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A note on surface waves generated by
shear-flow instability
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Morland, Saffman & Yuen’s (1991) study of the stability of a semi-infinite, concave
shear flow bounded above by a capillary–gravity wave, for which they obtained
numerical solutions of Rayleigh’s equation, is revisited. A variational formulation is
used to construct an analytical description of the unstable modes for the exponential
velocity profile U = U0 exp(y/d), −∞ < y 6 0. The assumption of slow waves
(|c| � U0) yields an approximation that agrees with the numerical results of Morland
et al. The assumption of short waves (kd � 1) yields Shrira’s (1993) asymptotic
approximation.

1. Introduction
Morland, Saffman & Yuen (1991, hereinafter referred to as MSY), consider the

stability of a semi-infinite, smooth, monotonic (U ′ > 0) concave (U ′′ > 0) shear flow
U(y) bounded above by a straight-crested capillary–gravity wave. They were motivated
by the conjecture ‘that when a sufficiently strong wind picks up over [an initially]
calm body of water . . . vorticity diffuses into the fluid from the surface and . . . waves
spontaneously appear due to the instability of the [wind-induced] fluid flow . . .’ .
There did not appear to be any observational support for this conjecture at that
time, but Melville, Shear & Veron (1998) have since reported experiments in which
‘the surface current becomes unstable to surface wave modes’ following the initiation
of wind in a wave tank. Moreover, the problem merits consideration in the general
context of hydrodynamic stability and complements the earlier work of Burns (1953)
and Yih (1972) for convex (U ′′ < 0) shear flows.

The complex amplitude φ(y) of the perturbation stream function

ψ(x, y, t) = Re{φ(y)eik(x−ct)}, (1)

where k is a positive wavenumber and c ≡ cr+ici is a complex wave speed, is governed
by Rayleigh’s equation

φ′′ −
(
k2 +

U ′′

U − c
)
φ = 0 (′≡ d/dy, −∞ < y < 0), (2)

subject to the boundary conditions (T is the kinematic surface tension)

(U − c)2φ′ − [U ′(U − c) + g + Tk2]φ = 0 (y = 0) (3)

and

φ→ 0 (ky ↓ −∞). (4)
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MSY obtain numerical solutions of (2)–(4) for three smooth velocity profiles, of which
the simplest is

U(y) = U0e
y/d, (5)

where U0 is the surface velocity and d is a characteristic depth (U0 = ud and d = ∆/2
in MSY). Their results are qualitatively insensitive to the choice among these profiles,
and each comprises a closed loop of relatively slow (cr/U0 � 1), unstable modes
that emerges from c = 0 into Howard’s semicircle based on 0 < c < U0. The
instability is induced by a phase shift across the critical layer (y = yc, where U = c).
The presence of this critical layer contrasts with its absence from Burns’ and Yih’s
smooth, convex profiles and MSY’s piecewise-linear profile (for which the instability
differs qualitatively from that for a smooth profile). None of these profiles possess
inflection points, which introduce additional features (cf. Engevik 2000).

2. Variational approximation (|c| � U0)

Multiplying (2) by φ, integrating by parts from y = −∞ to y = 0 along a path
indented under y = yc (cf. Miles 1957), and invoking (3) and (4), we obtain[

U ′(U − c) + g + Tk2

(U − c)2

]
0

φ2
0 −

∫ 0

−∞

[
φ′2 +

(
k2 +

U ′′

U − c
)
φ2

]
dy = 0 (6)

(the subscript 0 implies y = 0). The quadratic form (6) is stationary with respect to
variations of φ about the solution of (2)–(4) and provides the basis for variational
approximations to c = c(k).

Guided by MSY’s results, we adopt the exponential profile (5) and assume that
|c/U0| � 1.† A suitable trial function then is provided by

φ = φ0e
βy/d, β ≡ (k2d2 + 1)1/2, (7a, b)

which satisfies (2) and (4) for c = 0. Substituting (5) and (7) into (6) and rendering
the result dimensionless, we obtain the dispersion equation

1− c + G[1 + C(β2 − 1)]− (1− c)2[β + I(β, c)] ≡ D(β, c) = 0, (8)

where

c = c/U0, G = gd/U2
0 , C = T/gd2 ≡ (l/d)2, (9a–c)

G is an inverse Froude number, C is an inverse Bond number, l is the capillary length,
D is a dispersion function,

I(β, c) ≡ c
∫ 1

0

z2β−1 dz

z − c
= −(2β)−1F(1, 2β; 2β + 1; 1/c) (10a)

= (2β − 1)−1cF(1, 1− 2β; 2− 2β; c) + πc2β(i− cot2πβ), (10b)

z = exp(y/d), F is a hypergeometric function (Abramowitz & Stegun 1965, §§ 15.3.1,
7), and iπc2β is derived from the indentation under z = c. Note that (10b) is
indeterminate, but I is elementary, if 2β − 1 is a positive integer.

The error in the trial function (7) is O(c), whence an error factor of 1 + O(c2) is
implicit in the variational approximation (8). Accordingly (although the full varia-
tional approximation (8) is worth retaining if c is not small), we approximate (8)

† The solution of (2)–(5) for unrestricted c/U0 may be expressed in terms of hypergeometric
functions (cf. Hughes & Reid 1965).
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by

D(β, c) = D0(β) + D1(β)c− iπc2β = 0, (11)

where

D0(β) =
(β − β+)(β − β−)

β+ + β−
, D1(β) =

4β(β − 1)

2β − 1
, (12a, b)

and

β± = (2CG)−1{1± [(1− 2CG)2 − 4CG2]1/2}. (12c)

The approximation (11) yields the complex eigenvalue

c = cr + ici, cr =
(β − β−)(β+ − β)

(β+ + β−)D1(β)
, ci =

πc2β
r

D1(β)
, (13a–c)

if and only if β+ > β− > 1. This requires G < [2(C +
√
C)]−1 or, equivalently,

U0 > cm[1 + (l/d)]1/2 ≡ U∗, (14)

where cm = (2gl)1/2 is the minimum wave speed for still water. (This sharpens the
condition U0 > cm given by Caponi et al. 1991.) The locus of complex c (MSY’s
‘tongue’) then is traversed from c = 0 as β increases from β− along the upper branch
and returns to c = 0 along the lower branch as β increases to β+. This locus shrinks
to c = 0 for U0 = U∗, and ci = 0 for U0 < U∗. The maximum value of cr (at the
junction of the upper and lower branches) given by (13b) increases from 0 to 1

2
as

U0/U∗ increases from 1 to ∞.

3. Comparison with MSY
Consider, for example, U0/cm = 2 and d/l = π/2, for which (9b, c) and (12c) yield

C = 4/π2, G = π/16, β+ = 11.33 and β− = 1.24. These β± yield λ/∆ = 0.28/4.28 for
the intersections of the dotted (exponential-profile) and solid lines in MSY’s figure
2(b) and agree with their results within the resolution of the plot. The corresponding
maxima are ci = 5.3 × 10−3 at β = 1.5 and cr = 0.243 at β = 3.1, which compares
with cr = 0.23 from MSY’s figure 3(b) (for their error-function profile). The present
ci are too small (< 5 × 10−3 along the upper branch and < 10−4 along the lower
branch) to resolve the locus of instability on the scale of Howard’s semicircle, but we
remark that this locus differs substantially from MSY’s figure 1, which, however, was
intended ‘only . . . as a qualitative sketch’ (Morland, private communication).

The maximum µ = 0.0064 of the dimensionless growth rate (see figure 1)

µ ≡ (d/U0)kci = (β2 − 1)1/2ci (β− < β < β+) (15)

compares with 0.010 from MSY’s figure 3(a) (error-function profile). The limited
resolution of their plot and the difference in velocity profiles provide a plausible
explanation of the discrepancy in this comparison.

The smallness of ci suggests that the predicted instability might be annulled
by viscous dissipation. The damping coefficient for waves on a clean surface is
kci = −2νk2 (Lamb 1932, § 348), which yields the damping ratio

2νk2

kcm
=

2ν

l(2gl)1/2
= 3.0× 10−3 (16)

for the minimum wave speed (kl = 1). This compares with ci/cr ' 4 × 10−2 in the
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Figure 1. The dimensionless growth rate (15) for U0/cm = 2 and d/l = π/2 (C = 4/π2, G = π/16,
β− = 1.24 and β+ = 11.33). Although ci, and therefore µ, is positive for β− < β < β+, it is < 10−4

for 3.6 < β < β+.

neighbourhood of the maximum growth rate, but it is much larger than the damping
ratio over the lower branch of the locus of instability.

4. The limit kd ↑ ∞
Shrira (1993) develops the solution of (2)–(5) as an expansion in

ε = (k2c0)
−1, where k ≡ kd and c2

0 ≡ G(k−1 + Ck), (17a–c)

but he gives explicit results only for his first approximation.
An alternative derivation of this first approximation follows from the adoption of

the asymptotic approximation (which corresponds to potential flow)

φ ∼ φ0e
ky (k ↑ ∞) (18)

as a trial function in (6). Proceeding as in § 2 and invoking (9a–c), (17b, c) and
z = exp(y/d), we obtain

1− c + kc2
0

(1− c)2
= k +

∫ 1

0

z2k dz

z − c
∼ k + πic2k + O(k−1), (19)

which yields (cf. (13b, c) and (15))

cr = 1− c0 − 1
2
k−1 + O(k−2), ci =

πc0c2k
r

2k
[1 + O(k−2)], µ = kci, (20a–c)

in agreement with Shrira’s results, in particular his (5.1). The threshold of instability,
maximum growth rate, and short-wave cutoff calculated from (20) are k− = 1.05,
µmax = 3.7 × 10−3 at k = 1.6 and k+ = 11.26, which compare with k− = 0.73,
µmax = 6.4× 10−3 at k = 0.76 and k+ = 11.29 from (13) and (15).
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