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The analytical solution in toroidal coordinates of the Grad Shafranov equation
has been at the origin of the tokamak breakthrough in the fusion development.
Unfortunately, the standard toroidal coordinates have a circular poloidal section,
which does not fit the elongated cross-section of the present tokamak experiments.
In axisymmetry, the vacuum Grad Shafranov equation coincides with the Laplace
equation for the toroidal component of the vector potential. In the present paper the
solutions for the Laplace equation and that for the vacuum Grad Shafranov equation
are tackled in the elliptical prolate toroidal cap-cyclide coordinates framework. The
following report of the geometrical properties and of the metric of these coordinates
allows us to work out the analytical solution of both equations in terms of the
Wangerin functions.
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1. Introduction
In plasma physics the magnetic hydro dynamic (MHD) equilibrium equation ∇P=

J × B is one of the most assessed equations. The analytical solution to the toroidal
axisymmetric Grad Shafranov equation (Shafranov 1960; Mukhovatov & Shafranov
1971) was at the basis of the breakthrough realized by the tokamak configuration
along the path of fusion energy achievements. In axisymmetry the Grad Shafranov
equation

1∗ψ =
∂2ψ

∂R2
−

1
R
∂ψ

∂R
+
∂2ψ

∂z2
=µ0RJϕ (1.1)

where Jϕ is the toroidal plasma current, ψ is the flux function and (R, z, ϕ) are the
standard cylindrical coordinates; in the vacuum (Jϕ = 0) coincides with the Laplace
equation for the toroidal component of the vector potential (Bateman 1978). The
analytical solution to the related Laplace equation in several different geometries was
deeply studied during the second half of the 19th century (Neumann 1864; Böcher
1894; Wangerin 1909), pointing to the possibility of finding an analytical solution
also for oblate and prolate toroidal geometries. A good summary of all these works
can be found in Moon and Spencer’s book (1971). During the first half of the 20th
century the problem of finding an analytical solution to the inductance of a torus
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was first tackled (Fock 1932), and a first analytical solution to the Laplace equation,
in elliptical oblate coordinates, was found by Lebedev (1937). More recently Chance
(1997) has solved the Laplace equation for a general azimuthal geometry by using
a Green function technique, even in presence of internal currents. Eventually, a team
of Japanese scientists found the analytical solution to the vacuum Grad Shafranov
equation for an oblate toroidal system (AikawaI & Takahara 1975; Honma et al.
1979). In the meanwhile, a large amount of scientific papers have been written
to solve the tokamak equilibrium problem, adopting several different approaches.
Analytical solutions to the nonlinear Grad Shafranov equation have been studied and
found for simple cases of the source term (Soloviev 1968; Greene 1988; Zheng,
Wootton & Solano 1996; Cerfon & Freidberg 2010). The employment of a system
of toroidal coordinates, which has the flux surfaces as the radial coordinate, has
allowed us to develop robust codes with the mapping solution expanded on the
momentum (Boozer 1980; Lao, Hirschmann & Wieland 1981; Brambilla 2003).
Predictive equilibrium codes have been developed, through the numerical resolution
(Feneberg & Lackner 1973; Cenacchi, Galvao & Taroni 1976; Blum, Le Foll &
Thooris 1981; Albanese, Blum & De Barbieri 1987; Albanese, Ambrosino & Mattei
2015) and/or the adoption of a semi-analytical approach to deal with (Alladio &
Crisanti 1986; Alladio et al. 1991) the Grad Shafranov equation, and have been
then employed to design the planned plasma configuration of practically all ongoing
tokamak experiments. The linearization of the problem (Albanese & Villone 1998)
has allowed us to easily optimize a given equilibrium configuration in terms of
different aspects (currents in the poloidal coils, forces on the coils, interaction with
the first wall. . .). Moreover, the use of the linearized solver has allowed us to
optimize the real time control of ongoing experiments (Sartori et al. 2005, 2008;
Albanese et al. 2011) and to design an optimal control system for future devices
(Albanese et al. 2009; Bachmann et al. 2015). Although it is an ill-posed problem
(different internal current distributions can produce the same magnetic signal), the
magnetic measurements have been used to constrain the equilibrium codes, in order to
reconstruct the experimental plasma boundary and to work out, as much as possible,
the most important internal features of the confined plasma; i.e. the internal magnetic
and kinetic inductances βp and li (Shafranov 1971), various plasma moments (Van
Milligen 1990; Van Milligen & Lopez Fraguas 1994) (for instance the plasma column
centroid and its elongation), the internal mapping of the magnetic surfaces and the
identification of the plasma current density. As for the predictive equilibrium codes,
both numerical and semi-analytical approaches have been used (Lao et al. 1985;
Alladio & Crisanti 1986; Alladio et al. 1991). Eventually, the fact that the plasma
equilibrium reconstruction is a mathematically ill-posed problem and that in some
used codes it depends on the knowledge of external currents, and the fact that
experimental noise must be accounted for, has always led to a poor reconstruction of
the internal mapping of the magnetic topology. In several codes internal independent
measurements have been used to constrain the solution. In particular, within the
most used code, EFIT, the polarimetry (Li et al. 2011) and/or the motional Stark
effect (Lao et al. 2005) have both been used to further constrain the problem and to
improve the reconstructed poloidal flux mapping. This code has also been employed
for real time reconstruction, which is to be used on the plasma shape control system
(Ferron et al. 1998). This latter aspect has been strongly improved thanks to the use
of powerful modern computer parallelization (Yue et al. 2013). Of course, the use of
all these techniques and of modern computers has always led to result improvements.
However, the details of the internal parameters, like the current density profile, are still
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far from what would be necessary for a deeper understanding of the physics and/or
for an accurate real time control of the internal profiles. This represents a serious
concern when considering that in a DEMO class machine the available diagnostics
will be strongly reduced, with the consequent necessity of having very robust and
flexible plasma models. Reconstructive equilibrium codes (Alladio & Crisanti 1986;
Alladio et al. 1991), based on a semi-analytical approach, are in principle more
flexible and robust than the completely numerical ones, as they use the multipolar
analytical solution of the electromagnetic problem on the most suitable function basis.
In particular this approach gives the possibility to fully separate the external world
(passive structures, coils, . . .) from the internal plasma features. The most important
advantage given by this approach is that any ‘unphysical’ solution, which could be
worked out by a pure numerical code in the presence of measurement errors, is
not intrinsically possible. This aspect was widely discussed in relation to the FTU
experiment’s circular toroidal geometry in Alladio & Crisanti (1986). In that paper the
robustness of the approach was also verified on the old JET experiment, without the
presence of internal divertor coils. The used reconstructive equilibrium code was the
one that showed the possibility in JET of producing X point configurations and the
consequent possibility of achieving an improved energy confinement regime (Alladio
et al. 1984). Unfortunately, so far, the exact analytical solution of the Grad Shafranov
equation for the vacuum region has been found only in relation to the standard
circular shaped and for the elliptical oblate toroidal geometries (AikawaI & Takahara
1975; Honma et al. 1979). Both these geometries are not suitable to the present
tokamak experiments, all of which are based on an elliptical prolate geometry. An
interesting approach to analytically solving the Grad Shafranov equation through the
separable variable technique and using not constant source functions has been used in
Atanasiu et al. (2004) and Guazzotto & Freidberg (2007). In both papers the solution
has been worked out by using an (x, y) coordinate system. Unluckily this ‘not natural’
system of coordinates results in a solution with a large expansion that does not always
converge. Guazzotto & Freidberg partially overcome the problem by linking some
geometrical property of the plasma boundary to the solution expansion. Nonetheless,
the non-robustness of the solution remains. In the present paper the mathematical
problem is summarized and the analytical solution of the vacuum Grad Shafranov
equation is worked out for the cap-cyclide coordinate system, which is the natural
one for the modern elongated and D-shaped tokamak. Moreover, the paper addresses
how the solution could be used to realize a robust reconstructive equilibrium code,
capable of better fitting the needs of a future reactor relevant tokamak, like DEMO.

2. Cap-cyclide geometry
In cylindrical coordinates (R, Z) the vacuum Grad Shafranov equation (Shafranov

1960) is

1∗ψ =
∂2ψ

∂R2
−

1
R
∂ψ

∂R
+
∂2ψ

∂z2
= 0. (2.1)

This former equation is formally similar to the Laplace equation, but for a sign (minus
instead of plus) in the first derivative part.

1ψ =
∂2ψ

∂R2
+

1
R
∂ψ

∂R
+
∂2ψ

∂z2
= 0. (2.2)

Consequently, it is obvious that any analytical solution found for the Laplace equation
will be correlated to the analytical solution of the Grad Shafranov equation. Since the
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end of the 19th century (Böcher 1894; Wangerin 1909) analytical solutions to the
Laplace equation have been worked out using a large set of system of coordinates,
that allows writing of the solution in a ‘separable’ way, i.e.

ψ(α, β, γ )= A(α)B(β)G(γ ), (2.3)

where (α, β, γ ) are independent orthogonal variables. For a subset of the system of
coordinates a so-called ‘R-separable’ solution can be worked out. In particular this is
the solution for the coordinate systems with a toroidal symmetry, such as the proper
ones for the tokamak experiments

ψ(α, β, γ )= A(α)B(β)G(γ )/R(α, β, γ ) (2.4)

R(α, β, λ) being a function determined by the coordinate system.
For the present toroidal elongated tokamak, the most appropriate coordinate system

is the cap-cyclide one (Moon & Spencer 1971), (figure 1) with

x=
Λ

asΓ
dn(ν, k1)sn(µ, k) cos ϕ

y=
Λ

asΓ
dn(ν, k1)sn(µ, k) sin ϕ

z=
k0.5Π

2asΓ
,


(2.5)

where (x, y, z) are the standard Cartesian coordinates, dn, cn, sn are the Jacobi
elliptical functions, as is a dimensional scale parameter and

Λ= 1− dn2(µ)sn2(ν)

Γ = sn2(µ) dn2(ν)+ [(Λ/k0.5)+ cn(µ) dn(µ)sn(ν)cn(ν)]2

Π = (Λ2/k)− [sn2(µ) dn2(ν)+ cn2(µ) dn2(µ)sn2(ν)cn2(ν)].

 (2.6)

The new variables (µ, ν, Π) are defined between

0 6µ6 K; 0 6 ν 6 K ′; 0 6 ϕ 6 2π. (2.7a−c)

Here K and iK ′ are respectively the real and the imaginary complete elliptical
integrals

K(k)=
∫ π/2

0

dϑ
(1− k2 sin2 ϑ)1/2

; iK ′(k1)= i
∫ π/2

0

dϑ
(1− k2

1 sin2 ϑ)1/2
; k2

+ k2
1 = 1

(2.8a−c)

and k and k1 are respectively the parameter and the complementary parameter of the
elliptical integral.

The coordinate transformation of (2.5) can be also written in the complex plane as

(x2
+ y2)1/2 + iz=

1
assn(µ+ iν)+ iask−0.5

+
1

2ask−0.5
. (2.9)
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FIGURE 1. Cap-cyclide coordinate system. Surfaces at constant µ and v.

Writing from here on out dn(µ), cn(µ), sn(µ) = dnµ, cnµ, snµ and dn(ν), cn(ν),
sn(ν) = dnν, cnν, snν, for µ = const. the coordinate surfaces are ring-cyclides (see
figure 1) with equation

(x2
+ y2
+ z2)2 + Aµ(x2

+ y2)+ Bµz2
+Cµ = 0, (2.10)

with
Aµ =−(R1

µ + R2
µ); Cµ = R1

µR2
µ (2.11a,b)

and

Bµ =
4a2

s (sn2µ+ 1/k)2

k(1/k− sn2µ)2

[
−R1

µR2
µ + (R

1
µ + R2

µ)
sn2µ

a2
s (sn2µ+ 1/k)2

−
k2

16a4
s

]
, (2.12)

where (note the definitions reported in Moon & Spencer (1971) present a small
mistake)

R1(µ)=

ksn2µ

(
1−

dn2µ

1+ k

)2

a2
s

{
ksn2µ+

[(
1−

dn2µ

1+ k

)
1

k0.5
+

cnµ dnµ
1+ k

k0.5

]2
}2

R2(µ)=

ksn2µ

(
1−

dn2µ

1+ k

)2

a2
s

{
ksn2µ+

[(
1−

dn2µ

1+ k

)
1

k0.5
−

cnµ dnµ
1+ k

k0.5

]2
}2 .



(2.13)

For ν = const. the coordinate surfaces are cap-cyclides (see figure 1) with equation

(x2
+ y2
+ z2)2 + Aν(x2

+ y2)+ Bνz2
+Cν = 0, (2.14)

https://doi.org/10.1017/S0022377819000175 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000175


6 F. Crisanti

FIGURE 2. (a) For k → 0 the constant µ surfaces assume a bean shape; (b) for
intermediate k the surfaces can be either D or purely elliptical prolate; (c) for k→ 1 the
surfaces tend to the standard toroidal ones.

where (note the definitions reported in Moon & Spencer (1971) present a small
mistake)

Aν =
1

8a2
s

(k+ dn2ν)2

dn2ν

[
(cn4ν + 6ksn2νcn2ν + k2sn4ν)(dn2ν − k)2

(cn2ν − ksn2ν)2(k+ dn2ν)2
− 1
]

Bν =
k

2a2
s

cn4ν + 6ksn2νcn2ν + k2sn4ν

(cn2ν − ksn2ν)2

Cν =
k2

16a4
s

.


(2.15)

By varying the parameter k, the coordinates transformation of equation (2.5)
describes a large set of quite different geometries (figure 2). For µ→ 0, independently
of k, the geometry resembles the standard toroidal geometry; for larger values of µ
the shape of the constant µ surfaces depend on the value of the k parameter. For
k→ 0 (figure 2a) the surfaces tends to assume a bean shape, like the old PBX-M
(England et al. 1997) experiment. For intermediate values of k (figure 2b) the surfaces
can be either D or purely elliptical prolate shaped, like the largest part of the present
ongoing tokamak experiments. For k→ 1 (figure 2c) all the surfaces are similar to
the standard toroidal ones, independently of the µ value.

For µ→K the surface at constant µ degenerates in a circumference arc of radius

R0 =

√
X2

0(K, ν)+ Z2
0(K, ν)=

√
k

2as
, where

X0(K, ν)=
k dnν

as(k+ dn2ν)
; Z0(K, ν)=

√
k(dn2ν − k)

2as(dn2ν + k)
.

 (2.16)

For k→ 1, R0 = 1/2as, as is clear from the previous discussion, is the centre of the
standard toroidal coordinates. For the constant µ contours it is possible to define the
local major radius, the local minus radius and the local aspect ratio.

R(µ)=

√
k(1+ ksn2µ)

2as(1+ k)snµ
; a(µ)=

√
kcnµ dnµ

2as(1+ k)snµ

A(µ)=
R(µ)
a(µ)

=
(1+ ksn2µ)

cnµsnµ
; R0 =

√
R2(µ)+ a2(µ).

 (2.17)

https://doi.org/10.1017/S0022377819000175 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000175


The Grad Shafranov equation in an elliptical prolate geometry 7

By using the expansion of the Jacobi elliptical functions in terms of the hyperbolic
coordinates, when k→ 1, in the limit of large aspect ratio (µ→ 0) we have that
A(µ) ∼ cosh(µ) as in the standard toroidal geometry. We can define the local
elongation as b(µ)/a(µ), where b(µ) is the local maximum height of any contour;
after some heavy algebra we have

b(µ)=

√
k(1− ksn2µ)

2as(1+ k)snµ
;

b(µ)
a(µ)

=
(1− ksn2µ)

cnµsnµ
. (2.18a,b)

For µ→ 0, b(µ)/a(µ)→ 1 independently of the parameter k, i.e. the contours are
circular as for the standard toroidal case. For µ→K, b(µ)/a(µ)→∞ independently
of the parameter k (but k = 1, where b(µ)/a(µ)→ 1), this is because, in the centre
of the ‘geometry’, the constant surface converges to a circumference arc and not to a
point.

3. Geometry metric

For the Laplace equation (2.2) to admit a quasi-separable solution of type (2.4), in
a rotational geometry like the cap-cyclides, it is necessary and sufficient that the three
following conditions are satisfied (Moon & Spencer 1971)

1
fµ

∂

∂µ

(
fµ
∂R
∂µ

)
+

1
fν

∂

∂ν

(
fν
∂R
∂ν

)
+ α1(Φ11 +Φ21)R= 0 (3.1)

gµ
gν
=−(Φ13 +Φ23);

√
g

gi
=R2fi(ui)F(u1, u2, u3). (3.2a,b)

Here R is the funcion defined in (2.4) and gi are the coordinate transformation metric
factors

gµ = gν =
1

a2
sΓ

2
Λ2Ω2

; gϕ =
1

a2
sΓ

2
Λ2sn2µ dn2µ; g1/2

=

(
Λ

asΓ

)3

Ω2snµ dnµ,

(3.3a−c)

where Λ and Γ are given in (2.6) and Ω2
= (1− sn2µ dn2ν)(dn2ν − k2sn2µ) and Φαβ

are elements of the Stäckel matrix (Morse & Feshbach 1953)

[S] =

−k2sn2µ −1 −(k2sn2µ+ sn−2µ)

dn2ν 1 (dn2ν + k2 dn−2ν)

0 0 1

 . (3.4)

Consequently, from the third condition of (3.2a,b)

fµ = snµ; fν = dnν; fϕ = 1; R=
(
Λ

asΓ

)1/2

Fµ = dnν; Fν = snµ; Fϕ = (Ω2)/(snµ dnν).

 (3.5)

Eventually, by solving the equation (3.1) we find α1 = 1.
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4. Laplace equation

As a consequence of what was discussed in the previous paragraph, the Laplace
equation (2.2) in the cap-cyclide coordinates admits a quasi-separable solution of the
type of (2.4).

f (µ, ν, ϕ)=
(
Γ

Λ

)0.5

M(µ)N(ν)Φ(ϕ), (4.1)

where the equations for the radial M(µ) and the angular part N(ν) can be written as

d2M
dµ2
+

cnµ dnµ
snµ

dM
dµ
+

[
k2sn2µ− α2 − α3

(
k2sn2µ+

1
sn2µ

)]
M = 0

d2N
dν2
−

k2snνcnν
dnν

dN
dν
+

[
−dn2ν + α2 + α3

(
dn2ν +

k2

dn2ν

)]
N = 0

d2Φ

dϕ2
+ α3Φ = 0.


(4.2)

By substituting z1 = sn2µ and z2 = dn2ν the two equations for M(µ) and N(ν) can
be written as

d2Z
dz2
+

1
2

[
1

z− a1
+

1
z− a2

+
2

z− a3

]
dZ
dz
+

1
4

[
A0 + A1z+ A2z2

(z− a1)(z− a2)(z− a3)2

]
Z = 0. (4.3)

Here, the variable z represents both the variables z1 and z2 and, consequently, the
equations for the functions M(µ) and N(ν) are formally similar. In this equation
a1 = (1; 1), a2 = (1/k2

; k2), a3 = (0; 0), A0 = (−q2/k2
; −q2k2), A1 = (−p′2; p′2),

A2 = (1 − q2
; 1 − q2), where the first term in the brackets refers to the equation for

M(µ), the second to the equation for N(ν), p and q are integer numbers and p′= p/k.
Equation (4.3) is a particular case of the general Böcher (1894), Moon & Spencer
(1971) equation

d2Z̃
dz2
+ P(z)

dZ̃
dz
+Q(z)Z̃ = 0 with

P(z)=
1
2

[
m1

z− a1
+

m2

z− a2
+ · · · +

mn−1

z− an−1

]
;

Q(z)=
1
4

[
A0 + A1z+ · · · Alzl

(z− a1)m1(z− a2)m2 · · · (z− an−1)mn−1

]
.


(4.4)

In the particular case of (4.3) the general Böcher equation is named a Wangerin
equation. This equation has two singularities of the first order for z= 1, a2 and two
singularities of the second order for z = 0 and z→∞. Consequently the Wangerin
equation is characterized by poles {1,1,2,2} and the Laplace equation has the solution
(Moon & Spencer 1971).

M(sn2µ)= ADq
p(k, sn2µ)+ BFq

p(k, sn2µ)

N(dn2ν)= ADq
p′(k, dn2ν)+ BFq

p′(k, dn2ν)

Φ(ϕ)= A sin(qϕ)+ B cos(qϕ).

 (4.5)
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5. Grad Shafranov equation
The Grad Shafranov operator of equation (2.1) in axisymmetry (∂/∂ϕ= 0) is similar

to the toroidal part of the Laplace operator applied to the potential vector

(1A)ϕ =−
1
R
1∗ψ = 0. (5.1)

This expression for an orthogonal system of coordinates (u1, u2, u3) assumes the
explicit form

∂2Aϕ
∂u2

1
+
∂2Aϕ
∂u2

2
+

1
2g3

(
∂g3

∂u1

∂Aϕ
∂u1
+
∂g3

∂u2

∂Aϕ
∂u2

)
+

Aϕ
2g3

{(
∂2g3

∂u2
1
+
∂2g3

∂u2
2

)
−

1
g3

[(
∂g3

∂u1

)2

+

(
∂g3

∂u2

)2
]}
= 0. (5.2)

That in our case of the cap-cyclide coordinates becomes

(1A)ϕ =
∂

∂µ

[
∂Aφ
∂µ
+

(
1
fµ

∂fµ
∂µ
−R2 ∂R−2

∂µ

)
Aφ

]
+
∂

∂ν

[
∂Aφ
∂ν
+

(
1
fν

∂fν
∂ν
−R2 ∂R−2

∂ν

)
Aφ

]
= 0. (5.3)

where here R is the separation function defined in (3.5). By remembering that in our
coordinates the Laplace equation in axisymmetry can be written as

1f =
1

R2Ω2fµfν

[
fν
∂

∂µ

(
R2fµ

∂f
∂µ

)
+ fµ

∂

∂ν

(
R2fν

∂f
∂ν

)]
= 0. (5.4)

Equation (5.3) is identical to equation (5.4), plus a non-differential term in Aϕ[
∂

∂µ

(
1
fµ

∂fµ
∂µ
−R2 ∂R−2

∂µ

)
+
∂

∂ν

(
1
fν

∂fν
∂ν
−R2fν

R−2

∂ν

)]
=Φ13 +Φ23. (5.5)

Where Φαβ are elements of the Stäckel matrix. Consequently the set of separable
solutions of (5.4) for the toroidal component of the potential vector is the same as the
one of set (4.2), when assuming that the axisymmetry is (∂/∂ϕ = 0→ q2

= α3 = 0),
plus the non-differential term of (5.5).

d2M
dµ2
+

cnµ dnµ
snµ

dM
dµ
+

(
1

sn2µ
− α2

)
M = 0

d2N
dν2
−

k2snνcnν
dnν

dN
dν
+

(
α2 +

k2

dn2ν

)
N = 0.

 . (5.6)

But this set of equations, when assuming q2
= α3 = 1, is identical to the one

of (4.2); consequently the two-dimensional (2-D) solution of the toroidal component
of the vectorial Laplace equation for the potential vector is the same as the 3-D
scalar Laplace equation when assuming q2

= α3 = 1. If now we remember that

ψ =

∮
Aϕ d`= 2πAϕ

Λ

asΓ
snµ dnµ. (5.7)
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We get that the solution for the Grad Shafranov equation (2.1) can be expressed in
terms of the Wangerin functions with q2

= 1

ψ = [AD1
p(k, sn2µ)+ BF1

p(k, sn2µ)][AD1
p(k, dn2ν)+ BF1

p(k, dn2ν)]. (5.8)

It is important to note that in (5.8) all terms, but Ap,p′ and Bp,p′ , are geometrical terms.
The physics information, regarding the topological structure of the magnetic field,
depends only on the unknown moments Ap,p′ and Bp.p′ , constant in the vacuum region.
The moments Ap,p′ describe the field produced by all the currents flowing internally
to the vacuum region, whilst the moments Bp,p′ describe the field produced by all the
currents flowing externally to the vacuum region. Consequently, the contribution of all
the currents flowing externally from the plasma region is intrinsically separated by the
internal properties of the confined plasma, which are fully described by the moments
Ap,p′ . In a region with a current distribution, the solution of the Grad Shafranov
equation remains formally the same as (2.1), but now the moments Ap,p′ and Bp.p′ are
not constant anymore, and can be worked out by using a Green function technique,
once the current distribution is known.

Ap(r)=
∫ V

0
G(r′)(µ0r′Jϕ) d3r′

Bp(r)=
∫
∞

V
G(r′)(µ0r′Jϕ) d3r′.

 (5.9)

On a given tokamak experiment we have a set of magnetic probes, measuring the
local value of the magnetic field B and of the flux function ψ

ψl =
∑
p.p′

[Ap,p′D1
p(k, sn2µl)+ Bp,p′F1

p(k, sn2µl)]

× [Ap,p′D1
p′(k, dn2νl)+ Bp,p′F1

p′(k, dn2νl)]

Bl =
1

2πrl

(
∂ψ

∂r

)
l

 (5.10)

here the subscript l indicates the generic position of a magnetic probe. Clearly this
set of magnetic probes allows ua to exactly determine the values of the moments
Ap,p′ and Bp.p′ and, consequently, to have the exact analytical expression of the
magnetic topology in the region between the plasma column and the closer poloidal
coil. Moreover, this methodology allows us to discriminate between the contribution
provided by the external equilibrium currents (given by the moments Bp,p′) and the one
provided by the internal plasma currents distribution (given by the moments Ap,p′). As
described in Alladio & Crisanti (1986) this approach, alongside the Green technique
of (5.9) and the Grad Shafranov equation, allows us to build up a robust semi
-analytical reconstructive equilibrium code. The robustness of using this approach to
deal with the mathematically ill-posed problem of reconstructing the internal plasma
equilibrium only relying on external magnetic measurements has been verified both
in the context of the FTU circular tokamak and in the ‘old’ JET, where the divertor
coils were missing. The robustness of the solution obtained, against the magnetic
measurements error, was widely verified at JET and it allowed us to discover the
possibility for JET to realize an X point configuration (Alladio et al. 1984; Alladio
& Crisanti 1986). The drawback of the equilibrium code described in Alladio &
Crisanti (1986) was that it was worked out by using the pure toroidal geometry,
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with a circular poloidal section. When applied to the modern elongated tokamak,
this reconstructive equilibrium code was not able to exactly discriminate between the
contribution provided by the external coils and the one provided by the plasma. The
solution written down in (5.10) will allow us to solve this problem and to build up
a very robust semi-analytical equilibrium code, even capable of dealing with the next
generation of tokamaks, where the measurements will be far from the plasma border
and the signal produced by high internal magnetic moments will be from the very
low up to becoming comparable with the intrinsic system noise.

6. Conclusions

Equilibrium reconstructive codes (Lao et al. 1985; Alladio & Crisanti 1986;
Alladio et al. 1991) are probably the most important diagnostic tool in fusion-based
experiments, and their importance will be even stronger in future DEMO class
experiments, where the scarce availability of diagnostics will require very robust
codes, based on fundamental physics principles. The equilibrium codes based on an
analytical solution to the Grad Shafranov equation are very robust and, probably, the
most suitable tools to accomplish the necessary quality in terms of robustness and
reliability. Unfortunately, so far, an analytical solution to the Grad Shafranov equation
was available only for circular and elliptical oblate shaped toroidal geometries, not
adaptable to the present elongated tokamak. The analytical solution to the vacuum
Grad Shafranov, in the cap-cyclide coordinates, as worked out in this paper, opens
the possibility of realizing an equilibrium reconstructive code based on an elongated
geometry. The Wangerin functions have been evaluated for the first time in AikawaI
& Takahara (1975). However, in order to use them for an equilibrium code, an
independent evaluation and cross-checking will be necessary. Moreover, it will
necessary to evaluate their derivatives, to be able to get the poloidal magnetic
field and to open the possibility of finding the Green function for this geometry.
Eventually, this will allow us to write a robust reconstructive equilibrium code, to be
used on the present and future elongated tokamak experiments.
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