Bull. Aust. Math. Soc. **102** (2020), 439–450 doi:10.1017/S0004972720000192

ON (β, G_{Π}) -UNFAVOURABLE SPACES

HANFENG WANG[®], WEI HE[®] and JING ZHANG[®]

(Received 7 January 2020; accepted 1 February 2020; first published online 16 March 2020)

Abstract

To study when a paratopological group becomes a topological group, Arhangel'skii *et al.* ['Topological games and topologies on groups', *Math. Maced.* **8** (2010), 1–19] introduced the class of (β, G_{Π}) -unfavourable spaces. We show that every μ -complete (or normal) (β, G_{Π}) -unfavourable semitopological group is a topological group. We prove that the product of a (β, G_{Π}) -unfavourable space and a strongly Fréchet (α, G_{Π}) -favourable space is (β, G_{Π}) -unfavourable. We also show that continuous closed irreducible mappings preserve the (β, G_{Π}) -unfavourableness in both directions.

2010 *Mathematics subject classification*: primary 22A05; secondary 54D40, 54E35. *Keywords and phrases*: G_{Π} game, (β , G_{Π})-unfavourable, strategy, topological group.

1. Introduction

All spaces considered here are assumed to be nonempty regular topological spaces unless explicitly stated to the contrary. A paratopological (respectively, semitopological) group is a group endowed with a topology such that the multiplication is jointly (respectively, separately) continuous. A topological group is a paratopological group such that the inversion is continuous. We write \overline{A}^X for the closure of a set *A* in a space *X* and, when no confusion arises, \overline{A}^X can be denoted by \overline{A} . For other terminology and notation, refer to [8].

When does a semitopological group become a paratopological group? What additional conditions are needed to be sure that a paratopological group is actually a topological one? There are many classical results and here we just list a few of them. In 1957, Ellis [7] showed that every locally compact semitopological group is a topological group. In [6], Bouziad proved that every Čech-complete semitopological group is a topological group. Later Kenderov *et al.* [9] proved that a strongly Baire semitopological group is a topological group. To study when the inverse operation of a paratopological group is continuous, Arhangel'skii, Choban and Kenderov introduced the class of (β , G_{Π})-unfavourable spaces (see [2, 3]) and proved the following statement.

© 2020 Australian Mathematical Publishing Association Inc.

Project supported by SDNSF (No. ZR2018MA013) and NSFC (Nos. 11571175, 11801254).

THEOREM 1.1 [2]. If a paratopological group X is a (β, G_{Π}) -unfavourable topological space, then the inversion is quasicontinuous and, therefore, X is a topological group.

The class of (β, G_{Π}) -unfavourable spaces is defined by a topological game, G_{Π} , and it includes many important classes of topological spaces. Locally compact spaces, Čech-complete spaces and pseudocompact spaces are all (β, G_{Π}) -unfavourable, as well as (α, G_{Π}) -favourable. Every (β, G_{Π}) -unfavourable space has the Baire property, so not every metrisable space is in this class.

We study the properties of (β, G_{Π}) -unfavourable spaces, and establish that:

- the product space of a (β, G_{Π}) -unfavourable space and a strongly Fréchet (α, G_{Π}) -favourable space is (β, G_{Π}) -unfavourable;
- a space with a dense (β, G_{Π}) -unfavourable subspace is (β, G_{Π}) -unfavourable;
- a dense G_{δ} -subspace of a (β, G_{Π}) -unfavourable space is (β, G_{Π}) -unfavourable;
- every open subspace of a (β, G_{Π}) -unfavourable space is (β, G_{Π}) -unfavourable;
- every locally (β, G_{Π}) -unfavourable space is (β, G_{Π}) -unfavourable;
- a space that is the union of a family of locally finite (β, G_{Π}) -unfavourable subspaces is (β, G_{Π}) -unfavourable;
- continuous closed irreducible mappings preserve the (β, G_{Π}) -unfavourableness in both directions;
- any image of a (β, G_{Π}) -unfavourable space under a continuous open mapping is (β, G_{Π}) -unfavourable;
- every μ -complete (or normal) (β , G_{Π})-unfavourable semitopological group is a topological group.

2. Preliminaries

Let us recall the topological game G_{Π} [2]. Suppose that X is a topological space and $\{H_n : n \in \omega\}$ is a decreasing sequence of nonempty open subsets of X. We say that $\{H_n : n \in \omega\}$ has the property Π if, whenever $\{W_n : n \in \omega\}$ is a decreasing sequence of nonempty open subsets of X such that $W_n \subset H_n$ for each $n \in \omega$, then $\{W_n : n \in \omega\}$ has at least one cluster point in X.

The topological game G_{Π} is a game played by two players α and β by selecting alternatively nonempty open subsets of a space X. Player β begins the game by selecting a nonempty open subset U_0 of X. Whenever β chooses an open nonempty subset U_n , player α responds by selecting a nonempty open subset V_n such that $V_n \subset U_n$. In turn, player β selects a nonempty open subset $U_{n+1} \subset V_n$ and the game goes on. Continuing this procedure indefinitely, the two players generate a sequence $\{(U_n, V_n) : n \in \omega\}$ of pairs of open nonempty subsets such that $U_{n+1} \subset V_n \subset U_n$ for $n \in \omega$. Every such sequence will be called a play. We say that player α wins the play $\{(U_n, V_n) : n \in \omega\}$ in the G_{Π} -game if the sequence $\{V_n : n \in \omega\}$ has the property Π . Otherwise player β is declared to be the winner of this play.

By a strategy t for player β in the game G_{Π} we mean a 'rule' that specifies each move of player β in every possible situation. More precisely, a strategy t for player β is a sequence of mappings $\{t_n : n \in \omega\}$ such that t_n determines the *n*th move of player β . The domain Dom t_0 of t_0 is $\{X\}$. The value $t_0(X)$ of t_0 is some open nonempty subset of X. The domain Dom t_1 of t_1 consists of all pairs (X, V_0) , where V_0 is an arbitrary nonempty open subset of $U_0 := t_0(X)$. The values of t_1 satisfy the condition $t_1(X, V_0) \subset V_0$ for every $(X, V_0) \in \text{Dom } t_1$. In general, Dom t_{n+1} for $n \ge 1$ consists of all finite sequences $(X, V_0, V_1, \ldots, V_{n-1}, V_n)$, where $(X, V_0, V_1, \ldots, V_{n-1}) \in \text{Dom } t_n$ and V_n is an open nonempty subset of $t_n(X, V_0, V_1, \ldots, V_{n-1})$. The values of t_n satisfy the condition $t_{n+1}(X, V_0, V_1, \ldots, V_{n-1}, V_n) \subset V_n$. The play $\{(U_n, V_n) : n \in \omega\}$ is said to be a t-play if the moves of player β are made according to strategy t. The strategy for player α in G_{Π} can be defined similarly.

A strategy t for player β (respectively, α) is called a winning strategy in the game G_{Π} , if player β (respectively α) wins each t-play according to the winning rule of G_{Π} . If such a strategy t exists, then the space X is called (β , G_{Π})-favourable (respectively, (α , G_{Π})-favourable). If there does not exist a winning strategy t for player β (respectively α) in G_{Π} , then X is called (β , G_{Π})-unfavourable (respectively, (α , G_{Π})-unfavourable), that is, for each strategy t for player β (respectively α), there exists a t-play which is won by α (respectively β). Clearly, every (α , G_{Π})-favourable space is (β , G_{Π})-unfavourable, but the converse is not true.

Let us recall another topological game named G_{S_Y} , where *Y* is a dense subspace of a regular space *X*. The playing rule of G_{S_Y} is the same as that of G_{Π} : player β begins the game by selecting a nonempty open subset U_0 of *X*. Whenever β chooses an open nonempty subset U_n of *X*, player α responds by selecting a nonempty open subset $V_n \subset U_n$. In turn, player β selects a nonempty open subset $U_{n+1} \subset V_n$. Continuing in this way, the two players generate a play $\{(U_n, V_n) : n \in \omega\}$ on *X*. The winning rule is as follows: if every sequence $\{x_n : n \in \omega\}$ with $x_n \in V_n \cap Y$ for each $n \in \omega$ has at least one cluster point in *X*, then α is said to be the winner of the play $\{(U_n, V_n) : n \in \omega\}$; otherwise β wins this play. In particular, when Y = X, this game is denoted by G_S .

A regular space X is strongly Baire if there exists a dense subspace Y such that player β has no winning strategy in the game G_{S_Y} . In particular, every (β, G_S) -unfavourable space is strongly Baire.

3. Main results

LEMMA 3.1. If a space X contains a dense (β, G_{Π}) -unfavourable subspace, then X is (β, G_{Π}) -unfavourable.

PROOF. Assume that \mathcal{B} is a base of the space X and fix some well-ordering on \mathcal{B} . Let Y be a dense subspace of X such that Y is (β, G_{Π}) -unfavourable and let t be an arbitrary strategy for player β in the game G_{Π} played on X. It suffices to show that t is not a winning strategy. To prove this, we will use the G_{Π} game played by the same players α and β on the space Y, and construct a strategy t' for player β in this game.

Let U_0 be the first move of player β under t. Clearly, U_0 is an open nonempty subset of X. Let U''_0 be the first element of \mathcal{B} such that $\overline{U''_0}^X \subset U_0$. Such an element U''_0 of \mathcal{B} does exist because \mathcal{B} is a base of the regular space X. Now let $U'_0 := U''_0 \cap Y$ be the first move of player β under t'. With a response to the first move of β under t', player α takes an open nonempty subset V'_0 of Y. Suppose that V_0 is the first element of \mathcal{B} satisfying $\overline{V_0}^X \cap Y \subset V'_0$. Since Y is dense in X,

$$V_0 \subset \overline{V_0}^X \subset \overline{V_0'}^X \subset \overline{U_0'}^X \subset \overline{U_0''}^X \subset U_0$$

Let V_0 be the response of α to the first move of β under *t*. In turn, player β chooses an open nonempty subset U_1 of *X* under strategy *t*. Proceeding indefinitely, we have a *t*-play { $(U_n, V_n) : n \in \omega$ } and a *t'*-play { $(U'_n, V'_n) : n \in \omega$ } accompanied by a sequence { $U''_0 : n \in \omega$ } of open subsets of *X*, which satisfy the following conditions for each $n \in \omega$:

- (1) $U_{n+1} \subset V_n \subset U_n;$
- $(2) \quad U'_{n+1} \subset V'_n \subset U'_n;$
- (3) $U'_n = U''_n \cap Y$, where U''_n is the first element of \mathcal{B} such that $\overline{U''_n}^X \subset U_n$;
- (4) V_n is the first element of \mathcal{B} such that $\overline{V_n}^X \cap Y \subset V'_n$.

This completes the construction of t'. Obviously, strategy t' is accompanied by t.

By the assumption, *Y* is a (β, G_{Π}) -unfavourable space, so there exists a *t'*-play $\{(U'_n, V'_n) : n \in \omega\}$ such that player α wins this play, that is, $\{V'_n : n \in \omega\}$ has the property Π in *Y*. It suffices to show that the corresponding sequence $\{V_n : n \in \omega\}$ has the property Π in *X*. To this end we take any decreasing sequence $\{W_n : n \in \omega\}$ of nonempty open subsets of *X* such that $W_n \subset V_n$ for each $n \in \omega$. Put $W'_n := W_n \cap Y$ for each $n \in \omega$. Since $V_n \cap Y \subset V'_n$, it follows that $W'_n \subset V'_n$ for $n \in \omega$. Hence $\{W'_n : n \in \omega\}$ has at least one cluster point in *Y*. Fix such a cluster point *y*. Then $y \in \bigcap_{n \in \omega} \overline{W'_n}^X \subset \bigcap_{n \in \omega} \overline{W_n}^X$, which implies that the sequence $\{V_n : n \in \omega\}$ has the property Π . Therefore, *X* is a (β, G_{Π}) -unfavourable space.

The inverse of the above lemma is not valid, that is, not every dense subspace of a (β, G_{Π}) -unfavourable space is (β, G_{Π}) -unfavourable. For instance, the space of real numbers \mathbb{R} is Čech-complete, but its subspace \mathbb{Q} of rational numbers is not (β, G_{Π}) -unfavourable, since it is of the first category.

The following result shows that for a dense G_{δ} -subspace the outcome will be different. Recall that a subspace Y of a space X is said to be a G_{δ} -subspace if there exist countably many open subspaces of X whose intersection coincides with Y.

THEOREM 3.2. If X is a (β, G_{Π}) -unfavourable space and Y is a dense G_{δ} -subspace of X, then Y is a (β, G_{Π}) -unfavourable space.

PROOF. Let $\{O_n : n \in \omega\}$ be a sequence of open subspaces of *X* which witnesses *Y* being a G_{δ} -subspace of *X*, that is, $Y = \bigcap_{n \in \omega} O_n$. Clearly, each O_n is dense in *X*. Assume that \mathcal{B} is a base of the space *X* and fix some well-ordering on \mathcal{B} . Let $t := \{t_n : n \in \omega\}$ be an arbitrary strategy for player β in the game G_{Π} played on *Y*. Then it suffices to show that *t* is not a winning strategy. To prove this, we construct inductively another strategy $t' := \{t'_n : n \in \omega\}$ for β in the game G_{Π} played on *X*, which is accompanied by *t*, as follows.

Player β makes the first move to fix an open nonempty subset U_0 of Y under strategy t. Put $U'_0 := (X \setminus \overline{Y \setminus U_0}^X) \cap O_0$. Clearly, U'_0 is an open nonempty subset of X and is determined by U_0 . Let U'_0 be the first move of player β under strategy t'. As a response to the first move of player β under t', player α chooses an open nonempty subset V'_0 of X. Let V''_0 be the first element of \mathcal{B} such that $\overline{V''_0}^X \subset V'_0$. Clearly, $V''_0 \cap Y \subset U'_0 \cap Y = U_0$. So let $V_0 := V''_0 \cap Y$ be the first move of player α following the first move of player β under t. In turn, player β fixes an open nonempty subset U_1 of Y in the second move under t, and so on indefinitely. Then we have a t-play $\{(U_n, V_n) : n \in \omega\}$ and a t'-play $\{(U'_n, V'_n) : n \in \omega\}$, which are accompanied by a sequence $\{V''_n : n \in \omega\}$ of nonempty open subsets of X. The following conditions are satisfied for each $n \in \omega$:

- (a) $U_{n+1} \subset V_n \subset U_n;$
- (b) $U'_{n+1} \subset V'_n \subset U'_n;$

(c)
$$U'_n = (X \setminus \overline{Y \setminus U_n}^X) \cap O_n;$$

- (d) V_n'' is the first element of \mathcal{B} such that $\overline{V_n''}^X \subset V_n'$;
- (e) $V_n = V_n'' \cap Y$.

Since X is a (β, G_{Π}) -unfavourable space, t' is not a winning strategy for player β . So there exists a t'-play $\{(U'_n, V'_n) : n \in \omega\}$ such that the sequence $\{V'_n : n \in \omega\}$ has the property Π in X. It remains to verify that the corresponding sequence $\{V_n : n \in \omega\}$ has the property Π in Y. Indeed, take any decreasing sequence $\{W_n : n \in \omega\}$ of nonempty open subsets of Y such that $W_n \subset V_n$ for each $n \in \omega$. Furthermore, for each $n \in \omega$ choose an open subset W'_n of X such that $W'_n \cap Y = W_n$ and $W'_{n+1} \subset W'_n$. Since Y is dense in X, for each $n \in \omega$,

$$W'_n \subset \overline{W'_n}^X \subset \overline{W_n}^X \subset \overline{V_n}^X \subset \overline{V''_n}^X \subset V'_n.$$

Hence the set of cluster points of the sequence $\{W'_n : n \in \omega\}$, denoted by *F*, is nonempty. Observe that $\overline{W'_n}^X \subset V'_n \subset O_n$ for each $n \in \omega$. Thus,

$$F = \bigcap_{n \in \omega} \overline{W'_n}^X \subset \bigcap_{n \in \omega} O_n = Y.$$

Clearly, the set of cluster points of $\{W_n : n \in \omega\}$ is *F* too. Therefore, *Y* is a (β, G_{Π}) -unfavourable space.

Arhangel'skii and Reznichenko (see [5] or [4, Theorem 2.4.1]) established that every paratopological group that is a dense G_{δ} -subspace of some regular feebly compact space is a topological group. Recall that a regular space is feebly compact if every locally finite family of open sets in X is finite. Clearly, 'feebly compact' is equivalent to 'pseudocompact' for Tychonoff spaces and every feebly compact space is (α , G_{Π})-favourable.

By Lemma 3.1 we can improve Theorem 3.2 as follows.

THEOREM 3.3. If a regular paratopological group X is a dense G_{δ} -subspace of some (β, G_{Π}) -unfavourable space, then X is a topological group.

THEOREM 3.4. If X is a (β, G_{Π}) -unfavourable space, then every open subspace is a (β, G_{Π}) -unfavourable space.

PROOF. Let *Y* be any open subspace of *X* and $t := \{t_n : n \in \omega\}$ be an arbitrary strategy for player β in the game G_{Π} played on *Y*. We will show that *t* is not a winning strategy. Indeed, since *Y* is open in *X*, we can construct a strategy $t' := \{t'_n : n \in \omega\}$ for player β in the game G_{Π} played on *X* which is accompanied by strategy *t*. To see this, let $t'_0(X) = t_0(Y) := U_0$ and $t'_n(X, V_0, \dots, V_{n-1}) = t_n(Y, V_0, \dots, V_{n-1}) := U_n$ for each $n \ge 1$. Then Dom $t'_0 = \{X\}$, Dom $t_0 = \{Y\}$ and, for each $n \ge 1$, $V_n \subset t'_n(X, V_0, \dots, V_{n-1}) =$ $t_n(Y, V_0, \dots, V_{n-1}) \subset V_{n-1}$. Since *X* is (β, G_{Π}) -unfavourable, there exists a *t'*-play $\{(U_n, V_n) : n \in \omega\}$ such that player α wins this play, that is, the sequence $\{V_n : n \in \omega\}$ has the property G_{Π} . Obviously, the sequence $\{(U_n, V_n) : n \in \omega\}$ is also a *t*-play. Therefore, *Y* is a (β, G_{Π}) -unfavourable space.

REMARK 3.5. The above statement shows that the (β, G_{Π}) -unfavourableness property is hereditary to open subspaces. However, this property is not closed hereditarily. To see this we recall that every Tychonoff space can be embedded into a pseudocompact space as a closed subspace [1, Theorem 2.18].

THEOREM 3.6. Let X be a space that is the union of a locally finite family ζ of (β, G_{Π}) unfavourable subspaces. Then X is (β, G_{Π}) -unfavourable.

PROOF. Let *t* be an arbitrary strategy for player β in the game G_{Π} played on *X*. We show that *t* is not a winning strategy.

Let $U_0 (= t_0(X))$ be the first move of player β under *t*. Clearly, U_0 is an open nonempty subset of *X*. Since ζ is locally finite in *X*, there exist a finite family η of ζ and a nonempty open subset *O* of U_0 such that $\eta = \{M \in \zeta : M \cap O \neq \emptyset\}$. Since η is finite, we can fix an open nonempty subset V_0 of *O* and some $M \in \eta$ such that $M \cap V_0$ is dense in V_0 . Since the space *M* is (β, G_{Π}) -unfavourable and $M \cap V_0$ is open in *M*, it follows from Theorem 3.3 that the space $M \cap V_0$ is (β, G_{Π}) -unfavourable. Then Lemma 3.1 implies that V_0 is (β, G_{Π}) -unfavourable. Let V_0 be the move of player α following the first move of player β under *t*. In turn, player β takes an open nonempty subset U_1 of V_0 in the second move under *t*. Proceeding indefinitely, we have *t*-plays $\{(U_n, V_n) : n \in \omega\}$. Observe that the *t*-plays constructed above have one thing in common: each of the second moves of β is the unique set $t_1(X, V_0)$, which is contained in V_0 . Now it remains to find such a *t*-play which is won by α .

For this purpose, we construct by *t* a strategy $t' := \{t'_n : n \in \omega\}$ for player β in the game G_{Π} played on the space V_0 as follows:

$$t'_0(V_0) = t_1(X, V_0)$$
 and $t'_n(V_0, V_1, \dots, V_n) = t_{n+1}(X, V_0, V_1, \dots, V_n)$, for $n \ge 1$.

In these equations, for each $n \in \omega$, V_n is an open nonempty subset of V_0 chosen by player α in the *n*th move and the (n + 1)th move of a play in the game played on V_0 and X, respectively. Since V_0 is (β, G_{Π}) -unfavourable, there exists a *t'*-play $\{(t'_n(V_0, V_1, \ldots, V_n), V_{n+1}) : n \in \omega\}$ which is won by player α . Thus the corresponding *t*-play $\{((t_0(X), V_0), (t_{n+1}(X, V_0, V_1, \ldots, V_n), V_{n+1})) : n \in \omega\}$ is also won by α . This proves that the space X is (β, G_{Π}) -unfavourable. **COROLLARY** 3.7. Let X be a space that is the union of a finite family of (β, G_{Π}) unfavourable subspaces. Then X is (β, G_{Π}) -unfavourable.

COROLLARY 3.8. If a paratopological group X is the union of a locally finite family of pseudocompact subspaces, then X is a topological group.

The following result shows that (β, G_{Π}) -unfavourableness is a 'local implies global' property.

THEOREM 3.9. If X is a locally (β, G_{Π}) -unfavourable space, then X is (β, G_{Π}) -unfavourable.

PROOF. Let *t* be an arbitrary strategy for player β in the game G_{Π} on *X* and let U_0 be the first move of β under *t*. By the assumption, *X* is locally (β , G_{Π})-unfavourable, and by Theorem 3.3, the (β , G_{Π})-unfavourableness property is open hereditary. So we can take an open nonempty subspace V_0 of *X* such that $V_0 \subset U_0$ and V_0 is (β , G_{Π})-unfavourable. Now let V_0 be the response of player α to the first move of β under *t*. The rest of the proof is similar to that of Theorem 3.4, that is, by a similar argument we can find a *t*-play which is won by player α . Therefore, *X* is (β , G_{Π})-unfavourable.

COROLLARY 3.10. If a Baire paratopological group X is the union of a countable family ζ of (β, G_{Π}) -unfavourable (or pseudocompact) subspaces, then X is a topological group.

PROOF. Suppose that $\zeta = \{X_k : k \in \omega\}$. Since *X* has the Baire property, there exists X_k such that X_k is somewhere dense, that is, we can find a nonempty open subspace *U* of *X* such that $X_k \cap U$ is dense in *U*. By the assumption, X_k is (β, G_{Π}) -unfavourable, so it follows Theorem 3.3 that $X_k \cap U$ is a (β, G_{Π}) -unfavourable space. Then Lemma 3.1 implies that the space *U* is (β, G_{Π}) -unfavourable. Since *X* is homogeneous, it follows that *X* is locally (β, G_{Π}) -unfavourable. Hence, from Theorem 3.6, *X* is (β, G_{Π}) -unfavourable. Therefore, *X* is a topological group.

The condition that *X* is Baire in the corollary above cannot be dropped: to see this one only needs to take a countable paratopological nontopological group.

THEOREM 3.11. Let X, Y be two topological spaces and X be (β, G_{Π}) -unfavourable. If there exists a continuous open mapping $f : X \to Y$ of X onto Y, then Y is (β, G_{Π}) -unfavourable.

PROOF. Let $t := \{t_n : n \in \omega\}$ be an arbitrary strategy for player β in the game G_{Π} played on *Y*. It suffices to show that *t* is not a winning strategy. For this purpose we will construct inductively a strategy $t' := \{t'_n : n \in \omega\}$ for player β in the game G_{Π} played on *X* as follows.

Let U_0 be the first move of player β under t. Then $U'_0 := f^{-1}(U_0)$ is a nonempty open subset of X. Let U'_0 be the first move of β under t'. As a response to the first move of β under t', player α takes a nonempty open subset V'_0 of X. Put $V_0 := f(V'_0)$. Then V_0 is a nonempty open subset of Y. Let V_0 be the response of α to the first move of β under *t*. In turn, player β takes a nonempty open subset U_1 of V_0 in the second move under *t*. Let $U'_1 := f^{-1}(U_1) \cap V'_0$ be the second move of β under *t'*. As a response to the second move of β under *t'*, player α takes a nonempty open subset V'_1 of *X*. Continuing indefinitely, we can obtain a *t*-play $\{(U_n, V_n) : n \in \omega\}$ and a *t'*-play $\{(U'_n, V'_n) : n \in \omega\}$, and the following conditions are satisfied for each $n \in \omega$:

- (a) $U_{n+1} \subset V_n \subset U_n;$
- (b) $U'_{n+1} \subset V'_n \subset U'_n;$
- (c) $U'_n = f^{-1}(U_n) \cap V'_{n-1}$, where $V'_{-1} = X$;
- (d) $V_n = f(V'_n)$.

Since X is (β, G_{Π}) -unfavourable, there exists a t'-play $\{(U'_n, V'_n) : n \in \omega\}$ which is won by α . It remains to show that the corresponding t-play $\{(U_n, V_n) : n \in \omega\}$ is also won by α . Indeed, take any decreasing sequence $\{W_n : n \in \omega\}$ of nonempty open subsets of Y such that $W_n \subset V_n$ for each $n \in \omega$. For each $n \in \omega$, put $W'_n := f^{-1}(W_n) \cap V'_n$. Then $\{W'_n : n \in \omega\}$ is a decreasing sequence of open subsets of X such that $W_n = f(W'_n)$, since $V_n = f(V'_n)$ for each $n \in \omega$. Clearly, the sequence $\{W'_n : n \in \omega\}$ has at least one cluster point in X, since the sequence $\{V'_n : n \in \omega\}$ has the property Π . Then it follows from the continuity of f that $\{W_n : n \in \omega\}$ has at least one cluster point in Y. Therefore, Y is (β, G_{Π}) -unfavourable.

COROLLARY 3.12. If X is the product space of a family ζ of topological spaces such that X is (β, G_{Π}) -unfavourable, then every member of ζ is a (β, G_{Π}) -unfavourable space.

Recall that a mapping $f : X \to Y$ of a space X onto a space Y is irreducible if $Y \setminus f(X \setminus U) \neq \emptyset$ for any nonempty open subset U of X.

THEOREM 3.13. Let X, Y be two topological spaces and $f : X \to Y$ be a continuous closed irreducible mapping of X onto Y. Then X is (β, G_{Π}) -unfavourable if and only if Y is (β, G_{Π}) -unfavourable.

PROOF. The proof of the 'only if' part is similar to the proof of Theorem 3.6. Since f is closed and irreducible, the open subsets V_n in Theorem 3.6 can be obtained by $V_n := Y \setminus f(X \setminus V'_n)$. So we omit the proof.

We now prove the 'if' part. Let $t := \{t_n : n \in \omega\}$ be an arbitrary strategy for player β in the game G_{Π} played on X. To verify t is not a winning strategy we need to construct inductively a strategy $t' := \{t'_n : n \in \omega\}$ for β in the game G_{Π} played on Y. The construction is as follows.

Let U_0 be the first move of player β under t. Put $U'_0 := Y \setminus f(X \setminus U_0)$. Since f is closed and irreducible, it follows that U'_0 is a nonempty open subset of Y. Let U'_0 be the first move of β under t'. Following the first move of β under t', player α takes a nonempty open subset V'_0 of Y. Then $V_0 := f^{-1}(V'_0)$ is a nonempty open subset of X. Clearly, V_0 is contained in U_0 . Let V_0 be the first move of α under t. In turn, player β takes a nonempty open subset U_1 in the second move under t. Continuing indefinitely, we can obtain a t-play $\{(U_n, V_n) : n \in \omega\}$ and a t'-play $\{(U'_n, V'_n) : n \in \omega\}$ which satisfy the following conditions for each $n \in \omega$: (a) $U_{n+1} \subset V_n \subset U_n$;

[9]

- (b) $U'_{n+1} \subset V'_n \subset U'_n$;
- (c) $U'_n = Y \setminus f(X \setminus U_n);$
- (d) $V_n = f^{-1}(V'_n)$.

Since *Y* is (β, G_{Π}) -unfavourable, there exists a *t'*-play $\{(U'_n, V'_n) : n \in \omega\}$ which is won by α . It remains to verify that the corresponding *t*-play $\{(U_n, V_n) : n \in \omega\}$ is also won by α . Indeed, take any decreasing sequence $\{W_n : n \in \omega\}$ of nonempty open subsets of *X* such that $W_n \subset V_n$ for each $n \in \omega$. Obviously, each $W'_n := Y \setminus f(X \setminus W_n)$ is a nonempty open subset of *Y* contained in V'_n and the sequence $\{W'_n : n \in \omega\}$ is decreasing. Since $\{V'_n : n \in \omega\}$ has the property Π , it follows that $\{W'_n : n \in \omega\}$ has at least one cluster point of *Y*. Fix such a cluster point *y*. Since *f* is closed and each $f^{-1}(W'_n) \subset W_n$, it is easy to verify that the sequence $\{W_n : n \in \omega\}$ has at least one cluster point located in the set $f^{-1}(y)$. Therefore, *X* is (β, G_{Π}) -unfavourable. \Box

It is known that every pseudocompact space with countable pseudocharacter is first countable. For a (β , G_{Π})-unfavourable space we have the following result.

THEOREM 3.14. If X is a (β, G_{Π}) -unfavourable space with countable pseudocharacter, then X has a dense first-countable subspace.

PROOF. Fix an arbitrary nonempty open subspace U of X. By Theorem 3.3, U is (β, G_{Π}) -unfavourable, so there exists a decreasing sequence $\{V_n : n \in \omega\}$ of nonempty open subsets of U such that $\{V_n : n \in \omega\}$ has the property G_{Π} . Now take another sequence $\{W_n : n \in \omega\}$ of nonempty open subsets of U satisfying $\overline{W_{n+1}} \subset W_n \subset V_n$ for each $n \in \omega$. The set of cluster points of $\{W_n : n \in \omega\}$ is not empty. Fix such a cluster point x. Choose a sequence $\{O_n : n \in \omega\}$ of open neighbourhoods of x such that $\bigcap \{O_n : n \in \omega\} = \{x\}$ and $\overline{O_{n+1}} \subset O_n \subset W_n$ for each $n \in \omega$. Then it is easy to verify that $\{O_n : n \in \omega\}$ is a base of open neighbourhoods of X at x. Clearly, $x \in U$ and this implies that the subspace consisting of points with countable character in X is dense in X.

COROLLARY 3.15. If X is a (β, G_{Π}) -unfavourable paratopological group with countable pseudocharacter, then X is a metrisable topological group.

A space *X* is said to be strongly Fréchet if for each $x \in X$ and every sequence $\xi = \{A_n : n \in \omega\}$ of subsets of *X* such that $x \in \bigcap_{n \in \omega} \overline{A_n}$, there exists a sequence $\{x_n : n \in \omega\}$ in *X* converging to *x* and intersecting infinitely many members of ξ .

THEOREM 3.16. Let Z be the product space of two topological spaces X and Y such that X is (β, G_{Π}) -unfavourable and Y is strongly Fréchet and (α, G_{Π}) -favourable. Then Z is a (β, G_{Π}) -unfavourable space.

PROOF. Assume that \mathcal{B} is a base of the space Z such that the members of \mathcal{B} have the form $W \times O$, where W and O are open subsets of X and Y, respectively. In addition, fix some well-ordering on \mathcal{B} .

Let $t := \{t_n : n \in \omega\}$ be an arbitrary strategy for player β in the game G_{Π} played on Z, and let *s* be a fixed winning strategy for player α in the game G_{Π} played on *Y*. To prove

that *t* is not a winning strategy we will construct a strategy $t' := \{t'_n : n \in \omega\}$ for β in the game G_{Π} on *X* as follows.

Player β starts the game by choosing an open nonempty subset U_0 of Z under strategy t. Let $U'_0 \times U''_0$ be the first element of \mathcal{B} such that $\overline{U'_0}^X \times \overline{U''_0}^Y \subset U_0$. Now let U'_0 be the first move of β under t' and U''_0 be the first move of β in the game G_{Π} played on Y. Then player α takes two open nonempty subsets V'_0 and V''_0 of X and Y, respectively, such that V'_0 is the response of α to the first move of β under t' and V''_0 is the first move of α under s following U''_0 . Let $V_0 := V'_0 \times V''_0$ be the response of α to the first move of β under t. Then player β takes an open nonempty subset U_1 of Z in the second move under t. Continuing this procedure indefinitely, we can obtain a t-play $\{(U_n, V_n) : n \in \omega\}$, a t'-play $\{(U'_n, V'_n) : n \in \omega\}$ and an s-play $\{(U''_n, V''_n) : n \in \omega\}$, and the following conditions are satisfied for each $n \in \omega$:

- (a) $U_{n+1} \subset V_n \subset U_n;$
- (b) $U'_{n+1} \subset V'_n \subset U'_n;$
- (c) $U_{n+1}'' \subset V_n'' \subset U_n'';$
- (d) $V_n = V'_n \times V''_n$;

(e) $U'_n \times U''_n$ is the first element of \mathcal{B} such that $\overline{U'_n}^X \times \overline{U''_n}^Y \subset U_n$.

Observing that strategies *t*, *s* and the base \mathcal{B} of *Z* are fixed, we can see from the above construction that for each $n \in \omega$ the values $t'_n(X, V'_0, V'_1, \dots, V'_{n-1})$ of the *n*th move of β under *t'* depend only on finite sequences of nonempty open subsets of *X*, that is, $t' := \{t'_n : n \in \omega\}$ is really a strategy for β in the game G_{Π} played on *X*.

By the assumption, X is (β, G_{Π}) -unfavourable and so t' is not a winning strategy. So there exists a t'-play $\{(U'_n, V'_n) : n \in \omega\}$ which is won by α , that is, the sequence $\{V'_n : n \in \omega\}$ has the property Π . Since s is a winning strategy for α , the corresponding s-play $\{(U''_n, V''_n) : n \in \omega\}$ is also won by α .

Now it remains to verify that the corresponding sequence $\{V'_n \times V''_n : n \in \omega\}$ has the property Π . For this purpose, take any decreasing sequence $\{W_n : n \in \omega\}$ of nonempty open subsets of Z such that $W_n \subset V'_n \times V''_n$ for each $n \in \omega$, and for each W_n choose a nonempty open subset W'_n of X and a nonempty open subset W''_n of Y such that $W'_n \times W''_n \subset W_n$. Clearly, the sequence $\{\bigcup_{k\geq n} W''_k : n \in \omega\}$ of open subsets of Y is decreasing and $\bigcup_{k\geq n} W''_k \subset \bigcup_{k\geq n} p_Y(W_k) \subset \bigcup_{k\geq n} (V''_k) = V''_n$ for each $n \in \omega$, where p_Y is the projection of Z onto Y. Hence, $\{\bigcup_{k\geq n} W''_k : n \in \omega\}$ has at least one cluster point in Y. Fix such a cluster point y. Obviously $y \in \bigcap_{k\geq n} W''_k$ such that the sequence $\{y_n : n \in \omega\}$ converges to y. For each $n \in \omega$ fix $k_n \in \omega$ such that $k_n < k_{n+1}$ and $y_n \in W''_k$. Clearly, $\{\bigcup_{m\geq n} W'_{k_m} : n \in \omega\}$ is decreasing and each $\bigcup_{m\geq n} W'_{k_m} \subset \bigcup_{m\geq n} W'_m \subset V'_n$. Hence $\{\bigcup_{m\geq n} W'_{k_m} : n \in \omega\}$ has at least one cluster point x. Then it is easy to see that for any neighbourhood O of (x, y) in Z, there exists $W'_{k_m} \times W''_{k_m} \times W''_m : n \in \omega\}$ is not empty. Since $W'_n \times W''_n \subset W_n < V'_n \times V''_n$, for $n \in \omega$, it follows that $\{V'_n \times V''_n : n \in \omega\}$ has the property Π . Therefore, Z is a (β, G_{Π}) -unfavourable space.

PROBLEM 3.17. Can the condition '*Y* is strongly Fréchet' in Theorem 3.9 be dropped? **PROBLEM** 3.18. Is it true that the product space of any two (β , G_{Π})-unfavourable spaces is also (β , G_{Π})-unfavourable, or at least has the Baire property?

A subset *L* of a space *X* is called bounded if for every locally finite family ξ of open subsets in *X* the set $\{U \in \xi : U \cap L \neq \emptyset\}$ is finite. It is known that a subset *L* of a Tychonoff space *X* is bounded if and only if every continuous function on *X* is bounded on *L*.

THEOREM 3.19. If X is a normal (β, G_{Π}) -unfavourable topological space, then X is strongly Baire. In particular, if X is a normal (β, G_{Π}) -unfavourable semitopological group, then X is a topological group.

PROOF. Let $t := \{t_n : n \in \omega\}$ be a strategy for player β in the game G_S played on X. We will show that t is not a winning strategy. Clearly, t is also a strategy for β in the game G_{Π} , since the two games have the same playing rules. Since X is (β, G_{Π}) -unfavourable, there exists a t-play $\{(U_n, V_n) : n \in \omega\}$ in the game G_{Π} which is won by α . Hence, the set of cluster points of the sequence $\{V_n : n \in \omega\}$, denoted by K, is not empty. Clearly, $K = \bigcap_{n \in \omega} \overline{V_n}$. Since $\{V_n : n \in \omega\}$ has the property G_{Π} , every locally finite family η of nonempty open subsets of X such that each element of η has nonempty intersection with K is finite. Hence, K is a bounded subset of X. Since K is a closed subset of the normal space X, every continuous real-valued function on K can be extended onto the whole space X. Thus K is a pseudocompact space. Hence, K is countably compact, since X is normal. For each $n \in \omega$ take a point $x_n \in V_n$.

Claim. The sequence $\{x_n : n \in \omega\}$ has at least one cluster point. If $K \cap \{x_n : n \in \omega\}$ is infinite, then the conclusion comes immediately from the countable compactness of *K*. So it remains to consider the case with $K \cap \{x_n : n \in \omega\} = \emptyset$. Suppose that $K \cap \{x_n : n \in \omega\} = \emptyset$. Since *X* is normal, one can take an open subset *O* of *X* such that $\{x_n : n \in \omega\} \subset O \subset \overline{O} \subset X \setminus K$. Now fix a decreasing sequence $\{O_n : n \in \omega\}$ of open subsets of *X* such that $\{x_k : k \ge n\} \subset O_n \subset V_n \cap O$, $n \in \omega$. Since the sequence $\{V_n : n \in \omega\}$ has the property Π , it follows that the set of cluster points of $\{O_n : n \in \omega\}$ is not empty. Fix such a cluster point *x*. Then *x* must belong to *K*, which contradicts the choice of the sets O_n . Hence, $K \cap \{x_n : n \in \omega\} \neq \emptyset$, which implies that $\{x_n : n \in \omega\}$ has at least one cluster point.

The above argument shows that the sequence $\{V_n : n \in \omega\}$ has the property S. Thus the *t*-play $\{(U_n, V_n) : n \in \omega\}$ is also won by α in the game G_S . Hence, X is a (β, G_S) -unfavourable space.

Obviously, every (β, G_S) -unfavourable space is strongly Baire. As mentioned earlier every strongly Baire semitopological group is in fact a topological group [9]. Therefore, *X* is a topological group.

A space X is μ -complete if the closure of any bounded subset of it is compact. All Dieudonné complete spaces are μ -complete, as well as all paracompact spaces and all submetrisable spaces.

With a proof similar to that of Theorem 3.19 we have the following result.

[11]

THEOREM 3.20. If X is a μ -complete (β, G_{Π}) -unfavourable topological space, then X is strongly Baire. In particular, if X is a μ -complete (β, G_{Π}) -unfavourable semitopological group, then X is a topological group.

PROOF. We use the sets and the symbols from Theorem 3.19. Since X is μ -complete, the bounded closed subset K is compact. Then it follows that the open subsets O and O_n satisfying the conditions in Theorem 3.19 can also be constructed, although X is not normal. Hence, we can find a *t*-play { $(U_n, V_n) : n \in \omega$ } which is won by player α in the game G_S . Therefore, X is a topological group.

Acknowledgement

The authors would like to thank the referee for helpful and valuable comments.

References

- [1] A. V. Arhangelskii, 'Two types of remainders of topological groups', *Comment. Math. Univ. Carolin.* **49**(4) (2008), 119–126.
- [2] A. V. Arhangel'skii, M. M. Choban and P. S. Kenderov, 'Topological games and topologies on groups', *Math. Maced.* 8 (2010), 1–19.
- [3] A. V. Arhangel'skii, M. M. Choban and P. S. Kenderov, 'Topological games and continuity of group operations', *Topology Appl.* 157 (2010), 2542–2552.
- [4] A. V. Arhangel'skii and E. A. Reznichenko, 'Paratopological and semitopological groups versus topological groups', *Topology Appl.* 151 (2005), 107–119.
- [5] A. V. Arhangelskii and M. G. Tkachenko, *Topological Groups and Related Structures* (Atlantis Press, Amsterdam, 2008).
- [6] A. Bouziad, 'Every Čech-analytic Baire semitopological group is a topological group', *Proc. Amer. Math. Soc.* 124(3) (1996), 953–959.
- [7] R. Ellis, 'A note on the continuity of the inverse', Proc. Amer. Math. Soc. 8 (1957), 119–125.
- [8] R. Engelking, General Topology, revised and completed edition (Heldermann, Berlin, 1989).
- [9] P. Kenderov, I. S. Kortezov and W. B. Moors, 'Topological games and topological groups', *Topology Appl.* 109 (2001), 157–165.

HANFENG WANG, Department of Mathematics, Shandong Agricultural University, Taian 271018, China e-mail: whfeng@sdau.edu.cn

WEI HE, Institute of Mathematics, Nanjing Normal University, Nanjing 210046, China e-mail: weihe@njnu.edu.cn

JING ZHANG, School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China e-mail: zhangjing86@126.com

450

[12]