1)ttz + 2Uφ(1)xtz + U2φ(1)xxz + gφ(1)zz ] (A12)
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and

B(2) = ∂

∂x
[φ(1)x ζ(x)]. (A13)

After substituting φ(1) and η(1) into the forcing functions and dropping the non-secular
terms, we have

D(2) = − gkm

ω − kmU
cosh(km(z + h))

cosh(kmh)
Amx̄(x̄, t̄) exp(i(km − ωt))

− gkn

ω − knU
cosh(kn(z + h))

cosh(knh)
Anx̄(x̄, t̄) exp(i(kn − ωt))+ c.c., (A14)

F(2) = g(Amt̄ + UAmx̄) exp(i(kmx − ωt))+ 1
2

AnUbkb

D
M[−i exp(i(kmx − ωt))]

+ g(Ant̄ + UAnx̄) exp(i(knx − ωt))+ 1
2

AmUbkb

D
N[−i exp(i(knx − ωt))] + c.c.

(A15)

and

B(2) = − gAmkmknb
4(ω − kmU) cosh(kmh)

[−i exp(i(knx − ωt))]

− gAnkmknb
4(ω − knU) cosh(knh)

[−i exp(i(kmx − ωt))] + c.c., (A16)

in which the coefficients M, N and D take the form:

M = gkn
ω − (kn + kb)U

ω − knU
(U2kb tanh(knh)− g)

+ 1
2

[
Ug2k2

n

ω − knU
1

cosh2(knh)
+ kb(U4k2

b − g2)

]
, (A17)

N = −gkm
ω − (km − kb)U

ω − kmU
(U2kb tanh(kmh)+ g)

+ 1
2

[
Ug2k2

m

ω − kmU
1

cosh2(kmh)
− kb(U4k2

b − g2)

]
, (A18)

D = g sinh(kbh)− U2kb cosh(kbh). (A19)

A.3. Solvability condition for the second-order BVP
From the solvability condition for the second-order BVP, we can obtain the evolution
equations for unsteady wave amplitudes Am and An (Garabedian 1964; Mei et al. 2005).
To do that, we express the solution of φ(2) in the form

φ(2) = Γm(z, x̄, t̄) exp(i(kmx − ωt))+ Γn(z, x̄, t̄) exp(i(knx − ωt))+ c.c. (A20)

Upon substituting φ(2) in (A20) into the BVP (A10) and using (A14), (A15), and (A16),
we obtain the BVPs for unknown functions Γm and Γn, which are, respectively, expressed
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in the following forms:

Γmzz − k2
mΓm = − gkm

ω − kmU
cosh(km(z + h))

cosh(kmh)
Amx̄, −h � z � 0,

−(ω − kmU)2

g
Γm + Γmz = Amt̄ + UAmx̄ − i

AnUbkb

2Dg
M, z = 0,

Γmz = i
gbkmkn

4(ω − knU) cosh(knh)
An, z = −h,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A21)

and

Γnzz − k2
nΓn = − gkn

ω − knU
cosh(kn(z + h))

cosh(knh)
Anx̄, −h � z � 0,

−(ω − knU)2

g
Γn + Γnz = Ant̄ + UAnx̄ − i

AmUbkb

2Dg
N, z = 0,

Γnz = i
gbkmkn

4(ω − kmU) cosh(kmh)
Am, z = −h.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A22)

The corresponding homogeneous problem for Γm (and Γn) can be described in terms of a
function ψ(z) as

ψzz − k2
mψ = 0, −h � z � 0,

−(ω − kmU)2

g
ψ + ψz = 0, z = 0,

ψz = 0, z = −h.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A23)

A simple solution of this homogeneous problem is

ψ(z) = cosh(km(z + h)). (A24)

By applying Green’s second identity with Γm andψ and using the relations in (A21) and
(A23), we shall obtain the evolution equation for Am. Similarly, the application of Green’s
second identity with Γn and ψ gives the evolution equation for An. The final form of the
spatio-temporal evolution equations for Am and An is expressed as

∂Am

∂t
+ Cm

∂Am

∂x
= iAnP,

∂An

∂t
+ Cn

∂An

∂x
= iAmQ,

⎫⎪⎪⎬
⎪⎪⎭ (A25)

in which the coefficients are given by

Cm = ω − kmU
km

1
2

(
1 + 2kmh

sinh(2kmh)

)
+ U, (A26)

Cn = ω − knU
kn

1
2

(
1 + 2knh

sinh(2knh)

)
+ U, (A27)

P =
[

gbkmkn

4(ω − knU) cosh(kmh) cosh(knh)
+ Ubkb

2Dg
M

]
(A28)

and

Q =
[

gbkmkn

4(ω − kmU) cosh(kmh) cosh(knh)
+ Ubkb

2Dg
N

]
. (A29)
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