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Abstract

Fix d > 2 and a field k such that char k - d. Assume that k contains the dth roots of 1.

Then the irreducible components of the curves over k parameterizing preperiodic points

of polynomials of the form zd+c are geometrically irreducible and have gonality tending

to ∞. This implies the function field analogue of the strong uniform boundedness

conjecture for preperiodic points of zd+c. It also has consequences over number fields: it

implies strong uniform boundedness for preperiodic points of bounded eventual period,

which in turn reduces the full conjecture for preperiodic points to the conjecture for

periodic points. Our proofs involve a novel argument specific to finite fields, in addition

to more standard tools such as the Castelnuovo–Severi inequality.

1. Introduction

1.1 Dynatomic curves

Fix an integer d > 2. Let k be a field such that char k - d. View f = fc := zd + c as a polynomial

in z with coefficients in k[c]. Let fn(z) be the nth iterate of f ; in particular, f0(z) := z. If n and

m are nonnegative integers with n > m, then any irreducible factor of fn(z) − fm(z) ∈ k[z, c]

defines an affine curve over k. By a dynatomic curve over k, we mean any such curve, or its smooth

projective model. Any k-point on such a curve yields c0 ∈ k equipped with a preperiodic point in

k, that is, an element z0 ∈ k that under iteration zd + c0 eventually enters a cycle; the length of

the cycle is called the eventual period. We consider two dynatomic curves to be different if the

corresponding closed subschemes of A2
k are distinct. Section 2 describes all dynatomic curves in

characteristic 0 explicitly.

1.2 Gonality

Let k be an algebraic closure of k. Let µd = {x ∈ k : xd = 1}.
For a curve X over k, let Xk = X ×k k. If X is irreducible, define the gonality γ(X) of X as

the least possible degree of a dominant rational map X 99K P1
k. If X is geometrically irreducible,

define its k-gonality as γ(Xk).

The following theorem, and its consequence, Theorem 1.7, are our main results.
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Theorem 1.1. Fix d > 2 and k such that char k - d. Suppose that µd ⊂ k.

(a) Every dynatomic curve over k is geometrically irreducible.

(b) If the dynatomic curves over k are listed in any order, their gonalities tend to ∞.

Remark 1.2. Part (a) of Theorem 1.1 can fail if µd 6⊂ k. See Remark 2.2.

Remark 1.3. In proving Theorem 1.1 in positive characteristic, we face the challenge that we do
not know explicitly what the dynatomic curves are, since we are not sure whether the known
factors of the polynomials fn(z)−fm(z) are irreducible. Some results regarding the irreducibility
of dynatomic curves in positive characteristic may be found in [DKO+19], but they are not
sufficient for proving the full result. Instead, to overcome the difficulties, we use a novel argument
that is specific to finite fields to prove that the degrees of dynatomic curves over the c-line must
tend to infinity even though we do not know precisely what these curves are; see § 4.

Let us now introduce notation for our next result. Let µ(n) denote the Möbius µ-function.
Then fn(z)− z =

∏
e|n Φe(z, c), where

Φn(z, c) :=
∏
e|n

(fe(z)− z)µ(n/e) ∈ k[z, c]. (1)

Let Y dyn
1 (n) be the curve defined by Φn(z, c) = 0 in A2

k, and let Xdyn
1 (n) be the normalization of

its projective closure. To simplify notation, we omit the superscript dyn from now on. General
points of X1(n) parameterize polynomials of the form zd+c equipped with a point of exact order
n.

The morphism (z, c) 7→ (f(z), c) restricts to an order-n automorphism of Y1(n), so it induces
an order-n automorphism σ of X1(n). The quotient of X1(n) by the cyclic group generated by
σ is called X0(n). If char k = 0, it is known that X1(n) is geometrically irreducible (see [Bou92,
LS94, Mor96]), so X0(n) is too.

Theorem 1.4. Fix d > 2 and a field k of characteristic 0. Then

γ(X0(n)) >

(
1

2
− 1

2d
− o(1)

)
n

as n →∞. In particular, γ(X0(n)) →∞.

Remark 1.5. Our definition of dynatomic curve does not include quotient curves such as X0(n),
so the conclusion γ(X0(n)) →∞ of Theorem 1.4 does not follow from Theorem 1.1(b). In fact,
our logic runs in the opposite direction: we use Theorem 1.4 in the proof of the characteristic-0
case of Theorem 1.1(b).

Remark 1.6. Although the lower bound in Theorem 1.4 is linear in n, the best upper bound we
know, γ(X0(n)) 6 (1 + o(1))dn/n (see Proposition 3.1(b)), is exponential in n.

To prove Theorem 1.4, we use that X0(n) already has a morphism to P1 of degree lower than

expected for its genus, namely X0(n)
c

→ P1. If it also had a morphism to P1 of bounded degree,
then the Castelnuovo–Severi inequality would make the genus of X0(n) smaller than it actually
is, a contradiction. See § 3 for details.
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Gonality of dynatomic curves

To prove Theorem 1.1(b), we use different arguments in characteristic 0 and characteristic
> 0.

In characteristic 0, we use that each dynatomic curve dominates X1(n) and hence also X0(n)
for some n, so by Theorem 1.4 its gonality is large when n is large; this lets us reduce to proving
a gonality lower bound for the dynatomic curves above X1(n) for each fixed n. The latter curves
for fixed n come in towers, and we use the Castelnuovo–Severi inequality to work our way up
each tower. See § 3.

In characteristic p, we prove that the irreducible components of fn(z) − fm(z) have large
degree over the c-line, and we use that to prove that over the finite field Fq := Fp(µd) their
smooth projective models have so many Fq-points over c = ∞ that their Fq-gonalities must be
large. Finally, we use a result controlling how gonality of a curve changes when the base field is
enlarged. See § 4.

1.3 Uniform boundedness of preperiodic points
The growth of gonalities of classical modular curves implies the strong uniform boundedness
theorem for torsion points on elliptic curves over function fields (the function field analogue of
Merel’s theorem [Mer96]); see [NS96, Theorem 0.3]. Similarly, from Theorem 1.1 we will deduce
the following function field analogue of a case of the Morton–Silverman conjecture [MS94, p. 100].

Theorem 1.7 (Strong uniform boundedness theorem for preperiodic points over function fields).
Fix d > 2 and a field k such that char k - d. Let K be the function field of an integral curve
over k. Fix a positive integer D. Then there exists B = B(d,K,D) > 0 such that, for every field
extension L ⊇ K of degree 6 D and every c ∈ L not algebraic over k, the number of preperiodic
points of zd + c in L is at most B. If k is finite, the same holds with the words ‘not algebraic
over k’ deleted.

Remark 1.8. As far as we know, Theorem 1.7 is the first theorem proving strong uniform
boundedness of preperiodic points for all members of a nontrivial algebraic family of maps
over a global field. See [DKO+19] for some related results and arguments; in particular, that
article also explains the connection between uniform boundedness and gonality and geometric
irreducibility, and proves geometric irreducibility of curves such as Φn(z, c) = 0 modulo p for
many primes p. Our innovation, as mentioned above, is to show how to use finite fields to get
the gonality and uniform boundedness results even without knowing that Φn(z, c) = 0 modulo p
is geometrically irreducible.

Remark 1.9. Theorem 1.7 is best possible in the sense that the words ‘not algebraic over k’
cannot be removed in general. For example, if k is algebraically closed and c ∈ k, then all
preperiodic points of zd + c lie in k and hence also in K and L; the number of them is generally
not even finite, let alone uniformly bounded!

Another application of Theorem 1.1 is the following result, which over number fields provides
a uniform bound on preperiodic points having a bounded eventual period.

Theorem 1.10. Fix integers d > 2, D > 1, and N > 1. Then there exists B = B(d,D,N) > 0
such that, for every number field K satisfying [K : Q] 6 D and every c ∈ K, the number of
preperiodic points of zd + c in K with eventual period at most N is at most B.

Theorems 1.7 and 1.10 are proved in § 5. Theorem 1.10 implies that the strong uniform
boundedness conjecture for periodic points over number fields implies the strong uniform
boundedness conjecture for preperiodic points over number fields, as we now explain.
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Corollary 1.11. Fix integers d > 2 and D > 1. Suppose that there exists a bound N = N(d,D)
such that, for every number field K satisfying [K : Q] 6 D and every c ∈K, every periodic point
of zd + c in K has period at most N . Then there exists a bound B′ = B′(d,D) such that, for
every number field K satisfying [K : Q] 6 D and every c ∈ K, the number of preperiodic points
of zd + c in K is at most B′.

Proof. By assumption, if [K : Q] 6 D and c ∈ K, then the preperiodic points of zd + c in K
having eventual period at most N are all the preperiodic points in K. Therefore the bound
B(d,D,N) of Theorem 1.10 is actually a bound on the total number of preperiodic points in K.
Take B′ = B(d,D,N) = B(d,D,N(d,D)). 2

Remark 1.12. Eliminating the hypothesis that N(d,D) exists in Corollary 1.11 seems extremely
difficult. Proving that N(2, 1) exists is a problem that has been studied for over two decades,
and even this smallest case seems far out of reach of existing methods. It amounts to ruling out
all sufficiently large periods n for quadratic polynomials over Q, and entire articles have been
devoted to ruling out just periods 4 and 5 [Mor98b, FPS97]. Going further has so far relied on
major conjectures: the Birch and Swinnerton-Dyer conjecture rules out period 6 [Sto08], and
the abc conjecture and its generalizations contained in one of Vojta’s conjectures imply uniform
boundedness for preperiodic points of zd + c over any fixed number field [Loo19].

2. Classification of dynatomic curves

For m,n > 1, let Y1(m,n) be the curve over k whose general points parameterize polynomials
zd+ c equipped with a preperiodic point that after exactly m steps enters an n-cycle. This curve
is the zero locus in A2

k of the polynomial

Φm,n(z, c) :=
Φn(fm(z), c)

Φn(fm−1(z), c)
.

For a general point (z, c) ∈ Y1(1, n), the elements z and fn(z) are distinct preimages of f(z), so
z = ζfn(z) for some ζ ∈ µd − {1}. Suppose that µd ⊆ k. For each ζ ∈ µd − {1}, let Y1(1, n)ζ be
the subscheme of Y1(1, n) defined by the condition z = ζfn(z), so

Y1(1, n) =
⋃

ζ∈µd−{1}

Y1(1, n)ζ .

Both (z, c) 7→ (f(z), c) and (z, c) 7→ (ζ−1z, c) define isomorphisms Y1(1, n)ζ → Y1(n). In
particular, Y1(1, n)ζ equals the curve Φn(ζ−1z, c) = 0 in A2

k. For m > 2, let Y1(m,n)ζ be the
inverse image of Y1(1, n)ζ under

Y1(m,n) −→ Y1(1, n)

(z, c) 7−→ (fm−1(z), c).

Then, for any m,n > 1,

Y1(m,n) =
⋃

ζ∈µd−{1}

Y1(m,n)ζ , (2)

and Y1(m,n)ζ equals the curve Φn(ζ−1fm−1(z), c) = 0 in A2
k. The decomposition (2) corresponds

to a factorization
Φm,n(z, c) =

∏
ζ∈µd−{1}

Φn(ζ−1fm−1(z), c). (3)

The following theorem is a collection of results from [Bou92, LS94, Mor96, Gao16].
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Theorem 2.1. Let k be a field of characteristic 0 such that µd ⊂ k. Then the curves Y1(n) for
n > 1 and the curves Y1(m,n)ζ for m,n > 1 and ζ ∈ µd−{1} are irreducible, so they are all the
dynatomic curves over k.

Computer experiments (at least for d = 2) suggest that Theorem 2.1 holds for any field k such
that char k - d and µd ⊂ k, but in positive characteristic this remains unproved. See [DKO+19],
especially Theorems B and D, for progress in this direction.

Remark 2.2. If in Theorem 2.1 we drop the hypothesis that µd ⊂ k, then the irreducible
components of Y1(m,n) over k are in bijection with the Gal(k(µd)/k)-orbits in µd − {1}. An
irreducible component corresponding to an orbit of size greater than 1 is not geometrically
irreducible.

3. Gonality in characteristic 0

Given a geometrically irreducible curve X over k, let g(X) denote the genus of its smooth

projective model. Let D0(n) be the degree of the morphism X0(n)
c−→ P1. Similarly, let D1(n) =

deg
(
X1(n)

c−→ P1
)
.

Proposition 3.1. Fix d > 2, and fix a field k of characteristic 0.

(a) We have D1(n) = (1 + o(1))dn as n →∞.

(b) We have D0(n) = (1 + o(1))dn/n as n →∞.

(c) We have g(X0(n)) > (1/2− 1/2d− o(1))dn as n →∞.

(d) The Galois group of (the Galois closure of) the covering X0(n)
c−→ P1 is the full symmetric

group SD0(n).

Proof. We may assume k = C.
(a) See the proof of [Mor96, Theorem 13(d)]. The estimate is deduced from D1(n) =

degz Φn =
∑

e|n µ(n/e)de, which follows from (1).

(b) The first morphism in the tower X1(n) → X0(n)
c−→ P1 has degree n, so D0(n) =

D1(n)/n. Substitute (a) into this.
(c) More precisely, g(X0(n)) > (1/2 − 1/2d − 1/n)dn + O(ndn/2) as n → ∞, by [Mor96,

Theorem 13(d)].
(d) This is a consequence of work by Bousch [Bou92] for d = 2, and Lau and Schleicher [LS94]

for d > 2. See also [Mor98a, Theorem B] and [Sch17]. 2

A well-known strategy for obtaining lower bounds on gonality (cf. [NS96] and [Poo07, § 2])
involves the following result, which will tell us roughly that if a high-genus curve has a relatively
low-degree map to a low-genus curve, it cannot have a second such map that is independent of
the first.

Proposition 3.2 (Castelnuovo–Severi inequality). Let F , F1, F2 be function fields of curves
over k, of genera g, g1, g2, respectively. Suppose that Fi ⊆ F for i = 1, 2 and the compositum of
F1 and F2 in F equals F . Let di = [F : Fi] for i = 1, 2. Then

g 6 d1g1 + d2g2 + (d1 − 1)(d2 − 1).

Proof. See [Sti09, Theorem 3.11.3]. 2
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Proof of Theorem 1.4. Let X0(n)
h−→ P1 be a dominant rational map of minimal degree.

Case I: h factors through X0(n)
c−→ P1. Then

deg h > D0(n) = (1 + o(1))
dn

n

by Proposition 3.1(b), so deg h is much larger than n when n is large.

Case II: h does not factor through X0(n)
c−→ P1. Then the compositum of k(c) and k(h)

in the function field k(X0(n)) is strictly larger than k(c). Because of the Galois group
(Proposition 3.1(d)), the only nontrivial extension of k(c) in k(X0(n)) is the whole field k(X0(n)).
Thus k(c) and k(h) generate k(X0(n)). By Proposition 3.2,

g(X0(n)) 6 (D0(n)− 1)(deg h− 1).

Thus

deg h > 1 +
g(X0(n))

D0(n)− 1
=

(
1

2
− 1

2d
− o(1)

)
n

as n →∞, by Proposition 3.1(b),(c). 2

The following lemma, which says in particular that Y1(m,n)ζ
z

→ A1 is étale above 0, will yield
genus inequalities to combine with the Castelnuovo–Severi inequality in the proof of Theorem 1.1.

Lemma 3.3. Let k be a field of characteristic 0 such that µd ⊆ k. Let m and n be positive
integers, and let ζ ∈ µd − {1}. Then the polynomial Φn(ζ−1fm−1(0), c) ∈ k[c] has only simple
roots, and their number is dm−2D1(n) if m > 2.

Proof. First suppose that n does not divide m−1. In this case, the roots of Φm,n(0, c) are distinct
by [HT15, Theorem 1.1], and therefore the roots of Φn(ζ−1fm−1(0), c) are distinct by (3).

Now suppose that n divides m − 1. By [Eps12, Proposition A.1], the roots of Φn(0, c) are
simple. If c is such a root, then the polynomial f = fc satisfies fn(0) = 0, so fm−1(0) = 0 and
Φn(ζ−1fm−1(0), c) = 0. Thus Φn(0, c) divides Φn(ζ−1fm−1(0), c). The factorization (3) yields

Φm,n(0, c)

Φn(0, c)d−1
=

∏
ζ∈µd−{1}

Φn(ζ−1fm−1(0), c)

Φn(0, c)
. (4)

By [HT15, Theorem 1.1], Φm,n(0, c)/Φn(0, c)d−1 has only simple roots, none of which are also
roots of Φn(0, c). Combining this with (4) shows that Φn(ζ−1fm−1(0), c) has only simple roots.

It remains to prove deg Φn(ζ−1fm−1(0), c) = dm−2D1(n). In fact, this is [Gao16, Lemma 4.8].
In our notation, the argument is as follows. By induction on m, the degree of the polynomial
fm−1(0) ∈ k[c] is dm−2 if m > 2. Hence, by induction on e, we have deg fe(ζ−1fm−1(0)) = dedm−2

for each e > 0. Thus the c-degree of fe(ζ−1fm−1(0)) − ζ−1fm−1(0) is dm−2 times the z-degree
of fe(z)− z for each e > 1. Substituting ζ−1fm−1(0) for z in (1) shows that

degc Φn(ζ−1fm−1(0), c) = dm−2 degz Φn(z, c) = dm−2D1(n). 2

Proof of Theorem 1.1 in characteristic 0.
(a) By Theorem 2.1, the dynatomic curves over k are the curves Y1(n) and Y1(m,n)ζ , and

they are geometrically irreducible.
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(b) The curves Y1(n) and Y1(m,n)ζ dominate X0(n), so their gonalities are at least the
gonality of X0(n), by [Poo07, Proposition A.1(vii)]. In light of Theorem 1.4, it remains to prove
that in each tower

· · · −→ Y1(m,n)ζ −→ Y1(m− 1, n)ζ −→ · · · −→ Y1(1, n)ζ

for fixed n and ζ, the gonality tends to ∞ as m →∞.

Let gm = g(Y1(m,n)ζ) and γm = γ(Y1(m,n)ζ). Let Y1(m,n)ζ
h−→ P1 be a dominant rational

map of the minimal degree γm.

Case I: h factors through a curve Z with k(Y1(m−1, n)ζ)⊆ k(Z) ( k(Y1(m,n)ζ). These inclusions
imply γm−1 6 γ(Z) (by [Poo07, Proposition A.1(vii)]) and 2γ(Z) 6 deg h = γm, respectively.
Combining these yields γm > 2γm−1. Thus γm grows, by induction on m.

Case II: h does not factor through any such curve Z. Denote by πm the degree-d map

πm : Y1(m,n)ζ −→ Y1(m− 1, n)ζ

(z, c) 7−→ (f(z), c),

and let π̃m : X1(m,n)ζ → X1(m − 1, n)ζ be its extension to the smooth projective models. Let
Rm be the ramification divisor of π̃m.

Applying Proposition 3.2 to πm and h yields

gm 6 dgm−1 + (d− 1)(γm − 1),

so it suffices to show that gm−dgm−1 →∞ as m →∞. By Riemann–Hurwitz, this is equivalent
to showing that degRm →∞ as m →∞. In the fiber product diagram

Y1(m,n)ζ
πm //

z
��

Y1(m− 1, n)ζ

z
��

A1 f // A1

both vertical morphisms are étale above 0 by Lemma 3.3, while f has ramification index d at 0,
so π̃m has ramification index d at each point of Y1(m,n)ζ where z = 0. For m > 2, the number
of such points is dm−2D1(n) by Lemma 3.3. Thus degRm > (d − 1)dm−2D1(n), which tends to
∞ as m →∞. 2

4. Gonality in characteristic p

4.1 Reduction to the case of a finite field
Let Fq = Fp(µd).

Lemma 4.1. Theorem 1.1 for Fq implies Theorem 1.1 for any characteristic p field k containing
µd.

Proof. Theorem 1.1(a) for Fq implies that the dynatomic curves over k are just the base
extensions of the dynatomic curves X over Fq, and that they are geometrically irreducible too.
We will prove in § 4.4 that the smooth projective model of each X has an Fq-point. Then [Poo07,
Theorem 2.5(iii) and Proposition A.1(ii)] imply γ(Xk) >

√
γ(X), which implies Theorem 1.1(b)

for k. 2
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4.2 Symbolic dynamics
In order to prove the finiteness of the set of dynatomic curves of bounded degree over the c-line,
and to prove that the dynatomic curves of higher degree have many Fq-points above c = ∞,
we need to analyze the splitting above c = ∞ in dynatomic curves. This splitting is given in
Lemma 4.2 below. The symbolic dynamics approach yielding Lemma 4.2 is standard (cf. [Mor96,
Lemma 1]), but the ways that Lemma 4.2 will be applied in subsequent sections are not standard.

View f(z) as a polynomial in z over the local field Fq((c−1)). Normalize the valuation v on
Fq((c−1)) so that v(c−1) = 1, and extend v to an algebraic closure. Let t = c−1/d, so Fq((t)) is a
totally tamely ramified extension of Fq((c−1)) of degree d.

Lemma 4.2.

(a) For any nonnegative integers n > m, the polynomial fn(z)− fm(z) over Fq(c) is separable
and splits completely over Fq((t)).

(b) Each zero of fn(z)− fm(z) has valuation −1/d and generates Fq((t)) over Fq((c−1)).

Proof. The ideas in the following argument are well known; cf. [Mor96, Lemma 1].
(a) For each dth root of −c, interpreting (−c+ z)1/d as (−c)1/d(1− c−1z)1/d and expanding

(1 − c−1z)1/d in a binomial series defines a branch of the inverse of zd + c on the open disk
D := {z ∈ Fq((t)) : v(z) > v(c)}. Taking the derivative of (−c + z)1/d shows that each branch
is a contracting map D → D. These branches have disjoint images, each a smaller open disk
around a different dth root of −c. Let S be the set of these d functions. Each finite sequence
of elements of S defines a composition of functions, and for each m, the images of the different
m-fold compositions are disjoint open disks. For each infinite sequence s1, s2, . . . of elements of
S, the images of s1 · · · sm for m > 1 are nested open disks whose radii tend to 0, so they have a
unique point in their intersection; denote it [s1s2 · · ·]. Any two distinct infinite sequences yield
two points in disjoint disks, so these points are distinct. Since f ◦ s1 is the identity, f maps
[s1s2 · · ·] to [s2s3 · · ·]. For fixed nonnegative integers n > m, any n-long sequence s1, . . . , sn in
S extends uniquely to an infinite sequence (si) satisfying si+n = si+m for all i > 1, and then
[s1s2 · · ·] is a zero of fn(z)−fm(z). There are dn of these, so they are all the zeros. In particular,
these zeros are distinct elements of Fq((t)). This implies that fn(z)− fm(z) is separable.

(b) The image of each s ∈ S consists of elements of valuation exactly −1/d. Thus each
element [s1s2 · · ·] has valuation −1/d. In particular, each zero of fn(z) − fm(z) generates an
extension field of Fq((c−1)) of ramification index divisible by d; this extension field can only be
the whole field Fq((t)). 2

4.3 Dynatomic curves of low degree
It is here that we use the trick requiring the ground field to be finite.

Lemma 4.3. For each e > 1, the set of dynatomic curves X over Fq such that deg(X
c

→ P1) = e
is finite.

Proof. Suppose that Q(z) =
∑e

r=0 qrz
e−r is a monic degree-e factor of fn(z)− fm(z) over Fq(c)

for some n and m. For each r, the coefficient qr is the rth elementary symmetric polynomial
evaluated at the negatives of the zeros of Q; those zeros have valuation −1/d by Lemma 4.2(b),
so v(qr) > −r/d. On the other hand, by Gauss’s lemma, qr ∈ Fq[c], so deg qr 6 r/d. Thus there
are only finitely many possibilities for each qr, and hence finitely many possibilities for Q, each
of which yields one dynatomic curve. 2
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4.4 Gonality of dynatomic curves
Proof of Theorem 1.1. By Lemma 4.1, we may assume that k = Fq.

(a) Let X be the smooth projective model of a dynatomic curve, corresponding to a factor
of fn(z) − fm(z) for some n and m. By Lemma 4.2(b), fn(z) − fm(z) splits completely over

Fq((t)), and the preimage of∞ under X
c

→ P1 consists of Fq-points, each of ramification index d.
Every irreducible component Z of XFq

dominates P1 via c and hence must contain one of those

Fq-points, say x. Then each Gal(Fq/Fq)-conjugate of Z contains x. On the other hand, since XFq

is smooth, its irreducible components are disjoint. Thus Z equals each of its conjugates, so Z
descends to an irreducible component of X, which must be X itself. (This proves also that X
has an Fq-point, as promised in the proof of Lemma 4.1.)

(b) To bound gonality from below, we use Ogg’s method of counting points over a finite
field; cf. [Ogg74], [Poo07, § 3], and [DKO+19, § 4]. Let X be the smooth projective model of a

dynatomic curve. Let e = deg(X
c

→ P1). Each preimage of∞ in X is an Fq-point of ramification
index d, so there are e/d such points. On the other hand, P1 has only q + 1 points over Fq, so
any nonconstant morphism X → P1 has degree at least e/(d(q + 1)). As X varies, e → ∞ by
Lemma 4.3. 2

5. Strong uniform boundedness of preperiodic points

Proof of Theorem 1.7. Without loss of generality, K = k(u) for some indeterminate u. Given
L, let Y be the smooth projective integral curve over k with function field L. The condition
[L : K] 6 D implies that Y has gonality at most D, so each irreducible component of Yk has
gonality at most D. For c ∈ L not algebraic over k, if z ∈ L and n > m satisfy fn(z)−fm(z) = 0,
then (z, c) is a nonconstant and hence smooth L-point of the curve fn(z)− fm(z) = 0 in A2, so
it yields an L-point on a dynatomic curve X corresponding to a factor of fn(z) − fm(z). This
L-point defines a nonconstant k-morphism Y → X, so γ(X) 6 γ(Y ) 6 D. By Theorem 1.1(b),
this places a uniform bound on n. For each n, the number of preperiodic points of zd + c
corresponding to that value of n is uniformly bounded by

∑n−1
m=0 deg(fn(z) − fm(z)) = ndn, so

bounding n bounds the number of preperiodic points too.
If k is finite and c lies in the maximal algebraic extension ` of k in L, then all the preperiodic

points of zd + c in L are in `, but [` : k] 6 D, so the number of preperiodic points is uniformly
bounded by (#k)D. 2

To prove Theorem 1.10, we need the following result of Frey [Fre94, Proposition 2], which in
turn relies on Faltings’s theorems on rational points on subvarieties of abelian varieties.

Lemma 5.1. Let C be a curve defined over a number field K. Let D > 1. If there are infinitely
many points P ∈ C(K) of degree 6 D over K, then γ(C) 6 2D.

Proof of Theorem 1.10. For each (m,n), let Sm,n be the set of (z0, c) ∈ Q×Q such that z0 and
c belong to some number field K of degree 6 D, and iteration of zd + c maps z0 into a cycle of
length exactly n after exactly m steps; thus Sm,n ⊆ Y1(m,n)(Q). Suppose that the conclusion
fails; then, for some n 6 N , there exist infinitely many m > 1 for which Sm,n is nonempty. Fix
such an n.

Let m0 > 1. By choice of n, the disjoint union
∐
m>m0

Sm,n is infinite. For each m >m0, the
c-coordinate map Y1(m,n) → A1 factors through Y1(m0, n), so we obtain maps of sets∐

m>m0

Sm,n −→ Sm0,n −→ Q. (5)
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On the other hand, by Northcott’s theorem [Nor50, Theorem 3], for any given c ∈ Q, the set of
preperiodic points of zd + c of degree 6 D over Q is finite; thus each c ∈ Q has finite preimage
under the composition (5). Hence the image of (5) is infinite, so Sm0,n is infinite. Thus some
Q(µd)-irreducible component Y1(m0, n)ζ of Y1(m0, n) contains infinitely many points of degree
6 D over Q(µd). By Lemma 5.1, γ(Y1(m0, n)ζ) 6 2D.

The previous paragraph applies for every integer m0 > 1, contradicting Theorem 1.1(b). 2
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