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Abstract The Burau representation of the braid group can be used to recover the Alexander polynomial
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1. Introduction

As any link can be obtained as the closure of a braid, one can hope to recover link
invariants from the braid groups. This idea was first exploited by Burau [5] to compute
the Alexander polynomial. More precisely, if

Bt : Bn −→ GLn−1(Z[t±1])

denotes the reduced Burau representation of the braid group and β ∈ Bn is a braid, then
Burau showed that

Δβ̂(t)(t
n − 1) = ±tm det(Bt(β) − In−1)(t− 1),

wherem ∈ Z, Δβ̂(t) denotes the Alexander polynomial of the link β̂ obtained by closing β,
and Ik is the identity (k × k) matrix. Some years later, Birman [3] generalized this result
to compute the multivariable Alexander polynomial Δβ̂(t1, . . . , tn) of the closure of a
pure braid β. Indeed, using the reduced Gassner representation

Bt1,...,tn : Pn → GLn−1(Z[t±1
1 , . . . , t±1

n ])

of the pure braid group Pn, Birman showed that

Δβ̂(t1, . . . , tn)(t1t2 · · · tn − 1) = ±tm1
1 tm2

2 · · · tmn
n det(Bt1,...,tn(β) − In−1),

for mi ∈ Z. A braid β is μ-coloured if each of its n components is assigned an element
in {1, 2, . . . , μ}, resulting in a sequence c = (c1, c2, . . . , cn) of integers. If one fixes such a
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sequence c = (c1, c2, . . . , cn), one obtains the coloured braid group Bc (see § 2.1 for the
precise definition). As c varies, the group Bc interpolates between the braid group Bn
(when c = (1, 1, . . . , 1)) and the pure braid group Pn (when μ = n and c = (1, 2, . . . , n)).
In particular, if β is a μ-coloured braid and τ(β̂) denotes the torsion of the μ-coloured
link β̂, then the results of Burau and Birman can be written in a single equation as

τ(β̂)(t1, . . . , tμ)(tc1tc2 · · · tcn
− 1) = ±tm1

1 tm2
2 · · · tmμ

μ det(Bt1,...,tμ(β) − In−1),

with mi ∈ Z. The Alexander polynomial was further generalized (independently by
Jiang and Wang [19] and Lin [24]) to the so-called twisted Alexander polynomial. This
polynomial, denoted Δρ

L, depends both on a link L and on a representation ρ of the
group π1(S3 \ L). Since then, the twisted Alexander polynomial has proved wildly suc-
cessful in knot theory and low-dimensional topology. Indeed, its applications range from
periodic knots [18] to knot concordance [6,20,21], while also giving lower bounds on the
Thurston norm and providing obstructions to fibredness [14,15] (see [17] for a survey).

As Kitano [22] showed that Δρ
L can also be interpreted via a twisted torsion τρ(L), it

is natural to wonder whether the twisted Alexander polynomial may be recovered from
braids. The main aim of this paper is to answer this question.

Given a commutative ring R and a representation ρ : Fn → GLk(R) of the free group,
we will define a reduced twisted Burau map

Bρ : Bc → GL(n−1)k(R[t±1
1 , . . . , t±1

μ ]),

which is a twisted analogue of the reduced Burau representation (see § 3.2 for a precise
definition). Given a coloured braid β ∈ Bc, our main theorem relates Bρ(β) to the twisted
torsion τρ(β̂).

Theorem 1.1. Let Fn be the free group on x1, x2, . . . , xn and let β ∈ Bc be a μ-
coloured braid with n strands. If ρ : Fn → GLk(R) is a representation that extends

to π1(S3 \ β̂), then

τρ(β̂) det (ρ(x1 · · ·xn)tc1 · · · tcn
− Ik) = ±dtm1

1 · · · tmμ
μ det(Bρ(β) − I(n−1)k),

for some d ∈ det(ρ(π1(S3 \ β̂))) and mi ∈ Z.

The second aim of this article is to study the properties of the twisted Burau maps. In
the classical case, the Burau representation can be defined via Fox calculus or by using
the homology of covering spaces. In §§ 3.1 and 3.2, we shall investigate to what extent
these constructions can be generalized to the twisted case.

The paper is organized as follows. In § 2, we recall the necessary definitions: coloured
braids, twisted homology, twisted intersection forms, the torsion of a chain complex and
the twisted torsion of links. In § 3, we introduce the twisted Burau maps (§ 3.1), the
reduced twisted Burau maps (§ 3.2) and prove the main result (§ 3.3).
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2. Preliminaries

2.1. Coloured braids

Following Birman [3], we start by recalling some well-known properties of the braid
group. Afterwards, slightly modifying some conventions of [9,11], we discuss coloured
braids.

Let D2 be the closed unit disc in R
2. Fix a set of n � 1 punctures p1, p2, . . . , pn in the

interior of D2. We shall assume that the pi lie in (−1, 1) = Int(D2) ∩ R and p1 < p2 <
· · · < pn. A braid with n strands is an oriented n-component one-dimensional submanifold
β of the cylinder D2 × [0, 1] whose boundary is

⊔n
i=1(pi × {0)} � (−⊔n

i=1(pi × {1})), and
where the projection to [0, 1] maps each component of β homeomorphically onto [0, 1].
Two braids β1 and β2 are isotopic if there is a self-homeomorphism of D2 × [0, 1] that
keeps D2 × {0, 1} fixed, such that h(β1) = β2 and h|β1 : β1 � β2 is orientation preserving.
The braid group Bn consists of the set of isotopy classes of braids. The identity element
is given by the trivial braid {p1, p2, . . . , pn} × [0, 1] while the composition β1β2 consists
in gluing β1 on top of β2 and shrinking the result by a factor 2 (see Figure 3).

The braid group Bn can also be seen as the set of isotopy classes of orientation-
preserving homeomorphisms of Dn := D2 \ {p1, . . . , pn} fixing the boundary pointwise.
Either way, Bn admits a presentation with n− 1 generators σ1, σ2, . . . , σn−1 subject to the
relations σiσi+1σi = σi+1σiσi+1 for each i, and σiσj = σjσi if |i− j| > 2. Topologically,
the generator σi is the braid whose ith component passes over the (i+ 1)th component.
Sending a braid to its underlying permutation produces a surjection from the braid group
into the symmetric group. The kernel Pn of this map is called the pure braid group.

Fix a base point z of Dn and denote by xi the simple loop based at z turning once
around pi anticlockwise for i = 1, 2, . . . , n (see Figure 1). The group π1(Dn) can then be
identified with the free group Fn on the xi. If hβ is a homeomorphism of Dn representing
a braid β, then the induced automorphism hβ∗ of the free group Fn only depends on β.
It follows from the way we compose braids that h(γβ)∗ = hβ∗hγ∗, and the resulting right
action of Bn on Fn can be explicitly described by

xjσi =

⎧⎪⎨
⎪⎩
xixi+1x

−1
i if j = i,

xi if j = i+ 1,
xj otherwise.

x1 x2 x3

z

Figure 1. The punctured disc D3.
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Figure 2. The closure of a braid.
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Figure 3. A (c, c′)-braid β1, a (c′, c′′)-braid β2 and their composition, the (c, c′′)-braid β1β2.

For this reason, θ1θ2 denotes the left to right composition of θ1, θ2 ∈ Aut(Fn), i.e. if
x ∈ Fn, then (x)θ1θ2 = ((x)θ1)θ2. Moreover, if f : Fn → G is a group homomorphism,
then β∗f will denote the composition of f with the automorphism induced by β. With
these conventions, if β and γ are two braids, then (βγ)∗f = β∗γ∗f.

The closure of a braid β is the link β̂ obtained from β by adding parallel strands in
S3 \ (D2 × [0, 1]) (see Figure 2). If β is a braid with n strands, then π1(S3 \ β̂) admits a
presentation where the n generators x1, x2, . . . , xn are subject to the relations xi = xiβ
for i = 1, 2, . . . , n. In particular any group homomorphism f : Fn → G satisfying β∗f = f
extends to π1(S3 \ β̂).

A braid β is μ-coloured if each of its components is assigned (via a surjective map)
an element in {1, 2, . . . , μ}, resulting in a sequence c = (c1, c2, . . . , cn) of integers. A μ-
coloured braid induces a colouring on the punctures of D2 × {0, 1}. For emphasis, we
shall denote the resulting punctured discs by Dc and Dc′ , and call a μ-coloured braid
a (c, c′)-braid, where c and c′ are the sequences of 1, 2, . . . , μ induced by the colouring of
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the braid. Two coloured braids are isotopic if the underlying isotopy is colour preserving,
and we shall denote by idc the isotopy class of the trivial (c, c)-braid. The composition
of a (c, c′)-coloured braid β1 with a (c′, c′′)-coloured braid β2 is the (c, c′′)-braid β1β2

(see Figure 3). Thus, for any sequence c, the set Bc of isotopy classes of (c, c)-braids is
a group that interpolates between the braid group Bn = B(1,1,...,1) and the pure braid
group Pn = B(1,2,...,n). Finally, the closure of a μ-coloured braid β ∈ Bc is the μ-coloured
link β̂ obtained from β by adding coloured parallel strands in S3 \ (D2 × [0, 1]).

2.2. Twisted homology groups

Next, relying on the exposition of [6,14,20], we review the construction of twisted
homology. Some computations are then made in the case of the punctured disc Dn.

Let X be a connected CW complex endowed with a basepoint z and let Y be a con-
nected CW subspace of X. We denote by p : X̃ → X the universal cover of X and write
Ỹ = p−1(Y ). If R is an integral domain, then any representation ϕ : π1(X, z) → GLk(R)
induces a (R,Z[π1(X, z)])-bimodule structure on Rk, where the right action is given by
right multiplication on row vectors. On the other hand, the left action of π1(X, z) on X̃
gives rise to a left Z[π1(X, z)]-module structure on the cellular chain complex C∗(X̃, Ỹ ).
Following Kirk and Livingston [20], the twisted chain complex of the pair (X,Y ) is the
chain complex of R-modules

Cϕ∗ (X,Y ;Rk) = Rk ⊗Z[π1(X,z)] C∗(X̃, Ỹ ),

and the corresponding twisted homology groups Hϕ
i (X,Y ;Rk) of (X,Y ) are the

R-modules obtained by taking the homology of this chain complex. If Y is empty, then
we write Hϕ

∗ (X;Rk) instead of Hϕ
∗ (X, ∅;Rk). Observe that when ϕ is the trivial one-

dimensional representation, then the twisted homology of X coincides with the usual
homology of X with coefficients in R.

Following the notation of Friedl and Kim [14], we let Hρ
∗ (Y ⊂ X;Rk) be the homology

of the chain complex Rk ⊗Z[π1(X,z)] C∗(Ỹ ). Standard arguments then give rise to the long
exact sequence

· · · → Hρ
i (Y ⊂ X;Rk) → Hρ

i (X;Rk) → Hρ
i (X,Y ;Rk) → · · · .

If the basepoint z lies in Y , then the composition π1(Y, z) → π1(X, z)
ϕ→ GLk(R) induces

twisted homology groups Hϕ
i (Y ;Rk) using the universal cover of Y . As Hϕ

i (Y ⊂ X;Rk)
is isomorphic to Hϕ

i (Y ;Rk) [14, Lemma 2.1], the previous long exact sequence yields the
long exact sequence

· · · → Hϕ
i (Y ;Rk) → Hϕ

i (X;Rk) → Hϕ
i (X,Y ;Rk) → · · · .

As the isomorphism type of Hϕ
i (X,Y ;Rk) does not depend on the choice of the basepoint,

we will drop it from the notation.

Remark 2.1. If ρ : π1(X) → GLk(R) is a representation, N is a normal subgroup
of π1(X) and ψ : π1(X) → π1(X)/N is the quotient map, then π1(X) acts on Rk ⊗R
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R[π1(X)/N ] via

(u⊗ v) · γ = uρ(γ) ⊗ vψ(γ),

where γ ∈ π1(X), u ∈ Rk and v ∈ R[π1(X)/N ]. If Rk ⊗R R[π1(X)/N ] is identified with
R[π1(X)/N ]k and ρ⊗ ψ : π1(X) → GLk(R[π1(X)/N ]) denotes the resulting representa-
tion, then one can form the twisted homology groups Hρ⊗ψ

∗ (X;R[π1(X)/N ]k).
On the other hand, if XN is the cover of X associated with the subgroup N , then

the universal covering X̃ also covers XN with deck transformation group N . Restricting
the representation ρ to the subgroup π1(XN ) = N , one can then consider the twisted
homology groups Hρ

∗ (XN ;Rk). In this setting, it is known [12, Chapter 5] that

Hρ⊗ψ
∗ (X;R[π1(X)/N ]k) ∼= Hρ

∗ (XN ;Rk).

In particular, if ρ is the trivial one-dimensional representation, then Hρ⊗ψ
∗ (X;R[π1(X)/

N ]k) coincides with the (untwisted) homology of XN with coefficients in R.

Lemma 2.2. If z ∈ Dn, then the R-module Hϕ
1 (Dn, z;Rk) is free of rank nk.

Proof. The punctured disc Dn is homotopy equivalent to the wedge of the n loops
representing the generators of π1(Dn) described in § 2.1. Choose a cellular decomposition
of this latter space X consisting of the 0-cell z (the basepoint of the wedge) and one 1-cell
xi for each loop. For i = 1, 2, . . . , n, let x̃i be the lift of xi starting at an (arbitrary) fixed
lift of z. With this cell structure, the twisted chain complex of (X, z) is

Cϕ1 (X, z;Rk) = Rk ⊗Z[π1(X)] C1(X̃, z̃) = Rk ⊗Z[π1(X)]

n⊕
i=1

Z[π1(X)]x̃i ∼=
n⊕
i=1

Rkx̃i.

As the chain group C0(X̃, z̃) vanishes, Hϕ
1 (Dn, z;Rk) = Cϕ1 (X, z;Rk) and the claim

follows. �

If ϕ is a representation of the fundamental group of a space Y , then any map f : X → Y
induces a homomorphism

Hϕf∗
i (X;Rk) → Hϕ

i (Y ;Rk)

on the twisted homology groups, where f∗ is the homomorphism induced by f on the
level of the fundamental groups.

Example 2.3. Fix a basepoint z ∈ ∂Dn. Let hβ : Dn → Dn be a homeomorphism
representing a braid β ∈ Bn. As hβ fixes the boundary of the disc, it lifts uniquely to a
homeomorphism h̃β : D̃n → D̃n that preserves a fixed lift of z. Up to homotopy, this lift
depends uniquely on the isotopy class of hβ and consequently the map induced on the
chain group C1(D̃n, z̃) depends uniquely on the braid β. Therefore each coloured braid
β induces a well-defined homomorphism

Hβ∗ϕ
1 (Dn;Rk) → Hϕ

1 (Dn;Rk)

on twisted homology.
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As the braid group acts by right automorphisms on the free group π1(Dn), the left
Z[π1(Dn)]-module C1(D̃n, z̃) inherits a right action of the braid group. As in § 2.1, the
composition of automorphisms on C1(D̃n, z̃) will be read from left to right.

Finally, observe that if H denotes the free abelian group on t1, t2, . . . , tμ, then the
epimorphism ψc : π1(Dn) → H, xi �→ tci

satisfies β∗ψc = ψc precisely when β is a (c, c)-
coloured braid.

2.3. Torsion of chain complexes

Next, we review briefly the definition of the torsion of a chain complex. Standard
references include [26,32].

Given two bases c, c′ of a finite-dimensional vector space over a field F , let [c/c′] ∈
F \ {0} be the determinant of the matrix expressing the vectors of the basis c as a linear
combination of vectors in c′. Let C = (0 → Cm → Cm−1 → · · · → C0 → 0) be a chain
complex of vector spaces over F such that for i = 1, 2, . . . ,m each Ci has a distinguished
basis ci. If C is not acyclic, then we set τ(C) = 0. Otherwise, let bi be a sequence of vectors
in Ci such that ∂i−1(bi) forms a basis of Im(∂i−1). Clearly the sequence ∂i(bi+1)bi is a
basis of Ci. The torsion of the based chain complex C is defined as

τ(C) =
m∏
i=0

[∂i(bi+1)bi/ci](−1)i+1 ∈ F \ {0}.

It turns out that τ(C) depends on the choice of basis for Ci but does not depend on the
choice of bi. For the proof of the next proposition, see [31, Theorem 0.1.1].

Proposition 2.4. Let 0 → C ′ → C → C ′′ → 0 be a short exact sequence of finite-
dimensional chain complexes over F . Assume that C ′ or C ′′ is acyclic, and that Ci, C

′
i, C

′′
i

have distinguished bases ci, c′i, c
′′
i such that [ci/c′ic

′′
i ] = 1. Then τ(C) = ±τ(C ′)τ(C ′′).

2.4. Twisted torsion of links

Following closely Cha and Friedl [6], we describe the twisted torsion of CW complexes
and links. Finally, we review Fox calculus and how it allows explicit computations of the
twisted torsion [22,34].

Let X be a finite CW complex, let ρ : π1(X) → GLk(R) be a representation and
let ψ : π1(X) → H be an epimorphism onto a free abelian group H. If R comes with
an involution, we endow R[H] with the involution rh = rh−1 for r ∈ R and h ∈ H. This
extends to an involution on Q(H), the quotient field of R[H]. The homomorphisms ρ and
ψ induce an action of π1(X) on Rk ⊗R R[H] by setting

(u⊗ v) · γ = uρ(γ) ⊗ vψ(γ),

where γ ∈ π1(X), u ∈ Rk and v ∈ R[H]. If Rk ⊗R R[H] is identified with R[H]k and
ρ⊗ ψ : π1(X) → GLk(R[H]) denotes the resulting representation, then one can form the
twisted homology groupsHρ⊗ψ

∗ (X;R[H]k). Moreover, as the representation ρ⊗ ψ induces
a representation ρ⊗ ψ : π1(X) → GLk(Q(H)), one may also consider the Q(H)-vector
spaces Hρ⊗ψ

∗ (X;Q(H)k).
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Choose a lift x̃qi of each q-cell xqi of X to the universal cover X̃ and denote
by e1, e2, . . . , ek the canonical basis of Q(H)k. This yields a basis {x̃qi ⊗ ej} over Q(H)
for Cρ⊗ψq (X;Q(H)k).

Definition 2.5. If the chain complex Cρ⊗ψ∗ (X;Q(H)k) is acyclic, then the twisted
torsion

τρ⊗ψ(X) ∈ Q(H) \ {0}

of X is the torsion of the chain complex Cρ⊗ψ∗ (X;Q(H)k). If Cρ⊗ψ∗ (X;Q(H)k) is not
acyclic, then we set τρ⊗ψ(X) = 0.

It is known [6,16,20,22,26,32] that the twisted torsion τρ⊗ψ(X) is well defined
up to multiplication by an element in ±det(ρ⊗ ψ(π1(X))) and is invariant under sim-
ple homotopy. Since det(ρ⊗ ψ(π1(X))) is contained in det(ρ(π1(X))) ·H, one often
considers τρ⊗ψ(X) up to multiplication by ±dh for d ∈ det(ρ(π1(X))) and h ∈ H. By
Chapman’s theorem [7], τρ⊗ψ(X) only depends on the homeomorphism type of X. In
particular, when M is a manifold, one can define τρ⊗ψ(M) by picking any CW -structure
for M .

Recall [8–10] that a coloured link L consists of an oriented link L = L1 ∪ L2 ∪ · · · ∪ Lμ
together with a surjective map c assigning to each component a colour in {1, 2, . . . , μ}.
The sublink Li is constituted by the components of L with colour i, for i = 1, 2, . . . , μ.
If H is the free abelian group (written multiplicatively) on t1, t2, . . . , tμ and XL is the
exterior of L, let ψc be the epimorphism π1(XL) → H, γ �→ t

lk(γ,L1)
1 · · · tlk(γ,Lμ)

μ , where lk
denotes the linking number. The twisted torsion τρ⊗ψc(L) of the coloured link L is then
the twisted torsion of the exterior of L. When the context is clear, we shall drop the
ψ’s in the notation of twisted homology and twisted torsion. Variations of the following
lemma are well known [6,14,20,32], but we give a proof for completeness.

Lemma 2.6. If the R[H]-module Hρ
1 (XL;R[H]k) is torsion, then Cρ∗ (XL;Q(H)k) is

acyclic.

Proof. As the link exterior XL is homotopy equivalent to a 2-complex, Hρ
3 (XL;R[H]k)

vanishes. If Xψ
L denotes the covering of XL corresponding to the kernel of ψ, then

Remark 2.1 implies that Hρ
0 (XL;R[H]k) is isomorphic to Hρ

0 (Xψ
L ;Rk). Since ψ is sur-

jective, Xψ
L is connected and consequently Hρ

0 (XL;R[H]k) is R[H]-torsion. An Euler
characteristic argument then shows that Hρ

2 (XL;R[H]k) is torsion over R[H]. As all the
twisted homology groups of XL are torsion over R[H], the chain complex Cρ∗ (XL;Q(H)k)
is acyclic and the claim follows. �

Next, following Wada [34] and Kitano [22], we shall recall how τρ(X) can be computed
via Fox calculus. Given a free group F , the Fox derivative (first introduced by Fox [13])

∂

∂xj
: Z[F ] → Z[F ]
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is the linear extension of the map defined on elements of F by

∂xi
∂xj

= δij ,
∂x−1

i

∂xj
= −δijx−1

i ,
∂(uv)
∂xj

=
∂u

∂xj
+ u

∂v

∂xj
.

Choose a cellular decomposition of the CW complex X with one 0-cell v, n oriented 1-cells
labelled x1, x2, . . . , xn having all their endpoints identified with v to form n loops, and m
oriented 2-cells c1, c2, . . . , cm with each ∂ci glued to the 1-cells according to a word ri.
The fundamental group of X then admits a presentation with generators x1, x2, . . . , xn
and relators r1, r2, . . . , rm. Let ṽ, x̃i and c̃i be corresponding lifts to the universal cover p :
X̃ → X.

Let Fn be the free group on x1, x2, . . . , xn and let pr : Z[Fn] → Z[π1(X)] denote the
ring homomorphism induced by the quotient map. The chain group C1(X̃, p−1(v)) is
generated by the x̃i, and if w is a word in the xi, then its lift w̃ (viewed as a 1-chain in
the universal cover) can be written as

w̃ =
n∑
j=1

pr

(
∂w

∂xj

)
x̃j .

Since the boundary map ∂2 of the chain complex C∗(X̃) sends c̃i to the lift of ri beginning
at ṽ, the previous equation specializes to

∂2(c̃i) =
n∑
j=1

pr

(
∂ri
∂xj

)
x̃j .

Following a common convention [20,32], we shall assume that the elements in the chain
complex C∗(X̃) of free left Z[π1(X)]-modules are row vectors and that the matrices
of the differentials act by right multiplication. Consequently, ∂2 is represented by the
((n− 1) × n) matrix whose (i, j)-coefficient is pr (∂ri/∂xj).

Slightly abusing notation, we shall also denote by ρ⊗ ψ the composition of the map pr :
Z[Fn] → Z[π1(X)] with the map ρ⊗ ψ : Z[π1(X)] →Mk(R[H]). The boundary map id ⊗
∂2 in the twisted chain complex Cρ∗ (X, v;R[H]k) is then represented by the ((n− 1) × n)
matrix A whose (i, j) coefficient is

ρ⊗ ψ

(
∂ri
∂xj

)
∈Mk(R[H]).

Assume (for the sake of exposition) that π1(X) admits a deficiency one presentation with
n generators. For j = 1, 2, . . . , n, regard the matrix Aj , obtained by removing the jth
column of A, as a ((n− 1)k × (n− 1)k) matrix with coefficients in R[H]. The Wada
invariant of X is

W (X) =
det(Aj)

det ((ρ⊗ ψ)(xj − 1))
.

Wada [34] proved that det ((ρ⊗ ψ)(xj − 1)) is non-zero for j = 1, 2, . . . , n and that W
is independent of the choice of the index j. Kitano [22] showed that Wada’s invariant
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coincides with the twisted torsion of X:

W (X) = ±dh τρ(X)

for some d ∈ det(ρ(π1(X))) and h ∈ H. In practice, we shall use Wada’s invariant to
compute the twisted torsion. Note that if π1(X) admits the relation r = s, then Fox
calculus yields

∂(rs−1)
∂xi

=
∂r

∂xi
− rs−1 ∂s

∂xi
,

and since ρ⊗ ψ(rs−1) = Ik, one obtains

ρ⊗ ψ

(
∂(rs−1)
∂xi

)
= ρ⊗ ψ

(
∂r

∂xi

)
− ρ⊗ ψ

(
∂s

∂xi

)
= ρ⊗ ψ

(
∂(r − s)
∂xi

)
.

Consequently the Fox derivatives of the relator rs−1 can be computed by considering the
element r − s of the group ring Z[Fn].

Example 2.7. Let T be the trefoil knot. The group π1(S3 \ T ) admits a presentation
with two generators x1, x2 and a unique relation x1x2x1 = x2x1x2. If r denotes x1x2x1 −
x2x1x2, then Fox calculus shows that

∂r

∂x1
= 1 − x2 + x1x2

and
∂r

∂x2
= −1 − x1 + x2x1.

Let ρ : π1(S3 \ T ) → GL2(Z[s±1]) be the representation given by

ρ(x1) =
(−s 1

0 1

)
, ρ(x2) =

(
1 0
s −s

)
.

If ψ : π1(S3 \ T ) → Z = 〈t〉 is the abelianization homomorphism sending xi to t for
i = 1, 2, then a short computation shows that

det
(
ρ⊗ ψ

(
∂r

∂x1

))
= det

(
1 − t −st2

−st+ st2 1 + st− st2

)
= (1 − t)(1 + st)(1 − st2)

and

det((ρ⊗ ψ)(1 − x1)) = det
(

1 + st −t
0 1 − t

)
= (1 − t)(1 + st).

Therefore the twisted torsion of T is τρ(T ) = 1 − st2 up to the indeterminacy ±dh (with
d ∈ det(ρ(π1(S3 \ T ))) and h ∈ H), which in this case is ±smtn, where m,n ∈ Z.

Note that if ρ is the trivial one-dimensional representation, μ = 1, and ψ : π1(XL) →
Z = 〈t〉 is the homomorphism sending each meridian of a link L to t, then (t− 1)τρ(L)
is equal to the Alexander polynomial ΔL(t) of L. On the other hand, if L has μ = n � 2
components and ψ is the abelianization homomorphism, then the twisted torsion is equal
to the multivariable Alexander polynomial ΔL(t1, . . . , tn) of L.
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3. The twisted Burau map and the twisted Alexander polynomial

3.1. The twisted Burau map

In this subsection we define the twisted Burau map and show how to compute it
using Fox calculus.

Fix a sequence c = (c1, c2, . . . , cn) of elements in {1, 2, . . . , μ} and a representa-
tion ρ : π1(Dn) → GLk(R). If H denotes the free abelian group (written multiplicatively)
on t1, t2, . . . , tμ, then we let ψc : π1(Dn) → H be the epimorphism defined by xi �→ tci

.
Given a basepoint z ∈ ∂Dn of the punctured disc Dn, we saw in Example 2.3 that each
coloured braid β ∈ Bc induces a well-defined homomorphism

Bρ(β) : Hβ∗ρ
1 (Dn, z;R[H]k) → Hρ

1 (Dn, z;R[H]k)

on twisted homology. Using the same notations as in the proof of Lemma 2.2, we shall
call the basis resulting from the isomorphism

Hρ
1 (Dn, z;R[H]k) ∼=

n⊕
i=1

R[H]kx̃i

the good basis of Hρ
1 (Dn, z;R[H]k). With respect to the good bases of Hβ∗ρ

1 (Dn, z;R[H]k)
and Hρ

1 (Dn, z;R[H]k), the homomorphism Bρ(β) gives rise to a kn× kn matrix with
coefficients in R[H].

Definition 3.1. The twisted Burau map

Bρ : Bc → GLnk(R[H])

sends a coloured braid β to the matrix Bρ(β) ∈ GLnk(R[H]) defined above.

The next lemma shows that while the twisted Burau map is generally not a rep-
resentation, it is nevertheless determined by the generators of Bc (compare with [4,
Equation (12)]).

Lemma 3.2. If β, γ ∈ Bc are two μ-coloured braids, then the equation

Bρ(βγ) = Bγ∗ρ(β)Bρ(γ)

holds for each representation ρ of the free group π1(Dn).

Proof. The composition

Hβ∗γ∗ρ
1 (Dn, z;R[H]k)

Bγ∗ρ(β)−→ Hγ∗ρ
1 (Dn, z;R[H]k)

Bρ(γ)−→ Hρ
1 (Dn, z;R[H]k)

of the maps induced by β and γ coincides with the map induced by βγ. As the braid
group acts on the twisted homology from the right, and composition is read from left to
right (see Example 2.3), the claim follows immediately. �

Example 3.3. If R = Z and ρ is the trivial one-dimensional representation, then one
gets a homomorphism Bρ : Bc → GLn(Z[t±1

1 , . . . , t±1
μ ]) that coincides with the coloured
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Gassner representation. In particular if c = (1, 1, . . . , 1), then Bρ is the classical Burau
representation, while if c = (1, 2, . . . , n), then Bρ is the Gassner representation (see also
Examples 3.5 and 3.6).

Proposition 3.4. Let β ∈ Bc be a coloured braid. Consider the (n× n)-matrix A
whose (i, j) component is

(ρ⊗ ψc)
(
∂(xiβ)
∂xj

)
∈Mk(R[H]).

If one views A as a (nk × nk)-matrix with coefficients in R[H], then Bρ(β) is equal to A.

Proof. Fix a lift of z to the universal cover. Given a homeomorphism hβ representing
a braid β, let h̃β be the map induced by the lift of hβ on the chain group C1(D̃n, z̃). As
Hρ

1 (Dn, z;R[H]k) = R[H]k ⊗Z[π1(Dn)] C1(D̃n, z̃), the twisted Burau map is given by the
homomorphism Bρ(β) = id ⊗ h̃β . Clearly x̃ih̃β is the lift of a loop representing xiβ to
the universal cover. Fox calculus then shows that on the chain group level

x̃ih̃β =
n∑
j=1

∂(xiβ)
∂xj

x̃j .

As we view elements of the left Z[π1(Dn)]-module C1(D̃n, z̃) as row vectors, h̃β is rep-
resented by the (n× n) matrix whose (i, j) component is ∂(xiβ)/∂xj . The claim now
follows from the right Z[π1(Dn)]-module structure of R[H]k. �

The definitions and propositions of this subsection can easily be adapted to include
(c, c′)-braids. Namely, to each (c, c′)-braid, one may associate a (kn× kn)-matrix that
coincides with the (n× n)-matrix whose (i, j) coefficient is (ρ⊗ ψc′) (∂(xiβ)/∂xj) ∈
Mk(R[H]).

Example 3.5. A short computation involving Fox calculus shows that

∂(xiσi)
∂xi

=
∂(xixi+1x

−1
i )

∂xi
= 1 − xixi+1x

−1
i ,

and
∂(xiσi)
∂xi+1

=
∂(xixi+1x

−1
i )

∂xi+1
= xi.

Consequently, with respect to the good bases, the twisted Burau map of σi (viewed as a
(c, c′)-coloured braid) is given by

Bρ(σi) = I(i−1)k ⊕
(
Ik − ρ(xixi+1x

−1
i )tc′i+1

ρ(xi)tc′i
Ik 0

)
⊕ I(n−i−1)k.

If ρ is the trivial one-dimensional representation, μ = 1 and R = Z, then one recovers the
(unreduced) Burau representation Bt.

https://doi.org/10.1017/S0013091517000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000128


Burau maps and twisted Alexander polynomials 491

Example 3.6. Write c = (1, 2), c′ = (2, 1) and decompose the pure braid σ2
1 ∈ P2 =

Bc as σ1σ
′
1, where σ1 is viewed as a (c, c′) braid and σ′

1 is the braid σ1 viewed as a
(c′, c)-braid. Assume that R = Z and that ρ is the trivial one-dimensional representation.
In this case, Lemma 3.2 yields

Bρ(σ2
1) = Bρ(σ1)Bρ(σ′

1) =
(

1 − t1 t2
1 0

)(
1 − t2 t1

1 0

)
=

(
1 − t1 + t1t2 t1(1 − t1)

1 − t2 t1

)
,

which is the Gassner matrix of the pure braid σ2
1 . On the other hand, the action of σ2

1

on the free group F2 is given by

x1σ
2
1 = (x1x2x

−1
1 )σ1 = (x1x2x

−1
1 )x1(x1x

−1
2 x−1

1 ) = x1x2x1x
−1
2 x−1

1 ,

x2σ
2
1 = x1σ1 = x1x2x

−1
1 ,

and Fox calculus yields

∂(x1σ
2
1)

∂x1
=
∂(x1x2x1x

−1
2 x−1

1 )
∂x1

= 1 + x1x2 − x1x2x1x
−1
2 x−1

1 ,

∂(x1σ
2
1)

∂x2
=
∂(x1x2x1x

−1
2 x−1

1 )
∂x2

= x1(1 − x2x1x
−1
2 ).

Consequently, applying ψc, one obtains the same matrix as above.

3.2. The reduced twisted Burau map

In this subsection, we shall generalize the definition of the reduced Burau represen-
tation to the twisted setting.

Proposition 3.7. Fix a basepoint z ∈ ∂Dn. For each braid β, the twisted Burau map
Bρ(β) fixes a free submodule of Hρ

1 (Dn, z;R[H]k) of rank k.

Proof. Instead of working with the free generators x1, x2 . . . , xn of π1(Dn), consider
the elements g1, g2, . . . , gn, where gi = x1x2 · · ·xi. The action of the braid group Bn on
this new set of free generators for π1(Dn) is given by

gjσi =

⎧⎪⎨
⎪⎩
gj if j �= i,

gi+1g
−1
i gi−1 if j = i �= 1,

g2g
−1
1 if j = i = 1.

Let g̃i be the lift of gi starting at a fixed lift of z. Using the same argument as in
Lemma 2.2, one obtains the splitting

Hρ
1 (Dn, z;R[H]k) =

n−1⊕
i=1

R[H]kg̃i ⊕R[H]kg̃n.

As gn is always fixed by the action of the braid group, its lift g̃n is fixed by the
lift h̃β of a homeomorphism hβ representing a braid β. This concludes the proof of the
proposition. �
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Definition 3.8. The reduced twisted Burau map

Bρ : Bc → GL(n−1)k(R[H])

sends a braid β to the restriction Bρ(β) ∈ GL(n−1)k(R[H]) of the twisted Burau map to
the free R[H]-module of rank k(n− 1) given by the proof of Proposition 3.7.

Proposition 3.7 immediately yields the following result.

Corollary 3.9. If B̃ρ(β) denotes the twisted Burau matrix of a braid β with respect
to the basis described in the proof of Proposition 3.7, then

B̃ρ =
(

Bρ(β) V
0 Ik

)

for some (k(n− 1) × k)-matrix V .

The reduced twisted Burau map also satisfies the property of Lemma 3.2. Moreover its
definition may be easily adapted to include the case of (c, c′)-braids.

Example 3.10. Combining Proposition 3.4 and Corollary 3.9, the reduced twisted
Burau map of σi (viewed as a (c, c′)-coloured braid) is given by

Bρ(σi) = I(i−2)k ⊕
⎛
⎝ Ik 0 0
ρ(gi+1g

−1
i )tc′i+1

−ρ(gi+1g
−1
i )tc′i+1

Ik
0 0 Ik

⎞
⎠ ⊕ I(n−i−2)k

for 1 < i < n− 1, and for σ1 and σn−1 it is represented by

Bρ(σ1) =
(−ρ(g2g−1

1 )tc′2 Ik
0 Ik

)
⊕ I(n−3)k,

Bρ(σn−1) = I(n−3)k ⊕
(

Ik 0
ρ(gng−1

n−1)tc′n −ρ(gng−1
n−1)tc′n

)
.

If ρ is the trivial one-dimensional representation, μ = 1 and R = Z, then one recovers the
reduced Burau representation Bt mentioned in the introduction.

Example 3.11. We will compute the twisted reduced Burau map of σ3
1 ∈ B2 for any

representation ρ in the case when μ = 1. Using Example 3.10, Bρ(σ1) = −ρ(g2g−1
1 )t.

As (g2g−1
1 )σ1 = g2g1g

−1
2 , it follows from Lemma 3.2 that

Bρ(σ3
1) = Bσ1∗ρBσ1∗ρ(σ1)Bρ(σ1) = −ρ(g2g1g−1

2 )ρ(g2g1g−1
2 )ρ(g2g−1

1 )t3 = −ρ(g2g1)t3,
and consequently one gets Bρ(σ3

1) = −ρ(x1x2x1)t3.

From the topological viewpoint, the definition of the reduced twisted Burau map is
somewhat unsatisfactory compared to the unreduced version. Indeed, the basis given
by Proposition 3.7 is devoid of topological meaning. This motivates the search of a more
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intrinsic definition of the reduced map. If β ∈ Bc, is a coloured braid, we therefore consider
the restriction

B̂ρ(β) : Hβ∗ρ
1 (Dn;R[H]k) → Hρ

1 (Dn;R[H]k)

of the twisted Burau map. Even though we do not know whether Hβ∗ρ
1 (Dn;R[H]k) is

free, we do know its rank.

Proposition 3.12. Fix a basepoint z ∈ ∂Dn.

(a) The dimension of the Q(H)-vector space Hρ
1 (Dn;Q(H)k) is k(n− 1).

(b) If μ = 1 and R is a principal ideal domain, then Hρ
1 (Dn;R[H]k) is a free R[H]-

module of rank k(n− 1).

Proof. Consider the portion

0 → Hρ
1 (Dn;R[H]k) → Hρ

1 (Dn, z;R[H]k) → Hρ
0 (z;R[H]k) → Hρ

0 (Dn;R[H]k)

of the long exact sequence of the pair (Dn, z). As Hρ
1 (Dn, z;R[H]k) and Hρ

0 (z;R[H]k) are
free R[H]-modules, and Hρ

0 (Dn;R[H]k) is torsion, the first assertion follows by taking
the tensor product with Q(H). The second assertion is an immediate consequence of the
following algebraic claim: if R is a principal ideal domain and one has a sequence of
R[t±1]-modules

0 → K → P → F,

where P and F are free and finitely generated, then K is also free. To prove the claim,
first note that since R is principal, the ring R[t±1] has global dimension 2 [35, Theorem
4.3.7]. Following word for word the proof of [11, Lemma 3.7] (with R instead of Z), it
then follows that K is projective. Since P is finitely generated over the Noetherian ring
R[t±1], K is also finitely generated. The conclusion now follows from the fact that if
R is a principal ideal domain, then every finitely generated projective R[t±1]-module is
free [30]. �

Example 3.13. Assume that R = Z and ρ is the trivial one-dimensional represen-
tation. When μ = 1, let D∞

n be the infinite cyclic covering of Dn corresponding to the
kernel of the map ψ : π1(Dn) → Z = 〈t〉 sending each meridian to t. Using Remark 2.1,
Hρ

1 (Dn;R[H]k) is isomorphic to H1(D∞
n ,Z) and the latter is a free Z[t±1]-module of

rank n− 1. In this setting (with respect to appropriate bases), B̂ρ(β) coincides with
the reduced Burau representation [2,11,25,33]. On the other hand when μ = n and
c = (1, 2, . . . , n), B̂ρ(β) coincides with the reduced Gassner representation of the pure
braid β [9,20].

Remark 3.14. Squier [29] observed (via an algebraic computation) that the reduced
Burau representation is unitary with respect to a skew-Hermitian form (see also Abdul-
rahim [1] for a similar observation concerning the Gassner representation). Using the
homological description outlined in Example 3.13, it was later understood [11,20,33]
that the above-mentioned skew-Hermitian form arises from an intersection pairing onD∞

n .
If R is a ring with involution and ρ is a unitary representation, then the twisted

intersection form [6,20,23] on the free part of Hρ
1 (Dn;R[H]k) allows us to generalize
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this observation to the twisted setting. Indeed, as the equivariant intersection pairing
on the universal covering is preserved by homeomorphisms, the homomorphism B̂ρ(β)
intertwines the twisted intersection pairings on Hβ∗ρ

1 (Dn;R[H]k) and Hρ
1 (Dn;R[H]k).

In view of Example 3.13, it is tempting to conclude that B̂ρ is equal to the reduced
twisted Burau map. Unfortunately, for k > 1, even if Hρ

1 (Dn;R[H]k) is a free R[H]-
module (as in Corollary 3.12), there is no obvious basis from which one may compute a
matrix of B̂ρ.

3.3. Relation to the twisted Alexander polynomial

Generalizing an idea of Morton [28], we show how the twisted Alexander polynomial
can be computed from the reduced twisted Burau map.

Theorem 3.15. Let Fn be the free group on x1, x2, . . . , xn and let β ∈ Bc be a μ-
coloured braid with n strands. If ρ : Fn → GLk(R) is a representation that extends

to π1(S3 \ β̂), then

τρ(β̂)(t1, t2, . . . , tμ) det (ρ(x1x2 · · ·xn)tc1tc2 · · · tcn
− Ik) = ±dh det(Bρ(β) − I(n−1)k),

for some d ∈ det(ρ(π1(S3 \ β̂))) and h ∈ H.

Proof. Let Xβ be the exterior of a braid β in the cylinder D2 × [0, 1]. The mani-
fold obtained by gluing Xβ and Xidc

along Dc �Dc is nothing but the exterior of the
link β̂ ∪ ∂Dc in S3. Consequently the exterior Xβ̂ of β̂ can be obtained by gluing the solid
torus D2 × ∂Dc to Xβ̂∪∂Dc

along ∂D2 × ∂Dc. Identify the free group Fn with π1(Dc) so
that the free generators xi correspond to the loops described in § 2.1. As in § 3.2, the
elements g1, g2, . . . , gn then also form a free generating set of π1(Dc). If x is a meridian of
∂Dc, then van Kampen’s theorem implies that π1(Xβ̂∪∂Dc

) admits a presentation where
the n+ 1 generators g1, g2, . . . , gn, x are subject to the n relations x−1gix = giβ. The
representation ρ extends to π1(Xβ̂∪∂Dc

) by setting ρ(x) = Ik. A second application of
van Kampen’s theorem ensures that this extension of ρ coincides with the representation
induced by ρ on π1(S3 \ β̂).

Since the generator of π1(D2 × ∂Dc) is gn, the chain complex Cρ∗ (D2 × ∂Dc;Q(H)k)
is acyclic and the twisted torsion of D2 × ∂Dc is equal to 1/det(ρ(gn)ψc(gn) −
Ik). Using excision, one observes that Hρ

2 (Xβ̂ ,Xβ̂∪∂Dc
;R[H]k) is torsion and

Hρ
1 (Xβ̂ ,Xβ̂∪∂Dc

;R[H]k) vanishes. Consequently, the long exact sequence of the pair
(Xβ̂ ,Xβ̂∪∂Dc

) with coefficients in Q(H)k reduces to

0 → Hρ
1 (Xβ̂∪∂Dc

;Q(H)k) → Hρ
1 (Xβ̂ ;Q(H)k) → 0.

Therefore, if Hρ
1 (Xβ̂ ;R[H]k) is torsion, then so is Hρ

1 (Xβ̂∪∂Dc
;R[H]k). In this case,

Lemma 2.6 implies that the twisted chain complexes of Xβ̂ and Xβ̂∪∂Dc
are acyclic

over Q(H)k. Applying Proposition 2.4 to the short exact sequence of chain complexes
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resulting from the decomposition Xβ̂ = Xβ̂∪∂Dc
∪ (D2 × ∂Dc) yields

τρ⊗ψc(β̂)(t1, . . . , tμ) det (ρ(x1x2 · · ·xn)tc1tc2 · · · tcn
− Ik) = τρ⊗ψc(β̂ ∪ ∂Dc)(t1, . . . , tμ).

Let us now colour the trivial knot ∂Dc so that β̂ ∪ ∂Dc becomes a μ+ 1-coloured link via a
sequence c′. IfH ′ is the free abelian group on t1, . . . , tμ, tμ+1 and ψc′ is the homomorphism
that coincides with ψc on the gi and sends x to tμ+1, then one obtains

τρ⊗ψc(β̂ ∪ ∂Dc)(t1, . . . , tμ) = τρ⊗ψc′ (β̂ ∪ ∂Dc)(t1, . . . , tμ, 1).

Let A be the (n× (n+ 1)) matrix obtained by performing Fox calculus on the previously
described deficiency one presentation of π1(Xβ̂∪∂Dc

). A short computation shows that

∂(giβ − x−1gix)
∂gj

=
∂(giβ)
∂gj

− x−1δij .

Consequently, using Corollary 3.9, the (nk × nk) matrix resulting from the deletion of
the (n+ 1)th column of A is

An+1 =
(

Bρ(β) − t−1
μ+1I(n−1)k V

0 Ik(1 − t−1
μ+1)

)

for some (k(n− 1) × k)-matrix V . As An+1 is an upper triangular block matrix, its deter-
minant is the product of the diagonal blocks. Using Wada’s characterization of the twisted
torsion and simplifying the Ik(1 − t−1

μ+1) terms, the twisted torsion of β̂ ∪ ∂Dc is equal (up
to the indeterminacy of the twisted torsion) to det

(
Bρ(β) − t−1

μ+1I(n−1)k

)
. This concludes

the proof when Hρ
1 (Xβ̂ ;R[H]k) is torsion.

Finally, if Hρ
1 (Xβ̂ ;R[H]k) is not torsion, then neither is Hρ

1 (Xβ̂∪∂Dc
;R[H]k) and the

theorem holds trivially. �

Remark 3.16. The argument in the proof of Theorem 3.15 leads to an alternative
proof of the twisted generalization of the Torres formula obtained by Morifuji [27].

We conclude with an example of Theorem 3.15.

Example 3.17. Assume that μ = 1 and consider the braid σ3
1 ∈ B2 whose closure is

the trefoil knot T . Let ρ : F2 → GL2(Z[s±1]) be the representation given by

ρ(x1) =
(−s 1

0 1

)
, ρ(x2) =

(
1 0
s −s

)
.

Using Example 3.11, we can compute the reduced twisted Burau map of the braid σ3
1

with respect to ρ:

Bρ(σ3
1) = −ρ(x1)ρ(x2)ρ(x1)t3 =

(
0 st3

s2t3 0

)
.
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Consequently, one obtains

det(Bρ(σ3
1) − I2) = det

((
0 st3

s2t3 0

)
−

(
1 0
0 1

))
= 1 − s3t6,

and

det(ρ(x1)ρ(x2)t2 − I2) = det
((−s 1

0 1

)(
1 0
s −s

)
t2 −

(
1 0
0 1

))
= 1 + st2 + s2t4.

The representation ρ extends to a representation of π1(S3 \ T ) and Theorem 3.15 shows
that (up to the indeterminacy of the twisted torsion)

τρ(σ̂3
1)(t) =

1 − s3t6

1 + st2 + s2t4
= 1 − st2,

which coincides with the computation of Example 2.7.
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