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Nonlinear Hall-magnetohydrodynamic dynamos associated with coherent structures in
subcritical shear flows are investigated by using unstable invariant solutions. The dynamo
solution found has a relatively simple structure, but it captures the features of the typical
nonlinear structures seen in simulations, such as current sheets. As is well known, the Hall
effect destroys the symmetry of the magnetohydrodynamic equations and thus modifies
the structure of the current sheet and mean field of the solution. Depending on the strength
of the Hall effect, the generation of the magnetic field changes in a complex manner.
However, a too strong Hall effect always acts to suppress the magnetic field generation.
The hydrodynamic/magnetic Reynolds number dependence of the critical ion skin depth
at which the dynamos start to feel the Hall effect is of interest from an astrophysical point
of view. An important consequence of the matched asymptotic expansion analysis of the
solution is that the higher the Reynolds number, the smaller the Hall current affects the
flow. We also briefly discuss how the above results for a relatively simple shear flow can
be extended to more general flows such as infinite homogeneous shear flows and boundary
layer flows. The analysis of the latter flows suggests that interestingly a strong induction of
the generated magnetic field might occur when there is a background shear layer.
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1. Introduction

The aim of this paper is to theoretically and numerically investigate the impact of the
Hall effect on a magnetohydrodynamic (MHD) dynamo driven in shear flows. The Hall
effect is one of the two-fluid effects that are neglected in the usual MHD framework.
The effect appears as an additional term in Ohm’s law, representing the Hall current
induced when the difference in drift motion between ions and electrons occurs. There
are many astrophysical and engineering situations where the effect of Hall current must be
taken into account. The interstellar medium (Spangler 2001), neutron stars (Goldreich &
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Reisenegger 1992; Shalybkov & Urpin 1997; Hollerbach & Rüdiger 2002; Gourgouliatos,
Hollerbach & Archibald 2018; Igoshev et al. 2021), ionospheric dynamos (Kelly 2009),
solar wind turbulence (Carbone 2012), wave mode conversion in the solar atmosphere
(Cally & Khomenko 2015; Raboonik & Cally 2019), weakly ionised accretion disks
(Balbus & Terquem 2001; Sano & Stone 2002; Bai 2015; Béthune, Lesur & Ferreira 2017)
are good examples, and the Hall effect is often incorporated in nuclear fusion studies as
well (Mahajan & Yoshida 2000; Hameiri & Ishizawa 2005; Hori & Miura 2008). Very
recently, a plasma Couette flow experiment has finally become available and interest in the
shear-driven Hall-MHD flows has been rapidly increasing (Flanagan et al. 2020; Milhone
et al. 2021).

The analysis of MHD flows with a Hall term is known to be not easy because it appears
as a nonlinear term for the magnetic field in the induction equation. This nonlinear term
not only makes it impossible to describe the mechanism of magnetic field generation by
linear theory alone but also breaks the symmetry of the MHD equations (see Meyrand &
Galtier 2012 for example). From the viewpoint of numerical calculations, this nonlinear
term is also troublesome because it excites the high-frequency modes in the magnetic
field spectrum (Mininni, Gómez & Mahajan 2005; Gómez, Mininni & Dmitruk 2010;
Miura & Araki 2014). For these reasons, the properties of Hall-MHD flows are much
less understood than those of usual MHD flows, especially in the high-Reynolds-number
regime of practical importance.

An MHD dynamo is a state in which a magnetic field is produced by the motion of an
electrically conducting fluid alone, without the need for an external magnetic field. Many
excellent review papers link various dynamo theories and astrophysical magnetic field
generation; see Ossendrijver (2003), Charbonneau (2014), Rincon (2019), Tobias (2021)
and references therein. The Hall effect on isotropic dynamos was investigated by Mininni,
Gómez & Mahajan (2003); Mininni et al. (2005) using direct numerical simulations of
Hall-MHD equations in a periodic cube with a stationary helical kinematic forcing. Their
main conclusion was that when the forcing length scale and the Hall length scale (i.e. ion
skin depth) are comparable, the dynamo is enhanced but when the latter scale is larger
than the former scale, the magnetic field generation is inhibited. Mininni et al. (2003,
2005) referred to their dynamos as a large-scale dynamo in the sense that the scale of
the generated magnetic field is larger than the energy-containing scale of turbulent eddies.
Gómez et al. (2010) used a random non-helical forcing to study small-scale dynamos and
concluded similar results to Mininni et al. (2003, 2005). The results that the dynamos
are suppressed when the Hall effect is too strong is consistent with that deduced in the
pioneering study by Helmis (1971), who used the mean-field theory.

The subject of our interest in this paper is a dynamo mechanism associated with the
spontaneous generation of coherent structures in shear flows. The dynamo driven by
a homogeneous shear has been an active area of research in the past decade (Yousef
et al. 2008; Tobias & Cattaneo 2013; Nauman & Blackman 2017; Teed & Proctor 2017;
Herreman 2018; Deguchi 2019a,b). Since the coherent structures in shear flows are strongly
anisotropic and include multiple length scales, it is expected that the impact of the Hall
effect on the associated dynamo will be more complex than that seen in the isotropic cases.
However, to the best of the author’s knowledge, there are no studies that have investigated
the Hall effect on shear-driven dynamos.

Our primal goal is to extend the work by Deguchi (2019a,b) who studied exact
coherent structures in purely MHD plane Couette flow. The exact coherent structures
are unstable three-dimensional nonlinear invariant solutions that mimic the structure of
coherent structures in turbulence (Nagata 1990; Clever & Busse 1992; Waleffe 2001).
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Although unstable solutions might seem to be physically unimportant at first glance,
they are in fact known to play crucial roles in the dynamical systems theory view of
turbulence. Studying the solutions has now become popular among hydrodynamicists,
rapidly advancing our understanding of the subcritical transition problem (Hof et al.
2004; Gibson, Halcrow & Cvitanovic 2008; Kawahara, Uhlmann & van Veen 2012). Here
the subcritical transition refers to transition routes carved out without the aid of linear
instability, which commonly appears in shear flows. Exact coherent structures appear
naturally when one tries to find the threshold perturbation amplitude at which the transition
occurs (Itano & Toh 2001; Skufca, Yorke & Eckhardt 2006; Wang, Gibson & Waleffe
2007).

Surprisingly, some solutions allow us to take their infinite-Reynolds-number limit
through the matched asymptotic expansion analyses (Hall & Sherwin 2010; Deguchi &
Hall 2014a,b; Deguchi 2015; Dempsey et al. 2016). Of course, the reason why rational
asymptotic analysis is possible is that the solutions possess a much simpler structure
than turbulence. Having said that, in recent years some extensions of these theories have
been found to be capable of describing more complex and realistic flows. In the latest
studies, the qualitative properties of near-wall turbulence were reproduced to some extent
by using multiple-scale waves coexisting and interacting through the mean flow (Hall 2018;
Blackburn, Deguchi & Hall 2021). The basis of this multiple-scale state was the fact that
the coherent structure can be sustained at any local station of the flow, independent of
the presence of walls (Blackburn, Hall & Sherwin 2013; Deguchi 2015). Similar localised
coherent structures were also used to build nonlinear structures in various non-parallel
flows such as boundary layer flows (Deguchi & Hall 2015, 2017) and jet flows (Deguchi &
Hall 2018).

The extension of the above hydrodynamic results to MHD flows is an interesting
problem, as subcritical dynamos might be important in some astrophysical flows. The
similarity between the shear-driven MHD dynamo problem and the self-sustaining process
of hydrodynamic coherent structures (Hall & Smith 1991; Waleffe 1997) has been
repeatedly pointed out (Rincon, Ogilvie & Proctor 2007; Riols et al. 2013; Herreman
2018; Deguchi 2019a,b). Deguchi (2019a) recently developed a high-Reynolds-number
asymptotic dynamo theory by combining the vortex-wave interaction theory by Hall &
Smith (1991) and the resonant absorption theory for Alfven waves (Sakurai, Goossens &
Hollweg 1991; Goossens, Ruderman & Hollweg 1995). Interestingly, the theory covers
the limit of large magnetic Reynolds number, which is known to be very important in
explaining the generation of magnetic fields in various celestial bodies. Deguchi (2019b)
then confirmed that the dynamo’s exact coherent structures in plane Couette flow indeed
obey the asymptotic theory.

This paper is organised as follows. In the next section, we begin by briefly formulating
our problem. Section 3 is devoted to the numerical analysis of Hall-MHD dynamo
solutions in plane Couette flow at moderately high Reynolds numbers. We begin our
analysis from the solutions found in Deguchi (2019b) to study the impact of the Hall
effect on the magnetic field generation for both moderate and asymptotically large Hall
parameters. In § 4 we study the large hydrodynamic/magnetic Reynolds number limit
of the solutions using matched asymptotic expansion. We first derive the asymptotic
properties of the plane Couette solution found in the previous section, and then show
how to extend this result to more general flows. In the former part, we will discuss how
to incorporate the Hall effect into the theory by Deguchi (2019a). One of the natural
questions is: what would be the conditions under which the Hall effect can be neglected?
Note here that, because the scaling is strongly anisotropic, it is not obvious how the Hall
term affects the high-Reynolds-number dynamo. The latter part is much motivated by
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the aforementioned hydrodynamic results Deguchi & Hall (2014b) and Blackburn et al.
(2021). Finally, we summarise our findings in § 5.

2. Formulation of the problem

Consider the incompressible viscous resistive Hall-MHD equations in the Cartesian
coordinates (x∗, y∗, z∗). In Gaussian units, the evolution equations for the fluid velocity
v∗ = (u∗, v∗, w∗), the total pressure q∗ and the magnetic field b∗ = (a∗, b∗, c∗) are written
by

(∂t∗ + v∗ · ∇∗)v∗ − 1
clρ

(b∗ · ∇∗)b∗ = − 1
ρ

∇∗q∗ + ν∇2
∗v∗, (2.1)

∂t∗b∗ = ∇∗ ×
[(

v∗ − 1
qene

J∗
)

× b∗ − 4πη

cl
J∗
]

, (2.2)

∇∗ · v∗ = 0, ∇∗ · b∗ = 0, (2.3)

where ∇∗ = (∂x∗, ∂y∗, ∂z∗), ρ is the density, ν is the kinematic viscosity, cl is the speed
of light, qe is the electron charge, ne is the number density of electrons. The magnetic
diffusivity is defined by η = c2

l /4πσc using the electrical conductivity σc. The current
density is J∗ = (cl/4π)(∇∗ × b∗).

For definiteness, in the majority of the paper, we study the dynamos in plane Couette
flow, where the no-slip and perfectly insulating walls at y∗ = ±L∗ are moving with a speed
±U∗ in the x∗ direction. There is no external magnetic field considered and, hence, the
movement of the walls is the only energy input mechanism. The rescaling

v∗ = U∗v, b∗ = √
clρU∗b, q∗ = ρU2

∗q, (2.4a)

(x∗, y∗, z∗) = L∗(x, y, z), ∇∗ = L−1
∗ ∇, t∗ = (L∗/U∗)t, (2.4b)

yields the non-dimensionalised system

(∂t + v · ∇)v − (b · ∇)b = −∇q + 1
R

∇2v, (2.5a)

∂tb = ∇ × [(v − H∇ × b) × b] + 1
RPm

∇2b, (2.5b)

∇ · v = 0, ∇ · b = 0, (2.5c)

where the Reynolds number R, the magnetic Prandtl number Pm and the non-dimensional
Hall coefficient H are defined as

R = U∗L∗
ν

, Pm = ν

η
, H = c3/2

l ρ1/2

4πqeneL∗
. (2.6a–c)

Note that after multiplying L∗, the parameters H, R−1 and R−1P−1
m become the Hall length,

the viscous diffusion length and the Ohmic dissipation length, respectively. Equations
(2.5a)–(2.5c) are to be solved with the boundary conditions

v = (±1, 0, 0), b = ∇ϕ± at y = ±1, (2.7)

[v, b](x, y, z, t) = [v, b](x + Lx, y, z, t) = [v, b](x, y, z + Lz, t), (2.8)

where the outer magnetic potential ϕ±(x, y, z) satisfies ∇2ϕ± = 0 with ϕ± → 0 as y →
±∞.
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It is important to note here that there is no forcing term in (2.5a), although in many other
shear dynamo studies the momentum equations are supported by an additional small-scale
forcing (e.g. Yousef et al. 2008; Tobias & Cattaneo 2013; Teed & Proctor 2017; Herreman
2018). In the case there is no external force, the emergence of the dynamo should be
understood as a subcritical transition phenomenon, as the base field is linearly stable.
The study of such a dynamo has started only recently by the direct numerical simulation
(Nauman & Blackman 2017) and the exact coherent structures (Deguchi 2019a,b).

The laminar Couette flow v = ( y, 0, 0), b = (0, 0, 0) is the only possible solution when
R is small enough, while with increasing R a myriad of non-trivial solutions emerge. In this
paper we will focus only on the travelling wave solutions, and denote their phase speeds
in the x and z directions as sx and sz, respectively.

For each nonlinear solution, the streamwise mean field B̄x( y) and the spanwise mean
field B̄z( y) can be found from

1
LxLz

∫ Lx

0

∫ Lz

0
b dx dz = [B̄x, 0, B̄z]. (2.9)

In order to draw the bifurcation diagrams, we use the mean current on the lower wall(
1

LxLz

∫ Lx

0

∫ Lz

0
(∇ × b) dx dz

)∣∣∣∣
y=−1

= [Iz, 0, −Ix], (2.10)

where

Ix = dB̄x

dy

∣∣∣∣
y=−1

, Iz = dB̄z

dy

∣∣∣∣
y=−1

. (2.11a,b)

3. Results for moderate Reynolds numbers

We first note that the base flow is always linearly stable and, hence, we cannot use the usual
bifurcation analysis to find nonlinear solutions. Hence, we instead continue the dynamo
solution branch found by Deguchi (2019b) for purely MHD Couette flows to the Hall-MHD
regime. Of the two solutions produced by the saddle-node bifurcation, we focus on the
less energetic one which is often called the lower branch solution. This type of solution
is particularly important in discussing subcritical transitions because in the phase space it
typically sits at the edge of the basin of attraction of turbulence. Throughout this section,
we employ the parameters R = 1000, Pm = 1 and the box size Lx = 2π, Lz = π used in
Deguchi (2019b). Unstable travelling wave solutions are captured by running Newton’s
method to the spectrally discretised version of (2.5) from a reasonably good initial guess.
The numerical code is based on the Chebyshev–Fourier spectral code by Deguchi (2019b).
Up to 54th Chebyshev modes are used in the wall-normal direction, and up to 7th and 15th
Fourier harmonics are used in the x and z directions, respectively.

The bifurcation diagrams obtained are summarised in figure 1. The quantity Iz defined
in (2.11a,b) is used in this diagram because it is sensitive to changes in the symmetry of
the magnetic field, as we shall see shortly. The starting point of the continuation is point
A in figure 1(a) and it corresponds to the MHD dynamo solution (H = 0) by Deguchi
(2019b). Note that this point is on the red solid branch, and increasing H along the branch
points B and C are successively obtained. At point C, the red solid branch connects to
the green dashed branch, which can be further continued into large and small H regimes.
The structures of the solutions at points A, B and C are shown in figure 2(a–c), using the
isosurfaces of the streamwise current; in this section we apply a Galilean transformation to
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Figure 1. The bifurcation diagram changing the non-dimensional Hall parameter H. The variation of Iz is
monitored (see (2.11a,b) for definition). The Reynolds number is fixed at R = 1000. Panels (a–d) show the
same result, but differ in which part of the solution branch they are focusing on. (a) Point A corresponds
to the MHD dynamo solution found in Deguchi (2019b). The continuation study began from this point. In
the figure, all points A, B, C are on the red solid curve. The solutions on the red and green branches have
distinct symmetries. (b) The figure showing that the bifurcation diagram is point symmetric with respect to
the origin. The blue dotted branch is the symmetric counterpart of the green dashed branch (this was omitted
in figure (a) for the sake of simplicity). The large H behaviour of the green and blue branches are studied in
(c,d), respectively (irrelevant branches are omitted). In those figures, the black curves represent the large H
asymptotic solutions.

make the travelling wave steady, by redefining the x, z coordinates. Those pictures clearly
show that the appearance of current sheets characterises the structure of the nonlinear
solutions, and moreover, they have a different spatial symmetry at each reference point on
the solution branch.

In order to analyse the symmetry, following Gibson et al. (2008), here we use the
reflection operators

σxy[u, v, w, a, b, c](x, y, z) = [−u, −v, w, −a, −b, c](−x, −y, z), (3.1)

σz[u, v, w, a, b, c](x, y, z) = [u, v, −w, a, b, −c](x, y, −z), (3.2)

and the half-shift operators

τx[u, v, w, a, b, c](x, y, z) = [u, v, w, a, b, c](x + Lx/2, y, z), (3.3)

τz[u, v, w, a, b, c](x, y, z) = [u, v, w, a, b, c](x, y, z + Lz/2). (3.4)

In addition, we consider the operator

γ [u, v, w, a, b, c](x, y, z) = [u, v, w, −a, −b, −c](x, y, z) (3.5)

which corresponds to the flip of the polarity.
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x

z

y

(a) (b)

(c) (d )

Figure 2. The yellow and blue surfaces are isosurfaces of 50 % magnitude of the positive and negative
streamwise current. The isocontours of the current are also shown at the front of the box. The box size is
[0, 2π] × [−1, 1] × [0, π]. Panels (a–c) correspond to A, B and C in figure 1(a), respectively. Panel (d) is the
solution at H = 0 but on the green dashed branch in figure 1.

First, we analyse the symmetry of the system (i.e. the governing equations and the
boundary conditions). When H = 0, namely for the pure MHD case, it is easy to show
that our system is invariant under σz, σxy, γ and their arbitrary combinations. However, for
H /= 0, the system is only invariant under γ σz, σxy and their combinations. The symmetry
breaking with respect to γ reflects the fact that the difference between the motion of
electrons and ions is taken into account in the Hall-MHD equations.

This change in the symmetry of the system of course affects the symmetry of the
solutions. Importantly, the symmetries of the flow field have a great impact on the structure
of the mean magnetic field as shown in figure 3. Note that what the symmetries of the
solution imply for the structure of the mean field is easily seen by examining the x–z
averaged equations, as summarised in table 1. The properties of the solutions at the
reference points are as follows.

(i) The solution at point A computed at H = 0 has invariances against τxσz, τzσxy and
the combination of those two. The current sheet seen in figure 2(a) creates a wavy
pattern in the y–z plane due to the symmetries. Because of the invariances under σxy
and σz, the solution is stationary (sx = sz = 0). Table 1 implies that B̄z( y) = 0, and
B̄x( y) is an odd function. This is certainly consistent with the mean field shown by
the red curves in figure 3.
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–0.06 –0.04 –0.02 0 0.02 0.04 0.06

y

Mean magnetic field

–0.003 –0.0015 0 0.0015

Mean magnetic field

(a) (b)

Figure 3. The x–z average component of the magnetic field generated by the dynamo solutions. In (a) the x
component of the averaged field B̄x( y) is plotted, while in (b) the z component B̄z( y) is used. The red solid,
green dashed and blue dotted curves correspond to the solutions at points A, B and C in figure 1(a), respectively.

Invariance B̄x( y) B̄z( y)

τxσz any zero
τzσxy odd even
γ σz zero any

Table 1. The required properties for the x–z averaged magnetic field when the solution is invariant under the
corresponding operators.

(ii) The solution at point B is invariant for τzσxy but not for σz, because as remarked
earlier the existence of the Hall effect destroys the latter symmetry. The symmetry
breaking is in fact evident in figure 2(b). The flow field travels in the spanwise
direction due to the non-zero phase speed sz produced by the absence of the σz
invariance. Moreover, the spanwise mean magnetic field is generated; B̄x and B̄z are
odd and even functions, respectively, as shown by the green curves in figure 3 and
table 1.

(iii) At point C, the solution becomes steady again. This change of the property of
the solution is due to the invariance to γ σz that holds along the green solution
branch. The recovery of some symmetry in z at this point can also be seen in the
three-dimensional picture in figure 2(c). This symmetry has a different effect on the
mean flow than what we saw at point A; see the dotted blue curves in figure 3 where
we can confirm the vanishing of the streamwise magnetic field.

The green branch can be continued back to the usual MHD limit H = 0; see figure 2(d)
for the corresponding flow field. The invariance for σz is still broken even at pure MHD,
implying that there are two solutions that transform into each other under this operation.
Tracing the branches from the transformed solution we can find the blue dotted curve
shown in figure 1(b). As seen in this figure, the bifurcation diagram is point symmetric to
the origin. This is an expected result because the operation γ keeps the system invariant if
we simultaneously multiply a negative sign to the parameter H.

3.1. Large H asymptotic analysis
Here we study the large H fate of the solutions. The results of increasing H from the green
and blue branches in figure 1(b) are shown in figures 1(c) and 1(d), respectively. As can
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x

z

y

(a) (b)

Figure 4. The same plots as figure 2 but for the large H asymptotic solutions. Panels (a,b) correspond to the
black solid branches seen in figures 1(c) and 1(d), respectively.

be seen in the figures, the generation of the magnetic field is suppressed as H increases.
More specifically, when H is sufficiently large, the strength of the magnetic field seems
to scale like b = O(H−1). It is not so difficult to investigate this asymptotic behaviour by
a regular perturbation analysis employing H−1 as a small parameter. We assume that all
other parameters are O(H0) quantities, and use the regular asymptotic expansion for the
velocity, pressure and magnetic field. The leading-order terms in the velocity and pressure
expansions should be O(H0) but from the asymptotic balance of the induction equation
the magnetic field must expand as b = H−1b0 + · · · .

The leading-order system can be obtained by simply setting H = 1 in the induction
equations and dropping the Lorentz force term from the momentum equations (see (2.5)).
There is no feedback from the magnetic field to the velocity field – in this sense, when H
is large, the dynamo mechanism is mostly kinematic, though the induction equations are
still nonlinear with respect to the magnetic field. The solution of the leading-order system
can be found easily by applying some minor modifications to the numerical code. The
asymptotic result is shown by the black solid curves in figure 1(c,d) and compared with
the finite H results.

In both results, we see that the magnetic field decays in agreement with the asymptotic
result, but the magnetic field generated in figure 1(d) is one order magnitude larger than
that in figure 1(c). This difference is also reflected in the structure of the magnetic field,
as shown in figure 4. Figures 4(a) and 4(b) show the streamwise current of the small
amplitude solution (figure 1c) and the large amplitude solution (figure 1d), respectively.
In figure 4(a) we can see that the structure of the solution is relatively simple, mainly
because the perturbation energy is concentrated in the zeroth and first Fourier modes in
the x-direction. In contrast, the flow shown in figure 4(b) clearly has a more complicated
structure in the x direction.

The structure of the former type of solution is very similar to the purely hydrodynamic
solutions typically found on the edge of laminar and turbulent attractors (Wang et al.
2007). As in the hydrodynamic case, the precise dynamo mechanism of the edge-state
type solutions can be understood by a large-Reynolds-number asymptotic analysis, as we
shall see in the next section. The asymptotic behaviour of solutions with large amplitudes
is still unclear even for the hydrodynamic case and so no in-depth discussions will be
presented in this paper (see Deguchi 2019b also).
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4. Results for large Reynolds numbers

4.1. Large-Reynolds-number limit of the Couette flow solutions
In this section we study the large-Reynolds-number asymptotic property of the solutions,
fixing the magnetic Prandtl number and the periodic box to those used in the previous
section. This means that we are considering the behaviour of vortices of about the
channel width in a situation where both the hydrodynamic and magnetic Reynolds
numbers are large. Note that, although the underlying philosophy of the asymptotic
analysis is somewhat similar to the usual scaling arguments used in the turbulent physics
community, the main question asked in the analysis is that if the assumed scaling is really
mathematically consistent with the governing equations.

We consider asymptotic expansions of the physical quantities choosing the inverse of
the Reynolds number as a small perturbation parameter. This is a singular perturbation
problem and, in general, careful consideration is needed to find the appropriate expansions.
In the current case, the expansions are similar to those obtained by Deguchi (2019a) for
H = 0. The main question here is how large the Hall parameter H should be to balance
the Hall term in the asymptotic structure. We shall see shortly that the appropriate size is
H = O(R−2/3); hence, hereafter we use the rescaled Hall parameter H0 = R2/3H.

The asymptotic theory by Deguchi (2019a) is strongly motivated by the widely accepted
sustainment mechanism of coherent structures in purely hydrodynamic shear flows; the
streamwise mean flow (or roll–streak) produces unstable waves, which induce feedback to
the mean field through the Reynolds stresses. This loop interaction between the mean flow
and the wave is called the vortex-wave interaction (Hall & Smith 1991) or self-sustaining
process (Waleffe 1997) in the shear flow community, and has many similarities with the
mean-field dynamo theory. The unstable wave in MHD flows involves the Alfven wave
which formally becomes singular in ideal approximation. As a result of the resonant
absorption at the singular point, current sheets become prominent in the flow field, as
frequently seen in many MHD simulations.

The form of the outer asymptotic expansions used by Deguchi (2019a) are⎡⎢⎣ u
v

w
q

⎤⎥⎦ =

⎡⎢⎢⎣
ū( y, Z)

R−1v̄( y, Z)

R−1w̄( y, Z)

R−2q̄( y, Z)

⎤⎥⎥⎦+ R−7/6

⎧⎪⎨⎪⎩exp(iα(x − sxt))

⎡⎢⎣ ũ( y, Z)

ṽ( y, Z)

w̃( y, Z)

q̃( y, Z)

⎤⎥⎦+ c.c.

⎫⎪⎬⎪⎭+ · · · ,

(4.1a)⎡⎣ a
b
c

⎤⎦ =
⎡⎣ R−1/3ā( y, Z)

R−4/3b̄( y, Z)

R−4/3c̄( y, Z)

⎤⎦+ R−3/2

⎧⎨⎩exp(iα(x − sxt))

⎡⎣ ã( y, Z)

b̃( y, Z)

c̃( y, Z)

⎤⎦+ c.c.

⎫⎬⎭+ · · · ,

(4.1b)

where α = 2π/Lx is the streamwise wavenumber, Z = z − szt, sz = R−1s and c.c. stands
for complex conjugate. The reason why those expansions are called ‘outer’ expansions is
that different asymptotic expansions must be used within the resonant (or critical) layer.

In the expansions above we leave only the terms necessary to obtain the leading-order
system. The first terms on the right-hand side are the leading-order part of the streamwise
averaged field. Here and hereafter ū and (v̄, w̄) are called streak and roll, respectively,
and we adopt the same terminologies for the magnetic field components ā and (b̄, c̄). The
second terms on the right-hand side are the leading-order part of the field fluctuating in the
x direction. There is only the fundamental Fourier mode in the x-direction; the asymptotic
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analysis can be used to verify that all the harmonics must be higher-order terms and do not
participate in the leading-order system.

A feature of the roll–streak field is that it is x-independent and, hence, is advected only
by the rolls. The R−1 scaling of the roll components was chosen to balance the viscous term
and the advection term in the x-averaged equations. Similarly, the magnetic roll should
be R times smaller than the magnetic streak. However, the absolute magnitude of the
magnetic roll–streak field cannot be determined from the outer problem, because outside
the resonant layer the Lorentz force is negligible and, hence, the equations are linear with
respect to the magnetic field. The analysis of the resonant layer is therefore necessary to
complete the derivation of the asymptotic scaling, but before doing this we shall analyse
the outer problem. Substituting the outer expansions into the governing equations (2.5)
and only retaining the leading-order terms, it is easy to show that the roll–streak equations
are viscous resistive as expected, i.e.

[v̄∂y + (w̄ − s)∂Z − (∂2
y + ∂2

Z)]

⎡⎣ ū
v̄

w̄

⎤⎦ = −
⎡⎣ 0

∂yq̄
∂Zq̄

⎤⎦ , (4.2a)

[v̄∂y + (w̄ − s)∂Z − P−1
m (∂2

y + ∂2
Z)]

⎡⎣ ā
b̄
c̄

⎤⎦− [b̄∂y + c̄∂Z]

⎡⎣ ū
v̄

w̄

⎤⎦

= H0

⎡⎢⎣ 0
∂Z(b̄∂yā + c̄∂Zā)

−∂y(b̄∂yā + c̄∂Zā)

⎤⎥⎦ , (4.2b)

∂yv̄ + ∂Zw̄ = 0, ∂yb̄ + ∂Zc̄ = 0. (4.2c)

On the other hand, all the dissipative effects are negligible in the wave part. After some
manipulation, they can be combined into a single equation for the pressure wave

∂y

(
∂yq̃

(ū − sx)2

)
+ ∂Z

(
∂Zq̃

(ū − sx)2

)
− α2 q̃

(ū − sx)2 = 0. (4.3)

This equation becomes singular when ū − sx vanishes; hereafter we denote this location
as y = f (Z). This singularity appears when the flow is viewed on the outer scale, but a
close-up shows that it is actually regular due to the dissipative effects.

In order to analyse the behaviour of the outer solution around the singularity, it is
convenient to introduce the coordinates (n, l) attached to the curve y = f (Z) in the y–Z
plane; here we denote the signed length measured along straight lines that are normal
to this curve as n, and the arc length measured along the curve as l. The usual regular
singular point analysis for the outer wave equations tells us that as the singularity is
approached the velocity wave amplitude is increased like n−1, whilst the magnetic wave
amplitude grows at an even faster rate proportional to n−2. Those singular behaviours
of the waves are, of course, resolved by the dissipative effects acting on a smaller
scale. The thin dissipative layer surrounding the singularity is exactly what we called
the resonant layer, where we must use the inner expansion. The layer thickness can be
found by the viscous-convective balance for the wave equations. Let us assume that
the dissipation effect in the wave equations is non-negligible in a layer of thickness δ

around the curve y = f (Z). By balancing the advection operator (ū − sx)∂x = O(δ) and
the viscous operator R−1∂2

y = O(R−1δ−2), we arrive at δ = R−1/3 which is nothing but
the well-known classical critical layer thickness.
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The next thing we need to do is to see how the nonlinear self-interaction of the waves
amplified around the resonant layer drive the roll components. First, we note that there are
two kinds of nonlinear terms in the x-averaged momentum equations, namely the Reynolds
stress term and the Lorentz force term. The analysis of the former term is similar to the
asymptotic structure derived in Hall & Sherwin (2010) for purely hydrodynamic shear
flows. Let us denote the size of the velocity wave outside the resonant layer as ρ. Then
the size of the wave inside the layer is found as ρδ−1 taking into account the effect of the
singularity. Since the Reynolds stress only occurs inside the layer with thickness δ, its size
can be estimated to be O((ρδ−1)2δ). From the requirement that this forcing should balance
the viscous stress of the velocity roll of size O(R−2), we have ρ = δ1/2R−1 = R−7/6 as
seen in (4.1). Likewise, Deguchi (2019a) showed that within the resonant layer the Lorentz
force affects the motion of the fluid, and, hence, the dynamo is not kinematic. The structure
of this feedback effect is somewhat similar to that of the Reynolds stress term. However,
as we have already seen, the magnetic wave component grows more rapidly around the
singularity than the velocity counterpart. As a result, the amplitude of the magnetic wave
outside the resonant layer must be O(δρ) = O(R−3/2), which is O(δ) times smaller than
that for the velocity field (see (4.1)). The velocity roll field driven by those two nonlinear
terms induces the streak due to the lift-up effect. The inhomogeneity that appeared in the
streak field plays a crucial role in generating the waves as without it an inviscid instability
is not possible.

The analysis of the x-averaged induction equations is similar to what we saw in the
momentum equations; the waves drive the magnetic roll (poloidal) component through the
electromotive force in the resonant layer, and then the omega effect induces the magnetic
streak (toroidal) component, as seen in Deguchi (2019a). Furthermore, we have to take
account of the Hall effect as an additional wave forcing term. To balance the electromotive
force by the wave with the Ohmic dissipation by the magnetic roll within the resonant
layer, the magnetic roll–streak field must be O(δ) smaller than that of the velocity field,
and, hence, the magnetic streak and roll in the outer scale must be O(R−1/3) and O(R−4/3),
respectively. The magnitude of the Hall term is now completely determined by the analysis
so far, because H = O(R−2/3) must be chosen by the ratio of the hydrodynamic roll size
O(R−1) to the streak magnetic field size O(R−1/3) in view of the outer roll–streak equation
(4.2a). When this size of H is adopted, the wave forcing due to the Hall effect in the
roll system is in fact non-negligible within the resonant layer. Since the effect within the
resonant layer is not trivial, a detailed matched asymptotic expansion analysis is needed
here.

To this end, it is convenient to convert the y, z components of the fields into the n, l
components by introducing the unit vectors en and el. The appropriate inner expansions
for u, a, {(v, w) · en}, {(b, c) · en}, {(v, w) · el}, {(b, c) · el} and q are as follows: for the
wave components,

δ−1R−7/6Ũ0(N, l) + · · · , δ−2R−3/2Ã0(N, l) + · · · , (4.4a)

R−7/6Ṽ0(N, l) + · · · , δ−1R−3/2B̃0(N, l) + · · · , (4.4b)

δ−1R−7/6W̃0(N, l) + · · · , δ−2R−3/2C̃0(N, l) + · · · , (4.4c)

and R−7/6Q̃0(l) + · · · , respectively, and for the roll–streak components,

sx + δλ(l)N + · · · , R−1/3γ (l) + · · · , (4.5a)

R−1{V̄0(l) + δV̄1(N, l)} + · · · , R−4/3{B̄0(l) + δB̄1(N, l)} + · · · , (4.5b)

R−1{W̄0(l) + δW̄1(N, l)} + · · · , R−4/3{C̄0(l) + δC̄1(N, l)} + · · · (4.5c)
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and R−2Q̄0(N, l) + · · · , respectively. Here N = n/δ is the stretched normal coordinate
appropriate to the inner scale. The leading-order wave equations are found as

iα(λNŨ0 − γ Ã0) + λṼ0 + λ′NW̃0 − γ ′C̃0 = −iαQ̃0 + ∂2
NŨ0, (4.6a)

iα(λNW̃0 − γ C̃0) = −∂lQ̃0 + ∂2
NW̃0, (4.6b)

iα(λNÃ0 − γ Ũ0) − λB̃0 − λ′NC̃0 + γ ′W̃0 = P−1
m ∂2

NÃ0, (4.6c)

iα(λNB̃0 − γ Ṽ0) = P−1
m ∂2

NB̃0, (4.6d)

iα(λNC̃0 − γ W̃0) = P−1
m ∂2

NC̃0, (4.6e)

iαŨ0 + ∂NṼ0 + ∂lW̃0 = 0, (4.6f )

iαÃ0 + ∂NB̃0 + ∂lC̃0 = 0. (4.6g)

Of the leading-order roll–streak equations, the important ones are the N and l components
of the momentum equations, and the l component of the induction equations. Integrating
them in the N-direction, we have the conditions

[Q̄0]∞−∞ = χ

∫ ∞

−∞
(|W̃0|2 − |C̃0|2) dN + c.c., (4.7a)

[W̄1N]∞−∞ = ∂

∂l

∫ ∞

−∞
(|W̃0|2 − |C̃0|2) dN + c.c., (4.7b)

[C̄1N]∞−∞ = Pmχ

∫ ∞

−∞
(B̃0W̃∗

0 − Ṽ0C̃∗
0) + PmH0

(
B̃0

∂Ã∗
0

∂N
+ C̃∗

0
∂Ã0

∂l

)
dN + c.c., (4.7c)

where the asterisk represents complex conjugation, and χ(l) = −f ′′/(1 + f ′2)3/2 is the
curvature of the resonant layer.

In principle, we can find the solutions of the wave equations (4.6) by matching them to
the outer solution, and use them to work out the right-hand sides of (4.7). Therefore, the
upshot of the inner analysis is that we can express the jumps [q̄]0+

n=0− , [{(v̄, w̄) · el}n]0+
n=0−

and [{(b̄, c̄) · el}n]0+
n=0− in terms of χ and the values of ūn, ā, q̃ at y = f (Z); in particular,

when Pm = 1, we can derive an analytic expression of the jumps as shown in Appendix
A. The important point here is that the outer roll–streak equations (4.2), the outer pressure
wave equation (4.3) and the jumps form a closure for the leading-order flow. Physically,
the jumps are energy injections from the waves to the rolls, of which the Hall effect cannot
be neglected in those resulting from the induction equation. The jump in the induction
equations essentially corresponds to those empirically modelled by the alpha effect in the
mean-field dynamo theory.

The scaling described above can be confirmed in the numerical solution. It has already
been shown by Deguchi (2019b) for pure MHD flows that the edge-state type solutions
behave in a manner consistent with the asymptotic theory. The solution at point A in
figure 1(a) was used in this study. Using the same solution, here we shall check if the
scaling of the Hall effect derived above can be observed. In order to obtain a sufficiently
accurate asymptotic scaling in the numerical computation, the Reynolds number of the
solution is increased up to 30 000. The computation requires higher resolution in the y and
z directions because, as the theoretical result tells, the resonant layer gets thinner. Figure 5
shows the result of changing H from point A for R = 20 000 and 30 000. The quantity
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Figure 5. The large R convergence of the solution branch. The green dashed and blue dotted curves are
computed at R = 20 000 and R = 30 000, respectively. In order to compute the high-Reynolds-number
solutions we have increased the number of the Chebychev polynomials and the Fourier harmonics in the z
direction to 100 and 28, respectively. While thanks to the asymptotic property of the edge-state type solutions,
we only need three or four Fourier harmonics in the x direction.

Iz defined in (2.11a,b) is one of the appropriate quantities to measure the magnitude
of the magnetic roll. This component is associated with the roll field and, thus, should
be scaled by R4/3 because of the expansion (4.1). Indeed, in figure 5(a) the results for
the two different R collapse onto a single curve after rescaling H by R2/3, and Iz by
R4/3. To check this collapse is not a coincidence, a similar comparison is made for
Ix, as shown in figure 5(b). In this figure Ix is rescaled by R1/3 because it measures
the magnitude of the magnetic streak; see (4.1). We also checked that no inconsistency
with the theory was found using other physical quantities such as the energy of each
component.

4.2. Vertically localised states
In this section we will discuss what would happen if the sides of the periodic box Lx
and Lz, which were fixed in the previous section, are reduced in dependence on the
Reynolds number. For the sake of simplicity, we fix the ratio Lx/Lz and consider a situation
where both Lx and Lz are scaled by h � 1. This is an interesting question as it is well
known that fine eddies typically appear at high-Reynolds-number turbulent flows. For the
purely hydrodynamic cases, a similar computation has been independently performed by
Blackburn et al. (2013) and Deguchi (2015), where the results showed that all nonlinear
effects are concentrated within a layer of depth h, which we hereafter call the production
layer.

For the MHD problem, similar localisation can be observed as shown in figure 6. The
asymptotic property of the localised solution can be easily found. Outside the production
layer there is merely a linear shear which is almost the laminar Couette flow. We require
that the shear ∂yu is O(1) there, so u must be scaled as O(h) in the production layer. After
rescaling v, b, p and H by h, h, h2 and h, respectively, it is easy to see that the new Reynolds
number becomes Rh2. As long as this ‘effective Reynolds number’ is large, the matched
asymptotic expansion analysis, as in the previous section, is possible for the nonlinear
structures in the production layer. The structure of this asymptotic regime analogues to that
found in Blackburn et al. (2013). When h is O(R−1/2), i.e. at the Kolmogorov microscale,
the effective Reynolds number becomes O(1), and, hence, all the terms in the governing
equations must be retained, similar to the hydrodynamic version by Deguchi (2015).
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y
x

z

(a) (b)

Figure 6. The solutions computed for small Lx and Lz. Point D shown in figure 7(b) is used. All the fluctuations
are localised in the production layer, as shown by the isosurfaces of the streamwise current (see figure 2 for
the definition) and the streamwise magnetic field (the colour map on the back). In the upper and lower outer
regions, the flow is merely a linear shear to leading order. Results are shown for (a) R = 10 000, (b) R = 30 000.

The maximum Hall parameter we can take is H = O(R−1/2), which is much larger than
H = O(R−2/3) found in the previous section.

The above order-to-magnitude estimate can be refined a bit more, using the fact that the
flow outside of the production layer is not completely the laminar Couette flow. Let us
consider the Kolmogorov microscale states localised in the production layer, and assume
that it is sandwiched by the upper and lower outer regions (see figure 3 of Deguchi 2017).
We denote the streamwise and spanwise drag on the wall as Dx and Dz, respectively. Then
to leading order the velocity v in the upper and lower outer regions must be written in the
form

(Dxy − Dx + 1, 0, Dzy − Dz) and (Dxy + Dx − 1, 0, Dzy + Dz), (4.8a,b)

respectively. Note that the mean shear should not change across the production layer, and
the outer flows should satisfy the boundary conditions. Likewise using Ix and Iz defined
in (2.11a,b), the leading-order magnetic fields b in the upper and lower outer regions are
written as

(Ixy − Ix, 0, Izy − Iz) and (Ixy + Ix, 0, Izy + Iz), (4.9a,b)

respectively.
The equations satisfied by the canonical structure within the production layer should

be found using the rescaled variable (X, Y, Z) = h−1(x, y, z), assuming that the centre of
the layer is at y = 0 (it is easy to extend the theory to general cases). Requiring that the
rescaled equations must have a unit effective Reynolds number, the appropriate scaling
can be found as

v = 1
Rh

V (X, Y, Z, T), b = 1
Rh

B(X, Y, Z, T), p = 1
R2h2 P(X, Y, Z, T), (4.10a–c)
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where T = t/(Rh2). In fact, by writing H = hĤ, the governing equations become

(∂T + V · ∇̂)V − (B · ∇̂)B = −∇P + ∇̂2V , (4.11a)

∂Tb = ∇̂ × [(V − Ĥ∇̂ × B) × B] + 1
Pm

∇̂2B, (4.11b)

∇̂ · V = 0, ∇̂ · B = 0, (4.11c)

where ∇̂ = (∂X, ∂Y , ∂Z). Here the periodicities of the flow in X, Z become

[V , B](X, Y, Z, T) = [V , B](X + Lx0, Y, Z, T) = [V , B](X, Y, Z + Lz0, T), (4.11d)

with the normalised periodicity Lx0 = Lx/h, Lz0 = Lz/h. For the normal direction, we
require that on exiting the layer the rescaled velocity tends to Y to leading order so that

V → (Y ∓ Dx0, 0, ∓Dz0), B → (∓Ix0, 0, ∓Iz0) (4.11e)

as Y → ±∞. Here Dx0, Dz0, Ix0 and Iz0 are constants determined by solving the canonical
problem (4.11), and, hence, they are functions of Lx0, Lz0, Pm and Ĥ.

The scaling factor h must be fixed by matching the production layer solutions with
the outer solutions. Let us compare the outer solution (4.8a,b) rewritten in terms of the
production layer variable Y and the limiting behaviour of the inner solution (4.11e),

Rh(1 − Dx + DxhY) ≈ Y − Dx0. (4.12)

From the coefficients of Y0 and Y1, we have

Dx ≈ 1 + Dx0

Rh
, Dx ≈ 1

Rh2 , (4.13a,b)

respectively. Thus, to leading order the drag Dx is unity, and h = R−1/2 as we obtained
earlier. The formal asymptotic analysis yields that within the production layer the
leading-order flow satisfies (4.11), and creates the small jump in the streamwise velocity
across the layer. This jump is the origin of the small next-order correction Dx0/R1/2 to the
drag.

However, in order to observe the asymptotic convergence of the finite-Reynolds-number
result, it is more convenient to use the scaling factor

h = 1√
DxR

(4.14)

directly deduced from the second equation in (4.13a,b). The difference to the previous one
is that some higher-order terms seen in the approximation of Dx are incorporated into the
scaling. This is beneficial in observing a better asymptotic convergence in the numerical
result, because some of the next-order correction terms in the asymptotic analysis can be
retained. Figure 7(a) is the numerical results obtained by reducing Lx and Lz from the
solution seen in figure 5, and figure 7(b) is their rescaled version. Here, we consider the
asymptotic convergence of Ix. The scaling is motivated by the fact that I0x appeared in
(4.11e) is a function of Lz0 = Lz/h. Comparing the outer solution (4.9a,b) and the limiting
inner solution (4.11e), we have

Rh(−Ix + IxhY) ≈ −I0x, (4.15)

from which to leading order we have RhIx = I0x. In figure 7(b) the horizontal and vertical
axes are 1/L0x and I0x, and, hence, as expected, we can observe the convergence towards
the canonical result with increasing the Reynolds number. In this figure, h is the one
defined in (4.14). If we use the simpler h = R−1/2, the convergence will be worse and
we will need to use a larger Reynolds number.
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Figure 7. (a) The behaviour of the solutions for small Lx and Lz. The ratio Lx/Lz is fixed to 2 in this figure. The
solution branch is continued from that shown in figure 5. The red solid, green dashed and blue dotted curves
are the result for R = 10 000, 20 000 and 30 000, respectively. Panel (b) is the same result but with the rescaling
obtained by the theory. Typically 180 Chebyshev polynomials are used in y, while in the x and z directions up
to 6th and 24th harmonics are retained, respectively.

4.3. The high-Reynolds-number solution in a shearing box
The fact that the nonlinear interaction is maintained even away from the wall suggests that
the theoretical result so far can be extended to more general situations. For example, the
localised canonical structure can be embedded for any y by using the Galilean transform
to make the streamwise phase velocity almost the same as the laminar velocity. Moreover,
we can even embed multiple nonlinear solutions in the flow, as long as they are far enough
apart from each other.

In the case the coherent structures are placed closely, we need to include some
interaction between them. For effective Reynolds number of order unity, the simplest way
to incorporate such an interaction is to use a framework called the shearing box, which is
a common way to study distributed coherent structures (Schumann 1985; Gerz, Schumann
& Elgobashi 1989; Brandenburg et al. 1995; Hawley, Gammie & Balbus 1995). The flow
configuration considered in this framework is similar to plane Couette flow but the walls
are replaced by the shear-periodic condition – namely the flow is required to be invariant
by moving the flow in the y direction for one period and then Galilean transforming it in
the x direction for the same period. Finding nonlinear solutions in the shearing box at high
Reynolds numbers is not an easy task (Sekimoto & Jiménez 2017). However, when the
effective Reynolds number is sufficiently large, Blackburn et al. (2021) recently showed
that the asymptotic theory by Hall (2018) can be used to compute the solutions more easily.
Here we shall briefly see that such a computation is also possible for MHD flows.

Figure 8 shows the MHD dynamo solution found by this method. The computation
can be done by applying a minor modification to the existing numerical code as follows.
First, as we are assuming a high effective Reynolds number of the flow, we can apply the
asymptotic theory seen in § 4.1. We treat the roll–streak and wave components of the flow
separately. For the shearing box problem, the roll–streak component (x-independent part)
should be described by the sum of the laminar homogeneous shear and the perturbation
field which is periodic in the y direction. Therefore, in the numerical computation, we
simply need to replace the Chebyshev polynomials with Fourier modes for this component.
In figure 8 we plotted 1.5 periods of the solution in y. As can be seen in the figure, there are
two symmetrically arranged waves in one period. Looking at the central half-period box,
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x

z

y

Figure 8. The dynamo solution in the shearing box at R = 10 000. See figures 2 and 6 for the definition of the
surfaces and the colour map. Translucent surfaces are used except for the central wave. The dimension of the
box shown is [0, 2π] × [−3, 3] × [0, π]. The wave is resolved by using 260 Chebyshev polynomials in y, and
taking up to 20th Fourier harmonics in z. For the roll–streak component up to 60th Fourier harmonics are used
in y. Note that in this figure, the size of the central half-period box is the same as that used in figures 2 and 4.

we can see that the basic structure of the solution is very similar to that found in the Couette
flow (see figure 2a). Recall that the wave is induced by the instability of the streak field.
The streak field is not periodic due to the inclusion of the laminar homogeneous shear flow,
and, thus, the generated wave component is not periodic in y. However, the shear-periodic
condition is nevertheless satisfied by the periodic arrangement of the waves with different
speeds appropriate to each half-periodic cell (see Blackburn et al. 2021 for detail). Here we
computed only the central wave and used its copies to calculate the periodic feedback to
the roll component. The amplitude of the central wave decreases rapidly as moving away
from the half-periodic box at the centre. Practically, it is sufficient to use the computational
domain about three times larger than the roll–streak period, so again the modification to
the numerical code is not too difficult.

4.4. Induction through the free-stream coherent structure mechanism
When a localised solution such as the one discussed in § 4.2 occurs in a boundary layer
flow, an interesting phenomenon occurs. The results in this section are an extension of the
purely hydrodynamic study by Deguchi & Hall (2014b), where it is shown that a small
three-dimensional equilibrium solution placed in the vicinity of the free stream has the
ability to produce even larger disturbances in the boundary layer (see figure 2 of Deguchi
& Hall 2017). This amplification mechanism is due to the lift-up effect where the roll
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drives the streak. Here we shall see in the MHD version that the growth also occurs in the
magnetic field through the omega effect.

For the sake of simplicity, here we consider the asymptotic suction boundary layer flow
with the base flow profile v = (1 − e−y, −R−1, 0), where y is the distance from the wall.
For large y, the flow approaches a uniform free stream. We impose periodicity in the x and z
directions with the fixed periods Lx and Lz, respectively. The key point of the theory is that
the unit effective Reynolds number nonlinear states are operational without changing the
length scale, if the velocity is scaled like O(R−1) in the Navier–Stokes equations. Of course
the question is whether the base flow will allow this scaling. Deguchi & Hall (2014b)
showed for the asymptotic suction boundary layer flow that such a situation indeed occurs
when the base shear e−y becomes O(R−1), i.e. when y is O(ln R) (note that a Galilean
transformation can be used to eliminate the constant part so we only need to check the
size of the base shear). This is the location of the production layer, which in this case
coincides with what is known as the edge layer in the boundary layer transition studies
(Duck, Ruban & Zhikharev 1996). Some readers may think that the theory is probably
only applicable to the simple model flow, but note that for any boundary layer flows,
the effective Reynolds number decreases as it approaches the free stream. The truth is
that, somewhat surprisingly, the same production layer solution in the asymptotic suction
boundary layer is generic to many non-parallel boundary layer flows (Deguchi & Hall
2015) and jet flows (Deguchi & Hall 2018).

Let us consider a pure MHD flow (H = 0) in the asymptotic suction boundary layer
flow. We assume that the wall is insulating as in the previous sections. The production
layer problem (4.11) with Ĥ = 0 can be found by applying the coordinate transform
(X, Y, Z, T) = (x − t, y − ln R, z, R−1t), and writing

v = (1, 0, 0) + R−1V (X, Y, Z, T) + · · · , (4.16a)

p = R−2P(X, Y, Z, T) + · · · , b = R−1B(X, Y, Z, T) + · · · (4.16b)

in the governing equations (2.5). The boundary conditions for the production layer problem
are the periodic conditions

[V , B](X, Y, Z, T) = [V , B](X + Lx, Y, Z, T) = [V , B](X, Y, Z + Lz, T), (4.17)

and the far-field conditions

(U, V, W, A, B, C) → (0, −1, 0, 0, 0, 0) as Y → ∞, (4.18a)

(UeY , V, W, AeY , B, C) → (−1, −1, 0, 0, 0, 0) as Y → −∞. (4.18b)

The latter conditions require that, for large negative Y , the flow goes back to the laminar
flow to leading order. However, note that (4.18b) allows some exponential growth of
perturbation at slower rate than that of the base flow.

As the nonlinearity is assumed to be localised within the production layer, the growth
of the perturbation as Y → −∞ can be seen by analysing the linearised equations. As
shown in Deguchi & Hall (2014b), the x dependent part must be more rapidly damped
than the roll–streak component in this limit. Furthermore, among the roll components the
harmonics decay more rapidly than the fundamental mode as they feel the viscous effect
more strongly. Let us write the wavenumber of the fundamental mode as β (note that it
does not necessarily equal to 2π/Lz, see Deguchi & Hall 2014b, 2017). Then the limiting
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behaviour of (V, W) and (B, C) as Y → −∞ may be written as

(V(Y) cos βz,W(Y) sin βz) + · · · and (B(Y) cos βz, C(Y) sin βz) + · · · , (4.19a,b)

respectively. Here the functions V(Y) and B(Y) must satisfy

(∂Y + ∂2
Y − β2)(∂2

Y − β2)V = 0, (4.20a)

(∂Y + P−1
m (∂2

Y − β2))B = 0, (4.20b)

from the linearised roll equations, and W(Y) = −β−1V ′, C(Y) = −β−1B′ from the
continuity and Gauss’s law. Solving (4.20) and looking for the slowest decaying mode
we find that the leading-order behaviour of the roll components

V(Y) ∼ KeωY , B(Y) ∼ Jeγ Y (4.21a,b)

as Y → −∞. Here

ω = 1
2

(√
1 + 4β2 − 1

)
> 0, γ = 1

2

(√
P2

m + 4β2 − Pm

)
> 0 (4.22a,b)

and J and K are constants determined by the production layer solution. The reason for
discarding the exponentially increasing mode in (4.20a) is that if they were present,
nonlinearities would appear, violating the assumption. The roll component is hence
attenuated, but it interacts with the base flow through the lift-up term to promote the streak
growth. Importantly, this growth does not produce any nonlinear effect. Let us write the
leading-order behaviour of U and A as

U(Y) cos βz + · · · and A(Y) cos βz + · · · , (4.23a,b)

respectively. The behaviour of the functions U(Y) and A(Y) can be found from the
linearised streak equations

(∂Y + ∂2
Y − β2)U = e−YV, (4.24)

(∂Y + P−1
m (∂2

Y − β2))A = −e−YB, (4.25)

from which we can find

U(Y) ∼ −Ke(ω−1)Y

2ω
, A(Y) ∼ PmJe(γ−1)Y

Pm + 2γ − 1
, (4.26a,b)

as Y → −∞. Therefore, the growth of the hydrodynamic streak occurs when ω − 1 < 0,
i.e. β <

√
2 as seen in Deguchi & Hall (2014b), while the condition for the magnetic field

growth can be found as

β <
√

1 + Pm, (4.27)

which ensures γ − 1 < 0. Moreover, (∂/∂Pm)(γ − ω) < 0 implies that

γ > ω if Pm < 1, (4.28)

γ ≤ ω if Pm ≥ 1. (4.29)

Therefore, when Pm > 1 (Pm < 1), the magnetic streak grows faster (slower) than the
hydrodynamic part.
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Figure 9. The near-wall perturbation driven by a small nonlinear perturbation in the production layer at y =
ln R. The amplitude F( y) of the magnetic field in the boundary layer for Pm = 0.2, 0.6, 1.0, 1.4, 1.8, 2.2, 2.6,
3.0, 3.4, 3.8 and 4.2. The result for Pm = 1 is highlighted by the green dashed curve. Results are shown for (a)
β = 1, (b) β = 2.

The leading-order field in the boundary layer can be found by seeking a linearised
roll–streak solution that matches the above far-field behaviour of the production layer
solution when y is large and satisfies the boundary conditions at y = 0. The hydrodynamic
part of the leading-order boundary layer solution can be seen in Deguchi & Hall (2014b).
Similarly, after some algebra, the leading-order magnetic field can be found as

a = R−γ F( y) cos βz + · · · , (4.30)

where

F( y) = PmJ

{
(e(γ−1)y − e−(γ+Pm)y)

Pm + 2γ − 1
+ (β − γ )(e−(Pm+γ+1)y − e−(γ+Pm)y)

(Pm + 1)(Pm + γ + β)(2Pm + 2γ + 1)

}
.

(4.31)
The function F( y) is shown in figure 9(a) for β = 1 and various Pm. For this value of β,

consistent with (4.27), no matter how small Pm is the growth of the magnetic streak occurs
towards the wall. Moreover, the larger the value of Pm is, the more rapidly the magnetic
field increases. Note that the behaviour of the hydrodynamic streak is similar to the Pm = 1
result shown in this picture, as highlighted by the thick green dashed curve. When the value
of β is increased to 2, as shown in figure 9(b), the growth of the hydrodynamic streak is
suppressed because the growth condition β <

√
2 is violated. Nevertheless, when Pm > 3,

the growth of the magnetic streak occurs; see (4.27).
Now we include the Hall effect in the flow, considering H > 0. A simple

order-to-magnitude analysis shows that as long as H is smaller than O(1), the leading-order
structure of the production layer remains unchanged. However, even if H is small, the
structure of the amplified magnetic field below the layer will be affected. To see this,
we treat H as a perturbation to the asymptotic structure obtained for the pure MHD. For
example, the magnetic field can be expanded as

b = R−1{B(X, Y, z) + HB1(X, Y, z) + · · · }. (4.32)

In order to analyse the region beneath the production layer, it is convenient to introduce
the new stretched variable ξ = y/(ln R), where ξ = 1 and 0 correspond to the locations
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Roll Streak Mean

Hydrodynamic O(R(ξ−1)ω−1) O(R(ξ−1)(ω−1)−1) O(R(ξ−1)(2 min(ω,γ )−1)−1)

Magnetic O(R(ξ−1)γ−1) O(R(ξ−1)(γ−1)−1) O(R(ξ−1)(ω+γ−1)−1)

Table 2. The size of the perturbation beneath the production layer. Here ξ = 1 is the location of the production
layer, and ξ = 0 corresponds to the boundary layer. Note that the hydrodynamic components do not include
the base flow. The roll, streak and mean components refer to the poloidal, toroidal, and x–z averaged fields,
respectively.

of the production layer and the boundary layer, respectively. The solution we developed
earlier is valid for ξ ∈ (ξc, 1), where ξc is the position at which the leading-order structure
breaks down due to the Hall effect. The scenario of the breakdown is as follows. (i) First
we note that a growing y-z mean magnetic field can be generated by the electromotive
force. The size of the forcing can be found by the interaction of the magnetic streak
and the hydrodynamic roll. (ii) The magnetic roll component in B1 is driven by the Hall
term, whose leading-order part comes from the interaction of the mean magnetic field
and the magnetic roll in B. This forcing can grow beneath the production layer, and,
thus, the next-order magnetic roll can also grow towards the wall. (iii) In summary, the
magnetic roll component in B should decay, but that in B1 can grow. The breakdown of the
asymptotic expansion occurs when B and HB1 become the same size. At this breakdown
point, we need to solve a nonlinear induction equation, similar to what we saw in § 3.1.
The nonlinearity suppresses the growth of the magnetic field for ξ < ξc.

To determine xc, the size of each component appeared in the above argument needs to
be identified as follows.

(i) We already know the behaviour of the leading-order roll–streak as seen in (4.21a,b)
and (4.26a,b). Using Y = (ln R)(ξ − 1) and recalling (4.16), the size of them in
terms of the original variables v, b can be found as shown in table 2. For example, the
size of the magnetic streak is O(R−1e(γ−1)Y) = O(R(ξ−1)(γ−1)−1). At the boundary
layer (ξ = 0), the size is O(R−γ ) which is consistent with our earlier result (4.30).

(ii) Next, we estimate the size of the x–z averaged part of the perturbation. The
mean magnetic field is driven by the electromotive force. The behaviour of this
forcing term can be found as e(ω+γ−1)Y by multiplying the magnetic streak and
the hydrodynamic roll. The mean field behaves like this forcing as Y → −∞. The
behaviour of the hydrodynamic part can be found in a similar manner by noting that
it is driven by the Reynolds stress and the Lorentz force.

(iii) Finally, we consider the roll component in B1. This component satisfies an equation
similar to (4.25), but forced by the Hall term. As the leading-order part of the
forcing comes from the interaction of the magnetic mean field and the magnetic
roll component, it behaves like e(2γ+ω−1)Y . The size of the next-order roll in terms
of the original variable is O(R−1He(2γ+ω−1)Y) = O(HR(ξ−1)(2γ+ω−1)−1).

The asymptotic expansion breaks down when O(R(ξ−1)γ−1) = O(HR(ξ−1)(2γ+ω−1)−1).
The critical value ξc can be found by solving R(ξc−1)γ−1 = HR(ξc−1)(2γ+ω−1)−1, i.e.

ξc = ln(HR1−γ−ω)

ln(R1−γ−ω)
. (4.33)
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The above discussion holds even when the effective Reynolds number in the production
layer is large, but the scaling becomes a bit more complicated.

5. Conclusion

The nonlinear coherent structures and their associated dynamo mechanism have been
studied for Hall-MHD plane Couette flow, which would be the simplest problem in
investigating the Hall effect for dynamos driven by a shear. The present study has two
implications. The first, of course, is that it adds to our knowledge of the subcritical
transition route to a dynamo. As remarked in § 1, it is not possible to discuss the generation
of such a transition route in the framework of linear stability analysis, and, therefore,
it is essential to investigate the solutions sitting at the edge of the basin of attraction
of dynamo turbulence. What precise role the solutions found in this study will actually
play in the dynamics is left to future research. However, the link between the solutions
and turbulence may be justified in view of a number of shear flow studies where it was
repeatedly confirmed that the network woven between the solutions forms the backbone
of turbulent dynamics. Another significance is that, from a broader perspective, this study
revealed the fundamental asymptotic property of the nonlinear structures appearing in
Hall-MHD turbulence by using equilibrium solutions as simpler representative samples.
The asymptotic analysis helped us to clarify the generic physical mechanism of the
nonlinear vortices through the reduction of the governing equations.

In § 3 starting from the solution found by Deguchi (2019b), we investigated how the
magnetic field strength and structure change with respect to the Hall parameter H, which
is defined by the ratio of the ion skin depth to the typical length scale of the system. As H
is varied from zero, the solution branch first behaves in a rather complicated manner, but
then eventually shows some asymptotic property as seen in figure 1. When the magnitude
of H is not so large, the symmetry breaking of the system due to the Hall current influences
the structure of the current sheet, which characterises the generated magnetic field. For the
moderate values of H, the magnetic field generation could be enhanced. However, this is
merely numerical and not asymptotic – although the solution we computed indeed shows
the enhancement, this is not necessarily the case for all solutions. While as the Hall scale
becomes larger than the eddy scale, the dynamo mechanism must be suppressed. This
is asymptotic – it happens for any solution, and the generation of the magnetic field can
be suppressed as much as possible by adjusting the Hall parameter. Those trends of the
Hall effect on the magnetic field generation is somewhat similar to the results obtained
for isotropic dynamos at relatively small Reynolds numbers (Mininnii et al. 2003, 2005;
Gómez et al. 2010). The main reason for this would be that in § 3, the Reynolds number
was fixed at a moderate value. At higher Reynolds numbers, the flow structure should
involve multiple scales and, hence, more interesting phenomena should be observed.

In § 4 the large-Reynolds-number limits of the solutions were studied by the method of
matched asymptotic expansion. The analysis in this section is valid for constant magnetic
Prandtl number, i.e. both the hydrodynamic and magnetic Reynolds numbers are taken
to be large. Section 4.1 is the result when the computational box dimensions were fixed,
which means that we focused on eddies with a maximum scale of about the channel width.
On the other hand, in § 4.2 the box size was reduced as the Reynolds number increases,
so that we have the eddies of Kolmogorov microscale. For the largest/smallest eddies, the
Hall effect begins to appear when H becomes O(R−2/3)/O(R−1/2), implying that the larger
the size of the eddies, the more strongly they are subject to the Hall effect. An important
consequence here is that when the Reynolds number is very large, the Hall current is
non-negligible even if the Hall parameter is very small. As remarked in § 1, the Hall term
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is usually omitted in many MHD flow studies, but our results suggest that at large Reynolds
numbers, one must carefully consider whether this approximation is indeed acceptable.

The above asymptotic theory is at least well consistent with the lower branch (or the
edge-state type) solutions. However, note that this is almost certainly not the only possible
expansion. Indeed, according to Deguchi (2019b), the upper branch solution has a much
stronger magnetic field than the lower branch. The transition from the lower to the upper
branch (or chaotic state surrounding it) is typical in shear flows, and the scaling of the
lower branch implies that only an asymptotically small magnetic perturbation is required
to trigger the transition. It is not known what the scaling will be in turbulent flows, but
the question of whether there is a dynamo state with a finite magnetic field in the limit of
infinite magnetic Reynolds number has recently been solved by Deguchi (2020a). On the
other hand, the situation is somewhat different for the large H fixed R asymptotic theory.
This is a simple regular perturbation problem for a small parameter H−1, and it is unlikely
that there are other possible expansions. Therefore, it is highly likely that all solutions obey
the scaling found in § 3.

The asymptotic structure studied in § 4.1 is based on the theory by Deguchi (2019a),
where the current sheet drives the mean (roll–streak) field through the mean electromotive
force. The Hall current is found to be one of the leading-order effects there. The fact
that the asymptotic theory simplifies the calculation of this feedback effect is a great
advantage in extending the results to more complex flows. As we saw in the shearing
box calculation in § 4.3, the solution can be easily calculated even when there are multiple
current sheets in the flow. The feedback mechanism of course corresponds to the alpha
effect in the mean-field dynamo theory, but crucially here it is not modelled empirically.
This difference becomes important when the magnetic Reynolds number is large. It is
known that the alpha effect models do not work well in that case, and such a breakdown is
of course not convenient in astrophysics studies (see Hori & Yoshida 2008 for example).
On the other hand, the results of the asymptotic approximation should become more
accurate in this limit, and, therefore, it would be worthwhile to consider some refinement
of the model using the result in this paper.

In § 4.4 the free-stream coherent structure theory by Deguchi & Hall (2014b) was
extended to MHD flows to treat a dynamo generation near the free stream of a boundary
layer flow. Interestingly, even if the generation of the magnetic field by the dynamo is
weak, growth of the magnetic field occurs towards the boundary layer. The amplification
mechanism is effective when the magnetic Prandtl number Pm is greater than 1, but the
growth can occur even when Pm < 1. The only condition under which the magnetic
field amplification can occur is, in effect, if there is a rapid change in the base velocity
field; in other words, it does not depend on the boundary conditions or the detailed
flow configuration. Indeed, as remarked earlier, the free-stream coherent structure theory
has been extended to various shear layers, for example, those generated by non-parallel
boundary layers and jets (see Deguchi & Hall 2015, 2018). Since a sharp shear can be
found in various geophysical and astrophysical problems, the results of this study would
have a wide range of applications; one of the good examples would be the solar tachocline
(Charbonneau et al. 1998).

Finally, we note that the framework discussed in this paper is not limited to shear-driven
dynamos, but can be used for various nonlinear MHD problems subjected to background
magnetic fields. As long as the external fields are not too large, the asymptotic expansion
at high Reynolds numbers remains valid (see Deguchi 2020b). When the mean magnetic
field is stronger, the mechanism of generation of the current sheet may be similar to
that investigated by Bora, Bhattacharyya & Smolarkiewicz (2021), where interestingly
the symmetry breaking due to the Hall effect is also found to play an important role.
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There may also be cases where the mean field can be supported by other instabilities, for
example, those documented in Rüdiger et al. (2018). It is an interesting question how, for
example, the shear-Hall instability affects the coherent structures.
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Appendix A. The analytic expression of the jump conditions

Deguchi (2019a) found for pure MHD (H = 0) that when Pm = 1 an analytic solution of
the inner wave problem (4.6) can be found, and, hence, the jump conditions (4.7) can be
worked out explicitly. Here we will examine how the additional terms,

I =
∫ ∞

−∞

(
B̃0

∂Ã∗
0

∂N
+ C̃∗

0
∂Ã0

∂l

)
dN + c.c. (A1)

= ∂

∂l

(∫ ∞

−∞
Ã0C̃∗

0 dN + c.c.
)

, (A2)

that appear in the Hall-MHD case are calculated. Note that the second equality follows
integration by parts and Gauss’s law (4.6g).

From the wave solution found by Deguchi (2019a) for Pm,

C̃0 = Q̃′
0

S(ζ−) − S(ζ+)

2(iα|λ|)2/3 , Ã0 =
(

iαQ̃0 − γ ′Q̃′
0

iαγ

)
S(ζ−) − S(ζ+)

2(iα|λ|)2/3 , (A3a,b)

where

S(ζ ) = −i2/3
∫ ∞

0
exp

(
− t3

3
− i2/3ζ t

)
dt, (A4)

and

ζ± = sgn(λ)(iα|λ|)1/3(N ± N0), N0 = γ

λ
. (A5a,b)

Using the formulae∫ ∞

−∞

(
S(ζ−)

(iα|λ|)2/3

)(
S(ζ−)

(iα|λ|)2/3

)∗
dN = G0(0)

(α|λ|)5/3 , (A6)∫ ∞

−∞

(
S(ζ−)

(iα|λ|)2/3

)(
S(ζ+)

(iα|λ|)2/3

)∗
dN + c.c. = 2

G0((α|λ|)1/3N0)

(α|λ|)5/3 , (A7)

and after some algebra we can deduce that

I = ∂

∂l

(
−2Im(Q̃0Q̃′∗

0 )
G0(0) − G0((α|λ|)1/3N0)

(α|λ|)5/3

)
. (A8)
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In order to express the jump, we used the functions G0 and G1 defined as

G0(X) = 2π

∫ ∞

0
cos(2Xt) exp

(
−2

3
t3
)

dt,

G1(X) = 2π

∫ ∞

0

1 − cos(2Xt)
X2 t exp

(
−2

3
t3
)

dt. (A9)

By using the above result for the Hall term and the result by Deguchi (2019a) for the
other terms, the jumps (4.7) can be found. Expressing them in terms of the outer variables,
we finally get the following jumps:

[p̄]0+
n=0− = χ

(
2|p̃l|2G0(X̄)

(α|ūn|)5/3

)∣∣∣∣
y=f

, (A10a)

[{(v̄, w̄) · el}n]0+
n=0− =

(
2|p̃l|2G0(X̄)

(α|ūn|)5/3

)
l

∣∣∣∣
y=f

, (A10b)

[{(b̄, c̄) · el}n]0+
n=0− = χ

(ā/ūn)

(α|ūn|)5/3

({
|p̃l|2 − α2|p̃|2

}
l
G1(X̄)

+ 2|p̃l|2
{

(ā|ūn|−2/3)l

ā|ūn|−2/3 G0(X̄) − (ā|ūn|2/3)l

ā|ūn|2/3 G1(X̄)

})∣∣∣∣
y=f

+ H0χ

(
2αIm(p̃p̃∗

l ){G0(X̄) − G0(0)}
(α|ūn|)5/3

)
l

∣∣∣∣∣
y=f

. (A10c)

Here the subscripts l and n represent the corresponding partial derivatives and

X̄ = (α|ūn|)1/3ā
ūn

∣∣∣∣
y=f

. (A11)

Note that the right-hand side of (A10) can be computed by knowing p̃, ū, ā and the
streamwise phase speed of the wave.
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