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We study the structure of symmetric vortices in a Ginzburg{Landau model based on
Zhang’ s SO(5) theory of high-temperature superconductivity and
antiferromagnetism. We consider both a full Ginzburg{Landau theory (with
Ginzburg{Landau scaling parameter µ < 1 ) and a µ ! 1 limiting model. In all
cases we ¯nd that the usual superconducting vortices (with normal phase in the
central core region) become unstable (not energy minimizing) when the chemical
potential crosses a threshold level, giving rise to a new vortex pro¯le with
antiferromagnetic ordering in the core region. We show that this phase transition in
the cores is due to a bifurcation from a simple eigenvalue of the linearized equations.
In the limiting large-µ model, we prove that the antiferromagnetic core solutions are
always non-degenerate local energy minimizers and prove an exact multiplicity result
for physically relevant solutions.

1. Introduction

In 1986, Bednorz and M�uller announced their discovery of high-critical-temperature
(TC) superconductors and promptly received the 1987 Nobel Prize for their e¬orts.
This discovery has led to a new ®owering of superconductivity (abbreviated SC) the-
ory, since the high-temperature phenomenon cannot be explained by the accepted
models for conventional superconductors. In particular, many physicists have come
to the conclusion that the microscopic BCS theory (see [18]) does not correctly
describe the interactions which produce SC at high temperatures. At the present
time, there are several competing theories which attempt to explain these interac-
tions. One theory is based on the observation that high-TC compounds also exhibit
an ordered phase called antiferromagnetism when physical parameters (such as
temperature, chemical potential or `doping’, and magnetic ­ eld) are varied. Anti-
ferromagnetism (abbreviated AF) is an insulating phase of matter in which electron
spins orient themselves in the direction opposite to their nearest neighbours. The
coexistence of these two phases (AF and SC) in the phase diagram of the high-TC

compounds has led to the speculation that high-temperature SC and AF could be
explained by the same type of interaction.

Following in this direction, Zhang [19] proposed a quantum statistical mechan-
ics model which incorporates AF and high-temperature SC. The model is based
on a broken SO(5) symmetry tying the complex-order parameter of SC to the
Ńeel vector which describes AF. The interactions between the SC and AF order
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Figure 1. A numerical bifurcation curve, m(0) versus g, for values µ = 20 (dotted), 40
(dot{dash), 120 (solid) and d = 1, indicates a second-order transition to AF cores in
model (GL µ ;g ). For the high-µ model (GL 1 ;g ), we prove that the above image correctly
depicts the solution set (see theorem 4.5). Numerical simulations indicate that the bifur-
cation occurs at g¤

1 ’ 0:2545 (see [2]).

parameters in this model should have some e¬ect on the familiar constructions
from conventional SC theory. In a recent paper, Arovas et al . [4] introduced a phe-
nomenological Ginzburg{Landau model based on the SO(5) theory and studied
isolated vortex solutions in the plane. Recall that in a conventional superconductor
the magnetic ­ eld is expelled from the superconducting bulk, and only penetrates
in thin tubes (the vortices) where SC is suppressed. Hence, in the conventional
theory, the magnetic ­ eld is constrained to a small core of normal (non-SC) phase.
Using a simpli­ ed model, Arovas et al . predicted a new kind of vortex structure in
the SO(5) model: vortices with antiferromagnetic cores, which should be observed
for small values of the chemical potential. They also predicted that (as the chemical
potential is gradually decreased) the transition from normal core to AF core vortices
occurs in a discontinuous fashion. In other words, AF cores should be produced via
a ¯rst-order phase transition.

In this paper we rigorously analyse vortex cores in the full SO(5) Ginzburg{
Landau model and in an `extreme type II’ limiting model (also called `high-µ model’)
to understand the nature of the transition between normal core and AF core solu-
tions. For both models we show that the vortex solutions with normal cores become
unstable (within the class of radial functions|see (1.1) below) and vortices with AF
cores are produced by bifurcation from the normal core solutions. In the extreme
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type II model we prove that the transition is continuous (i.e. second order), contrary
to the prediction of [4] (see ­ gure 1). Furthermore, we show that for each value of
the chemical potential there exists a unique stable vortex pro­ le (see theorem 4.5).

The full SO(5) Ginzburg{Landau free energy is written in terms of the SC order
parameter ã 2 C and the AF order parameter (Ńeel vector) m = (m1; m2; m3). In
non-dimensional form, the free energy is

F =
1

2

Z

«

»
1
2µ2(1 jã j2 jmj2)2+gµ2jmj2+j

³
1

i
r A

´
ã j2+jrmj2+jr£Aj2

¼
dx:

(We refer to the paper by Alama et al . [2], where the free energy is written in dimen-
sional form.) In these variables, the penetration depth ¶ = 1 and the Ginzburg{
Landau parameter µ is the reciprocal of the correlation length ¹ . The parameter g
measures the strength of doping (chemical potential) of the material. It is this term
which breaks the SO(5) symmetry of the potential term. We take g > 0; with this
assumption, SC is preferred in the bulk of the sample.

To study isolated vortex solutions in the plane « = R2 we seek critical points of
F of the form

ã = f (r)eid³ ; A = S(r)

³
y

r2
;

x

r2

´
; m = m(r)m0; (1.1)

where m0 a ­ xed unit vector and d 2 Z n f0g represents the degree of the vortex.
As for conventional SC vortices, we expect that only the solutions with d = §1 will
be energy minimizers (see [11,13]). Critical points of F with this ansatz solve the
system of equations

f 00 1

r
f 0 +

(d S)2

r2
f = µ2(1 f 2 m2)f;

S 00 +
1

r
S 0 = (d S)f 2;

m00 1

r
m0 + µ2gm = µ2(1 f 2 m2)m;

9
>>>>>=

>>>>>;

(GL µ ;g)

with f (r) > 0, f (r); S(r) ! 0 as r ! 0 and f (r) ! 1, S(r) ! d as r ! 1, and
m0(0) = 0, m(r) ! 0 as r ! 1.

In addition, we study the following `extreme type II’ model:

f 00 1

r
f 0 +

d2

r2
f = (1 f 2 m2)f;

m00 1

r
m0 + gm = (1 f 2 m2)m:

9
>=

>;
(GL 1 ;g)

The system (GL 1 ;g) is obtained in the limit µ ! 1 after rescaling solutions
to (GL µ ;g) by the correlation length ¹ = 1=µ. For high-TC superconductors, µ
is very large and hence the vortex cores are very narrow compared to the penetra-
tion depth, which measures the length scale for magnetic ­ elds. By rescaling, we
capture the structure of the vortex cores and decouple the magnetic ­ eld, which
lives on a much larger length scale. Indeed, the calculations which led Arovas et
al . [4] to predict AF vortex cores are mostly based on (GL 1 ;g) and its associated
free energy functional.
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We observe that when the AF order parameter m = 0, the two systems (GL µ ;g)
and (GL1 ;g) reduce to the familiar Ginzburg{Landau vortex equations, well studied
in the mathematical literature (see, for example, [5{7, 13, 14]). We call these the
normal core solutions. In a previous paper [1], we have proven that when µ2 > 2d2,
there is a unique normal core solution, which is a non-degenerate minimizer of the
appropriate free energy functional. This characterization will be essential for our
analysis of the normal-to-AF core transition.

We now discuss our results. We de­ ne a reduced energy functional de­ ned for
functions satisfying the symmetric vortex ansatz (1.1), as well as appropriate func-
tion spaces in which that functional is smooth. We ­ nd that, for every µ (including
the extreme type II model), there exists g ¤

µ > 0 such that the conventional normal
core vortex solutions of (GL µ ;g) (and (GL 1 ;g)) are strict local minimizers of the
reduced energy for g > g ¤

µ , but are not local minimizers when 0 < g < g ¤
µ . In par-

ticular, energy minimizers must have AF order in the vortex core for 0 < g < g ¤
µ .

When µ2 > 2d2, we show that the AF core solutions bifurcate from the normal core
solution at a simple eigenvalue of the linearized system (GL µ ;g) (or (GL 1 ;g)). The
bifurcating solutions remain bounded for g > 0 and lose compactness as g ! 0+
with f ! 0 and m ! 1.

For the limiting problem (GL 1 ;g), we obtain a complete picture of the phase tran-
sition to AF cores. This is because all AF core vortex solutions are non-degenerate
minima of the reduced energy (see theorem 3.1). Stable (locally minimizing) solu-
tions with m(r) > 0 bifurcate from m = 0 at g = g ¤

1 to values g < g ¤
1 . Moreover,

for each g < g ¤
1 , there exists exactly one solution with m(r) > 0.

In the language of physics, our results indicate a second-order (or continuous)
phase transition between normal and AF vortex cores in (GL 1 ;g). This information
concerning the nature of the transition was not derived in the paper by Arovas et
al . [4], and hence the result is new to the physics literature as well. For (GL µ ;g),
Alama et al . [2] present numerical simulations (based on gradient ®ow for a ­ nite-
elements approximation of the free energy) which suggest that the transition is
also second order for µ < 1 (see ­ gure 1). However, we were not able to extend
the arguments used in studying the bifurcation curves of (GL 1 ;g) to the more
complicated system (GL µ ;g) (see remark 4.3 for further discussion).

Here is an outline of the content of the paper. In the second section we introduce
the reduced energy and function spaces, we treat brie®y the questions of existence,
regularity and decay of solutions, and we present properties of physically relevant
(`admissible’) solutions. We also prove the monotonicity of the solution pro­ les
(f; S; m) under the hypothesis that the solution is a local reduced energy minimizer.
This result (theorem 2.9) is done in the spirit of the weak maximum principle (see
theorem 8.1 of [10]).

Section 3 contains the proof that all solutions of (GL 1 ;g) with m > 0 repre-
sent non-degenerate local minima of the reduced energy. This result is the key to
understanding the bifurcation diagram for (GL 1 ;g). The bifurcation analysis itself
occupies x 4.

The last two sections contain the a priori estimates used in rigorously passing to
the limit µ ! 1 and in studying the global behaviour of bifurcating continua. In
both cases, we require estimates on solutions which are energy independent. For the
limit µ ! 1, this is because the reduced energy of minimizers behaves like log µ,
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and in studying global bifurcation we require estimates valid for any physically
relevant solution (whether it is energy minimizing or not). The starting point for
these estimates is a Pohozaev-type identity (see proposition 5.4). The proof of
convergence to (GL 1 ;g) as µ ! 1 is presented in x 5; other a priori estimates are
derived in x 6.

2. Solutions of the Ginzburg{Landau system

2.1. Preliminaries

Here and in the rest of the paper, we ­ x the value of d 2 Z n f0g. In this section,
µ 2 R is ­ xed. Note that, without loss of generality, we may take d > 0, since the
free energy and the corresponding Euler{Lagrange equations are invariant under
the transformation (ã ; A; m) ! ( ·ã ; A; m).

Following our previous work [1] on symmetric vortices, we de­ ne a function space
for which the free energy will be a smooth functional. First we ­ x some notation.
We denote by Lp

r , H the Lebesgue and Sobolev spaces (respectively) of radially
symmetric functions in R2, that is,

Lp
r =

»
u(r) :

Z 1

0

ju(r)jpr dr < 1
¼

; p < 1;

H := H1
r =

»
u(r) :

Z 1

0

[(u0(r))2 + (u(r))2]r dr < 1
¼

;

and analogously for L 1
r . We also denote

Z
u(r) dr =

Z 1

0

u(r)r dr:

De­ ne the Hilbert space

X =

»
u 2 H :

Z
u2

r2
r dr < 1

¼
;

with norm

kukX =

sZ µ
(u0(r))2 + u2 +

u2

r2

¶
r dr:

The following density and imbedding properties for the space X are proven in [1].

Lemma 2.1.

(i) X is compactly embedded in Lp
r for each p 2 (2; 1).

(ii) X is compactly embedded in L2
r;loc.

(iii) For every u 2 X ,

kuk2
1 6

Z µ
(u0)2 +

u2

r2

¶
r dr:

In particular, X embeds continuously into L 1
r .

(iv) C 1
0 ((0; 1)) is dense in X .
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We note that the compactness of the embedding of H into Lp
r;loc (1 6 p < 1) is

just the classical Rellich{Kondrachov theorem, and the compact embedding of H
into Lp

r for 2 < p < 1 is due to Strauss [17].

2.2. Energy

We now de­ ne our energy functionals, using the space X de­ ned above. To keep
the appropriate boundary condition at in­ nity, we ­ x any function ² 2 C 1 ([0; 1))
with ² (r) = 0 for 0 6 r 6 1, ² (r) = 1 for all r > 2 and 0 < ² < 1. Then set f0 = ² ,
S0 = d² , and seek solutions (f; S; m) of (GL µ ;g) with f = f0 + u, S = S0 + rv,
u; v 2 X , m 2 H. (Later we will see that this choice poses no restriction on solutions
which are physically relevant.) We denote by Y0 = X £ X £ H and by Y the a¯ ne
space

Y = f(f; S; m) : f = f0 + u; S = S0 + rv; u; v 2 X; m 2 Hg = Y0 + (f0; S0; 0):

For (f; S; m) 2 Y , we de­ ne

E µ ;g(f; S; m) =
1

2

Z »
(f 0)2 +

µ
S0

r

¶2

+ (m0)2 + µ2gm2

+
(d S)2f 2

r2
+ 1

2 µ2(1 f 2 m2)2

¼
r dr (2.1)

and the functional Ik;g : Y0 ! R by

Ik;g(u; v; m) = E µ ;g(f0 + u; S0 + rv; m) E µ ;g(f0; S0; 0):

Throughout the paper we will take advantage of these two representations of our
spaces and energies, and use the formulation which is more convenient at the given
moment.

De­ ning an energy functional for the limiting problem (GL 1 ;g) is trickier, since
the naive choice for the energy (namely (2.1) with S = 0 and µ = 1) would be
in­ nite for all f satisfying the desired boundary condition at r = 1. Our solution
is to subtract o¬ the o¬ending term from the energy density. Let ~f1 be the (unique)
positive solution to the high-µ vortex equation,

~f 00
1

1

r
~f 0
1 +

d2

r2
~f1 = (1 ~f 2

1 ) ~f1 ;

with ~f 1 (0) = 0, ~f 1 (r) ! 1 as r ! 1. The uniqueness of ~f 1 was established by
Chen et al . [7]. The estimates in [7] ensure that ~f 1 is smooth, ~f 1 (r) ¹ rd near
r = 0 and (1 ~f 1 ) 2 H .

We de­ ne the appropriate spaces for the free energy E 1 ;g based on ~f 1 . Let
Z0 = X £ H and

Z = f(f; m) : f = ~f1 + u; u 2 X; m 2 Hg = Z0 + ( ~f1 ; 0):

Then the energy for the high-µ model is

E 1 ;g(f; m) =
1

2

Z »
(f 0)2 + (m0)2 + gm2 +

d2

r2
[f2 ~f 2

1 ] + 1
2(1 f 2 m2)2

¼
r dr:

(2.2)
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If we write f = ~f 1 + u, we reduce to the equivalent functional

I1 ;g(u; m) = E 1 ;g( ~f1 + u; m) E 1 ;g( ~f1 ; 0)

=
1

2

Z »
(u0)2 +

d2

r2
u2 + (m0)2 + gm2 + 1

2(1 ( ~f1 + u)2 m2)2

1
2(1 ~f 2

1 )2 + 2(1 ~f 2
1 ) ~f1 u

¼
r dr:

(2.3)

By a direct expansion of the energy in powers of u, v, m, we see that Ik;g : Y0 ! R
and I1 ;g : Z0 ! R are smooth (C 1 ) functionals.

When g > 0 is ­ xed, we obtain solutions of (GL µ ;g) and (GL 1 ;g) as global
minimizers for E µ ;g and E 1 ;g (in the appropriate spaces, Y and Z).

Theorem 2.2. For every ¯xed g > 0, µ 2 R and d 2 Z 0, the functional Iµ ;g

admits a minimizer (u; v; m) 2 X £X £H . Moreover, (f; S; m) = (f0+u; S0+rv; m)
is a smooth solution of the system (GL µ ;g).

Theorem 2.3. For every ¯xed g > 0 and d 2 Z 0, the functional I1 ;g admits a
minimizer (u; m) 2 X £ H . Moreover, (f; m) = ( ~f1 + u; m) is a smooth solution
of the system (GL 1 ;g).

The proofs of theorems 2.2 and 2.3 are straightforward but technical, and are
deferred to x 6.

2.3. Admissible solutions

As in [1], we de­ ne a natural class of solutions to the system (GL µ ;g).

Definition 2.4. We call (f¤ ; S¤ ; m ¤ ) an admissible solution to (GLµ ;g) if the fol-
lowing hold.

(i) The system (GL µ ;g) holds for all r 2 (0; 1).

(ii) E µ ;g(f¤ ; S¤ ; m ¤ ) < 1.

(iii) f¤ (r) > 0 and m ¤ (r) > 0 for all r > 0.

(iv) S ¤ (0) = 0 and m0
¤ (0) = 0.

A solution (f ¤ ; m ¤ ) of (GL 1 ;g) is called admissible if the above conditions hold,
where we replace µ by 1 and disregard S ¤ .

A solution to (GL µ ;g) or (GL 1 ;g) with m ¤ ² 0 is called a normal core solution.

The admissible solutions are those which are physically relevant in the context
of the vortex core problem described in the introduction. We note that the normal
core solutions are unique for µ2 > 2d2 (see [1] for the case 2d2 6 µ2 < 1 and [7]
for µ = 1).

We now present some properties of admissible solutions. In the following, we will
assume that µ 2 R [ f1g, with the understanding that S ¤ = 0 when µ = 1.

Proposition 2.5. Let (f¤ ; S ¤ ; m ¤ ) be any admissible solution of (GL µ ;g). Then we
have the following.
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(i) For all r 2 (0; 1) it holds 0 < f¤ (r) < 1, 0 6 m ¤ (r) < 1, f 2
¤ (r) + m2

¤ (r) < 1
and, if µ 6= 1, 0 < S ¤ (r) < d.

(ii) Either m ¤ (r) > 0 for all r 2 [0; 1) or m ¤ vanishes identical ly.

(iii) f¤ (r) ! 1, m ¤ (r) ! 0 and, if µ 6= 1, S ¤ (r) ! d as r ! 1. Moreover, there
exist constants ¼ ; C0 > 0 such that, for µ 6= 1,

0 < 1 f¤ (r) 6 C0e ¼ r; 0 < d S¤ (r) 6 C0e ¼ r; 0 6 m ¤ (r) 6 C0e ¼ r

and, for µ = 1,

0 < 1 f¤ (r) 6 d2

2r2
+

8d2 + d4

8r4
+ O(r 6); 0 6 m ¤ (r) 6 C0e ¼ r

for all r > 0.

(iv) f¤ (r) ¹ rd, S¤ (r) ¹ r2 for r ¹ 0.

(v) If µ 6= 1, S 0
¤ (r) > 0 for all r > 0.

Proof. The proof is very similar to that of proposition 2.3 of [1], so we provide
only a sketch. From the ­ niteness of the free energy, we immediately conclude that
m ¤ 2 H and hence m ¤ 2 Lp

r for any p 2 [2; 1], and m ¤ (r) ! 0 as r ! 1. Since
f ¤ > 0, ­ niteness of energy again implies 1 f¤ 2 L2

r (see (6.10) for details) and
therefore the bound 0 < f¤ (r) < 1 follows exactly as in proposition 2.3 of [1].
When µ < 1, the bound 0 < S¤ (r) < d and the proof that S 0

¤ (r) > 0 are also
unchanged from [1]. To show z = f2

¤ + m2
¤ < 1, we use the equation satis­ ed by z;

this argument is already presented in [2]. Statement (ii) is a simple consequence of
the strong maximum principle.

The exponential decay in (iii) for m ¤ is consequence of proposition 7.4 in [12],
and so are the ones for f ¤ and S ¤ if µ 6= 1. If µ = 1, the polynomial decay of f ¤
can be proven as in lemma 3.3 in [7], since m ¤ (r) 6 C(R)=r6 for any r > R, with
C(R) a big enough constant.

The behaviour at zero given in (iv) can be proven as in [14].

We now connect admissible solutions to our space X .

Proposition 2.6. Let (f0; S0; m0), (f1; S1; m1) be admissible solutions to (GL µ ;g).
Then (f1 f0) 2 X , [(S1 S0)=r] 2 X and m1; m0 2 H .

Proof. As already remarked, condition (ii) of the de­ nition of admissible solutions
implies m1; m0 2 H and m1; m0 2 Lp

r for any p 2 [2; 1). Then the rest of the
proposition for µ 6= 1 is proven as in proposition 2.4 of [1]. When µ = 1, we
note that (1 fi) 2 H for i = 1; 2 and that, by (iv) of proposition 2.5, we have
(f1 f2)2 6 cr2d for r ¹ 0 and, again by ­ niteness of energy, we conclude our
statement.

Remark 2.7. In light of proposition 2.6, we observe that the choice of f0, S0 in
the de­ nition of the space Y may be replaced by any ­ xed admissible solution
of (GL µ ;g). It will be convenient to choose instead the `basepoint’ ( ~f µ ; ~Sµ ; 0) to be
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a `normal core’ solution to (GL µ ;g). In other words, an equivalent de­ nition of the
space Y is

Y = f(f; S; m) : f = ~fµ + u; S = ~Sµ + rv; u; v 2 X; m 2 Hg: (2.4)

We recall that the normal core solutions are uniquely determined for µ2 > 2d2.
When µ2 < 2d2, we ­ x any one.

Remark 2.8. Proposition 2.6 also implies that the admissible solutions are exactly
those which arise from minimization problems for E µ ;g and E 1 ;g in the space Y . In
particular, as an immediate corollary, we obtain the following statement:

(f ¤ ; S ¤ ; m ¤ ) is an admissible solution to (GL µ ;g) if and only if f ¤ > 0,
m ¤ > 0, (f ¤ ; S ¤ ; m ¤ ) 2 Y and E 0

µ ;g(f¤ ; S¤ ; m ¤ )[u; v; w] = 0 for all u; v 2
X and w 2 H .

An analogous statement holds for the problem (GL 1 ;g).

With this choice of representation for our spaces Y , Z, we now look at the second
variation of energy with respect to the variables (u; v; w) 2 X £ X £ H . We de­ ne

E 00
µ ;g(f ¤ ; S ¤ ; m ¤ )[u; v; w]

=
d2

dt2

­­­­
t = 0

E µ ;g(f¤ + tu; S ¤ + trv; m ¤ + tw)

=

Z »
(u0)2 + (w0)2 +

(d S ¤ )2

r2
u2 + µ2gw2

+ (v0)2 +
v2

r2
4

(d S¤ )

r
f¤ uv + f 2

¤ v2

µ2(1 f 2
¤ m2

¤ )(u2 + w2) + 2µ2(f¤ u + m ¤ w)2

¼
r dr: (2.5)

E 00
1 ;g(f ¤ ; m ¤ )[u; w]

=
d2

dt2

­­­­
t = 0

E 1 ;g(f¤ + tu; m ¤ + tw)

=

Z »
(u0)2 + (w0)2 +

d2

r2
u2 + gw2

(1 f 2
¤ m2

¤ )(u2 + w2) + 2(f ¤ u + m ¤ w)2

¼
r dr: (2.6)

Note that if we write f¤ = ~fµ + u ¤ , S ¤ = ~S µ + rv¤ , then

E 00
µ ;g(f¤ ; S ¤ ; m ¤ )[u; v; w] = D2 Iµ ;g(u ¤ ; v ¤ ; m ¤ )[u; v; w];

the usual second Fŕechet derivative.
For admissible solutions which are stable, in the sense that the second variation of

energy about the solution is a non-negative quadratic form, we have monotonicity
of the pro­ les f (r), m(r).
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Theorem 2.9. Suppose (f; S; m) is an admissible solution of (GL µ ;g) and that
E 00

µ ;g(f; S; m)[u; v; w] > 0 for all (u; v; w) 2 Y0. Then f 0(r) > 0 and (if it is not
identical ly zero) m0(r) < 0 for all r > 0.

For the problem (GL 1 ;g), the same theorem holds, with exactly the same proof.
We will see later that all admissible solutions of (GL 1 ;g) with m(r) > 0 are stable
(in the above sense), and hence we will obtain the stronger result announced in
corollary 3.2.

Proof. Let ~u(r) = f 0(r), ~w(r) = m0(r). Then, di¬erentiating the ­ rst and third
equations of (GL µ ;g), we get

~u00 1

r
~u0 +

(d S)2

r2
~u µ2(1 3f 2 m2)~u + 2µ2mf ~w

=
1

r2
~u + 2

d S

r
f

µ
S 0

r
+

d S

r2

¶

and

~w00 1

r
~w0 + gµ2 ~w µ2(1 f2 3m2) ~w + 2µ2fm~u =

1

r2
~w:

Suppose there exist intervals (a; b), (c; d) such that

~u(r) < 0; r 2 (a; b); ~u(a) = 0 = ~u(b)

or

~w(r) > 0 r 2 (c; d); ~w(c) = 0 = ~w(d):

Note that, by properties (i), (iii) and (iv) of admissible solutions in proposition 2.5,
a 6= 0 and b; d < +1. Let

u(r) =

(
~u(r) if r 2 (a; b);

0 otherwise;

w(r) =

(
~w(r) if r 2 (c; d);

0 otherwise:

Then u 6 0, w > 0 and an integration by parts shows that

Z
(u0)2r dr =

Z b

a

~u
1

r
(r~u0)0r dr;

and similarly for w. If we now use (u; 0; w) as a test function in the second variation
of energy and recall from proposition 2.5 that S(r) < d, S0(r) > 0 for all r > 0, we
obtain

0 6 E 00
µ ;g(f; S; m)[u; 0; w]

6
Z µ

1

r2
u2 + 2

d S

r
f

µ
S 0

r
+

d S

r2

¶
u

1

r2
w2

¶
r dr < 0;
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unless u; w ² 0. Consequently, ~u = f 0 > 0 and ~w = m0 6 0. Strict inequality follows
from the strong maximum principle, since ~u, ~w satisfy equations of the form

¢r ~u + c1(r)~u > 2µ2mf ~w > 0;

¢r ~w + c2(r) ~w = 2µ2mf ~u 6 0:

3. Non-degeneracy of solutions of (GL 1 ;g )

Theorem 3.1. For any admissible solution (f¤ ; m ¤ ) of (GL 1 ;g) with m ¤ > 0, there
exists a constant ¼ ¤ > 0 such that

E 00
1 ;g(f¤ ; m ¤ )[u; w] > ¼ ¤ (kuk2

X + kwk2
H)

for all u 2 X, w 2 H .

Corollary 3.2. For any admissible solution (f¤ ; m ¤ ) of (GL 1 ;g), f 0
¤ (r) > 0 for

all r > 0. If m ¤ is not identical ly zero, then m0
¤ (r) < 0 for all r > 0.

The corollary follows from theorem 3.1 and the argument of theorem 2.9 when
m ¤ > 0. Note that when m ¤ ² 0, the system (GL 1 ;g) reduces to the single equation
studied in [7] and the strict monotonicity of f¤ is part of their result. Also, in the
case that m ¤ ² 0, the theorem reduces to E 00

1 ;g(f¤ )[u] > ¼ ¤ kuk2
X .

The key step in proving theorem 3.1 is the following identity.

Theorem 3.3. For any admissible solution (f ¤ ; m ¤ ) of (GL 1 ;g) with m ¤ > 0 and
any u 2 X , w 2 H ,

E 00
1 ;g(f ¤ ; m ¤ )[u; w] =

Z »
f 2

¤

µ³
u

f¤

0́¶2

+ m2
¤

µ³
w

m ¤

0́¶2

+ 4(f¤ u + m ¤ w)2

¼
r dr:

(3.1)

Proof of theorem 3.3. First we prove the identity for u 2 C 1
0 ((0; 1)) and w 2

C 1
0 ([0; 1)). First note that, using f¤ > 0 and m ¤ > 0, we have

f 2
¤

µ³
u

f ¤

0́¶2

= (u0)2 2
uu0f 0

¤
f¤

+ u2 (f 0
¤ )2

f 2
¤

; (3.2)

with a similar identity holding for m ¤ , w. Hence

0 = E 0
1 ;g(f ¤ ; m ¤ )

µ
u2

f ¤
;

w2

m ¤

¶

=

Z »
(u0)2 + (w0)2 +

d2

r2
u2 + gw2

(1 f 2
¤ m2

¤ )(u2 + w2) f2
¤

µ³
u

f ¤

0́¶2

m2
¤

µ³
w

m ¤

0́¶2 ¼
r dr:

Substituting this in the formula for E 00
1 ;g(f¤ ; m ¤ )[u; w], we obtain

E 00
1 ;g(f¤ ; m ¤ )[u; w] =

Z »
f2

¤

µ³
u

f ¤

0́¶2

+ m2
¤

µ³
w

m ¤

0́¶2

+ 2[f¤ u + m ¤ w]2
¼

r dr:
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To obtain the result for any (u; w) 2 X £ H , let un be a sequence of C 1
0 ((0; 1))

functions converging to u in X , and wn a sequence in C 1
0 ([0; 1)) converging to

w in H . By continuity of E 00
1 ;g(f ¤ ; S ¤ ), the limit passes in the second variation of

E 1 ;g. For the right-hand side we expand,

Z
f 2

¤

³³
u

f¤

0́ 2́

r dr =

Z »
(u0)2 2

f 0
¤

f¤
uu0 +

³
f 0

¤
f ¤

2́

u2

¼
r dr (3.3)

and note that ³
f 0

¤
f ¤

2́

6 c

³
1 +

1

r2

´
;

since f¤ ¹ rd for r ¹ 0. Hence each term is controlled by the X-norm and can be
passed to the limit. A similar argument may be applied for the second term in the
right-hand side of (3.1). The quotient is expanded as in (3.3) above, with m ¤ , w
replacing f ¤ , u. Then we claim that m0(r)=m(r) is uniformly bounded for r 2 [0; 1).
Indeed, by the basic gradient bound for solutions of the Poisson equation (see x 3.4
of [10]), we have, for any r0 > 1,

jm0(r0)j 6 2 sup
jr r0j61

m(r) + 1
2 sup

jr r0j61

jµ2(1 g f 2 m2)mj 6 C1 sup
jr r0j61

m(r):

Applying the Harnack inequality (corollary 9.25 of [10]), we then obtain

­­­­
m0(r0)

m(r0)

­­­­6 C1

supjr r0j61 m(r)

m(r0)
6 C1

supjr r0j61 m(r)

infjr r0j61 m(r)
6 C 0

1

for all r0 > 1. Therefore, m0=m is uniformly bounded and we may pass to the
H1

r limit in the second term in (3.1). The last term is clearly continuous in the
L2

r-norm in both u and w. In conclusion, we may pass to the limit un ! u, wn ! w
and obtain (3.1) for u 2 X , w 2 H .

Proof of theorem 3.1. De­ ne

¼ ¤ = inffE 00
1 ;g(f¤ ; m ¤ )[u; w] : u 2 X; w 2 H; kuk2

X + kwk2
H = 1g:

We must show that ¼ ¤ > 0.
By theorem 3.3, ¼ ¤ > 0. To obtain a contradiction, assume instead that ¼ ¤ = 0.

We claim that in this case the in­ mum is attained at a non-trivial (u ¤ ; w¤ ), with
E 00

µ ;g(f¤ ; m ¤ )[u ¤ ; w ¤ ] = ¼ ¤ = 0. But this contradicts theorem 3.3, and hence ¼ ¤ > 0.
We now claim that the in­ mum ¼ ¤ = 0 is attained in Z0. Take any minimizing

sequence, (un; wn) 2 X £ H with kunk2
X + kwnk2

H = 1 and

E 00
1 ;g(f ¤ ; m ¤ )[un; wn] ! ¼ ¤ = 0:

By Sobolev embedding, there exists a subsequence (still denoted by un, wn) and
u ¤ 2 X, w¤ 2 H so that un ! u ¤ , wn ! w ¤ , weakly in X , H (respectively) and
strongly in L2

loc.
First we claim that (u¤ ; w ¤ ) 6= (0; 0). Indeed, if both u ¤ , w¤ vanish identically,

then, by weak convergence, (un; wn) * (u ¤ ; w ¤ ) = (0; 0) and the compact embed-
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dings, we obtain
Z ³

(u0
n)2 +

d2

r2
u2

n + 2µ2f2
¤ u2

n + (w0
n)2 + gµ2w2

n

´
r dr

= E 00
1 ;g(f¤ ; m ¤ )[un; wn] +

Z
[µ2(1 f 2

¤ m2
¤ )(u2

n + w2
n)

2µ2m2
¤ w2

n 4µ2f ¤ m ¤ unwn]r dr ! 0:

In particular, (un; wn) ! (0; 0) in the norm on X £ H , which contradicts the fact
that kunk2

X + kwnk2
H = 1. Thus the claim holds, and (u¤ ; w ¤ ) 6= (0; 0).

Next we use lower semicontinuity in the norm and L2
loc convergence to pass to

the limit

E 00
1 ;g(f¤ ; m ¤ )[u ¤ ; w ¤ ] 6 lim inf

n ! 1
E 00

1 ;g(f¤ ; m ¤ )[un; wn] = 0: (3.4)

This contradicts theorem 3.3, since E 00
1 ;g(f ¤ ; m ¤ )[u ¤ ; w¤ ] > 0. (Note that u=f¤ is

non-constant since u 2 X but f ¤ 62 X .) We conclude that ¼ ¤ > 0, as desired.

We note that the same result holds when m ¤ ² 0. Hence, following the method
of [1], we obtain another proof of uniqueness for the solution to the high-µ equation
for f¤ studied in [7].

4. Bifurcation from the normal cores

In this section we show that (when µ2 > 2d2) AF core solutions are nucleated by
means of a bifurcation from the normal core solution family at a simple eigenvalue of
the linearized equations. We will also require a priori estimates (whose proof we will
present in x 6) to obtain global information about the solutions set for all µ2 > 2d2,
and the stronger result of theorem 3.1 to fully categorize solutions in the extreme
type-II model (GL1 ;g). We present the detailed argument for the problem (GL µ ;g).
The functional analytic framework is entirely similar for the problem (GL 1 ;g) and
so we omit it and concentrate instead on the more precise global characterization
of solutions which we prove for (GL 1 ;g).

4.1. Local bifurcation at g ¤
·

We de­ ne a map F : Y £ R ! Y ¤
0 by

h(u; v; w); F(f ¤ ; S ¤ ; m ¤ ; g)iY0 ;Y ¤
0

= E 0
µ ;g(f ¤ ; S ¤ ; m ¤ )[u; v; w];

(u; v; w) 2 Y0, (f¤ ; S ¤ ; m ¤ ) 2 Y . Its linearization is the operator F 0(f ¤ ; S ¤ ; m ¤ ; g) 2
L(Y0; Y ¤

0 ), de­ ned by

h(u; v; w); F 0(f¤ ; S¤ ; m ¤ ; g)[ ¿ ; ã ; ¹ ]iY0;Y ¤
0

=
d

dt

­­­­
t= 0

E 0
µ ;g(f¤ + t¿ ; S ¤ + rtã ; m ¤ + t¹ )[u; v; w]:

We remark that the explicit expansion of the energy I µ ;g in terms of u ¤ = f ¤ ~f µ ,
v ¤ = (S¤ ~S µ )=r, w ¤ ensures that F is a C2 map in all arguments u¤ , v ¤ , w ¤ , g.
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By the natural identi­ cation Y0 ’ Y ¤
0 of a Hilbert Space with its dual, we may

also represent F 0 by L g 2 L(Y0; Y0) as

((u; v; w); L g[¿ ; ã ; ¹ ])Y0 = h(u; v; w); F 0(f¤ ; S¤ ; m ¤ ; g)[ ¿ ; ã ; ¹ ]iY0 ;Y ¤
0

:

If i : Z ¤ ! Z is the isomorphism, then L g = i ¯ F 0(f ¤ ; S ¤ ; m ¤ ; g).

Lemma 4.1. For all g > 0, L g is a Fredholm operator of index zero.

Proof. De­ ne an equivalent inner product on Y0,

((u; v; w); ( ¿ ; ã ; ¹ ))Y0 =

Z »
u0 ¿ 0 + 2µ2u¿ +

(d S ¤ )2

r2
u¿

+ v0ã 0 + vã +
1

r2
vã + w0 ¹ 0 + gµ2w¹

¼
r dr:

Then we write

((u; v; w); L g[ ¿ ; ã ; ¹ ])Y0 = ((u; v; w); ( ¿ ; ã ; ¹ ))Y0 + ((u; v; w); K[ ¿ ; ã ; ¹ ])Y0 ;

where K is de­ ned by

((u; v; w); K[¿ ; ã ; ¹ ])Y0

=

Z µ
2µ2(f 2

¤ 1)u¿ + 2µ2f¤ m ¤ (u¹ + w¿ )

+ 2µ2m2
¤ w¹ µ2(1 f 2

¤ m2
¤ )(u¿ + w¹ )

+ (f 2
¤ 1)vã 2

d S¤
r

f ¤ (uã + v¿ )

¶
r dr:

Recalling the decay properties of f ¤ , S ¤ , m ¤ and the embedding properties of H ,
X , we observe that K is compact, and hence L g = IdY0 +K is Fredholm with index
zero.

As a direct consequence of lemma 4.1,

dim ker(F 0) = dim ker( L g) = codim Ran(L g) = codim Ran(F 0):

Now we may apply the standard bifurcation theory of Crandall and Rabinowitz [8]
at an eigenvalue g ¤ of F 0( ~f µ ; ~Sµ ; 0; g ¤ ). Indeed, note that when m ¤ = 0, the lin-
earization of F decouples into two components,

h(u; v; w); F 0(f¤ ; S¤ ; 0; g)[¿ ; ã ; ¹ ]iY0 ;Y ¤
0

= h(u; v); F 0
1;2(f¤ ; S ¤ )[ ¿ ; ã ]iX2;(X2)¤ + hw; F 0

3(f ¤ ; g) ¹ iH;H¤ ;

where

h(u; v); F 0
1;2(f ¤ ; S ¤ )[ ¿ ; ã ]iX2 ;(X2)¤

= h(u; v; 0); F 0(f¤ ; S¤ ; 0; g)[ ¿ ; ã ; 0]iY0;Y ¤
0

=

Z µ
u0 ¿ 0 +

(d S¤ )2

r2
u¿ + v0ã 0 +

vã
r2

+ f 2
¤ uã 2

d S ¤
r

f¤ (uã + v¿ ) µ2(1 3f2
¤ )u¿

¶
r dr
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and

hw; F 0
3(f ¤ ; g) ¹ iH;H¤ = h(0; 0; w); F 0(f ¤ ; S ¤ ; 0; g)[0; 0; ¹ ]iY0;Y ¤

0

=

Z
fw0 ¹ 0 + gµ2w¹ µ2(1 f 2

¤ )w¹ gr dr:

By theorem 3.1 of [1], when µ2 > 2d2, the operator F 0
1;2 > ¼ ¤ > 0 is bounded away

from zero (in quadratic form sense). Hence, if ( ¿ ; ã ; ¹ ) 2 ker(F 0( ~fµ ; ~S µ ; 0; g ¤
µ )), we

take (u; v; w) = ( ¿ ; ã ; 0) and obtain

0 = h( ¿ ; ã ; 0); F 0(f¤ ; S¤ ; 0; g ¤
µ )[¿ ; ã ; ¹ ]iY0 ;Y ¤

0

= h( ¿ ; ã ); F 0
1;2(f¤ ; S¤ )[¿ ; ã ]iX2;(X2)¤

> ¼ ¤ (k ¿ k2
X + kã k2

X ):

In particular, ¿ ; ã = 0.
The operator F 0

3(f ¤ ; g) = L + gµ2, where L = ¢r V (r), is a Schr�odinger
operator with potential V (r) = µ2(1 f 2

¤ (r)) > 0 and V (r) ! 0 as r ! 1. It is
a well-known fact in mathematical physics that in dimension two, such operators
have at least one negative eigenvalue.

Lemma 4.2. Suppose V : [0; 1) ! R is continuous, non-negative, V (r) ! 0 as
r ! 1 and V is not identical ly zero, and de¯ne L = ¢ V (r) as a self-adjoint
operator on the space L2(R2). Then the ground state energy,

¶ 0 = inf

» Z
[(u0)2 V (r)u2]r dr

¿Z
u2r dr : u 6= 0; u 2 H

¼
< 0

and is attained at an eigenfunction u0 2 H . Moreover, ¶ 0 is an isolated non-
degenerate eigenvalue and u0 > 0.

The proof follows as an application of the Birman{Schwinger principle in [16].
We provide an elementary variational proof for the reader’s convenience.

Proof. Let

un(r) =

8
><

>:

1 if r 6 n;

ln(r=n2)= ln(1=n) if n 6 r 6 n2;

0 if r > n:

Then Z
(u0

n)2r dr =
1

ln n
! 0;

while Z
V (r)u2

nr dr >
Z n

0

V (r)r dr !
Z 1

0

V (r)r dr > 0

(possibly in­ nite). Hence, for n = N large but ­ xed, we have
Z

[(u0
N)2 V (r)u2

N ]r dr < 0;

and hence ¶ 0 < 0. Since L is a relatively compact perturbation of ¢, ¶ 0 is a
discrete eigenvalue with associated eigenfunction u0 contained in the form domain
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of L, H . By standard arguments, u0 > 0 and ¶ 0 is a simple (non-degenerate)
eigenvalue.

By lemma 4.2,

g ¤
µ = inf

w 2 H f0g

»Z µ
1

µ2
(w0)2 (1 ~f 2

µ )w2

¶
r dr

¿Z
w2r dr

¼
< 0

and we have that ¶ 0 = µ2g ¤
µ is the ground state eigenvalue of the Schr�odinger

operator ¢r µ2(1 ~f 2
µ ). Since ¶ 0 is a simple eigenvalue,

dim ker(F 0
3( ~fµ ; g ¤

µ )) = dim ker( ¢r µ2(1 ~f 2
µ ) + µ2g ¤

µ ) = 1:

In conclusion, when g = g ¤
µ , the operator F 0( ~f µ ; ~Sµ ; 0; g ¤

µ ) has a simple eigenvalue
and the eigenvector is of the form (0; 0; wµ ), with wµ the (positive) eigenfunction
of F 0

3.
Finally, we observe that the operator (@=@g)F 0( ~fµ ; ~S µ ; 0; g) 2 L(Y0; Y ¤

0 ),
½

(u; v; w);
@

@g
F 0( ~fµ ; ~S µ ; 0; g)[ ¿ ; ã ; ¹ ]

¾

Y0;Y ¤
0

=

Z
µ2w¹ r dr:

At the eigenvalue g = g ¤
µ , we have

@

@g
F 0( ~fµ ; ~Sµ ; 0; g ¤

µ )[0; 0; w µ ] = µ2wµ 62 Ran(F 0( ~fµ ; ~Sµ ; 0; gµ )):

Therefore, theorem 1.7 of [8] applies and g ¤
µ is a bifurcation point for F in Y £ R;

there exists a neighbourhood U of ( ~fµ ; ~S µ ; 0; g ¤
µ ) in Y0 £ R such that the set of

non-trivial solutions of F(f; S; m; g) = 0 in U is a unique C1 curve parametrized
by ker(F 0( ~f µ ; ~Sµ ; 0; g ¤

µ )).

Remark 4.3. Since F is a smooth (C 1 ) map, we may calculate various derivatives
of the bifurcation curve through the normal core solutions at g ¤

µ . If we parametrize
g = ® (t), with ® (0) = g ¤

µ , then we follow Crandall and Rabinowitz [8] or Ambrosetti
and Prodi [3] (see remark 4.3) to calculate derivatives of ® (t) and determine the
direction of the bifurcation curve locally at g = g ¤

µ . We obtain that ® 0(0) = 0 and

® 00(0) = 2

µZ
[ ~fµ u ¤ w2

µ + w4
µ ]r dr

¿Z
w2

µ r dr

¶
;

where u µ is obtained from the (unique) solution to the linear system

F 0( ~fµ ; ~Sµ ; 0; g ¤
µ )[u¤ ; v ¤ ; w¤ ] = (2µ2 ~fµ w2

µ ; 0; 0);

with (u ¤ ; v ¤ ; w ¤ ) ? ker F 0( ~fµ ; ~Sµ ; 0; g ¤
µ ). Taking the scalar product of the above sys-

tem with (u¤ ; v ¤ ; 0) (and recalling that F 0( ~f µ ; ~Sµ ; 0; g ¤
µ ) is positive de­ nite in the

complement of its kernel), we obtain
Z

~fµ u ¤ w2
µ r dr < 0;

and hence the expression for ® 00(0) is inde­ nite in sign. In a joint paper with Berlin-
sky [2], we present computational evidence that solutions bifurcate to the left to
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smaller values g < g ¤
µ . By standard bifurcation theory (see, for example, [9]), the

direction of bifurcation indicates the stability of the solutions, and indeed we observe
numerically that the AF core solutions which bifurcate at g ¤

µ are stable (local energy
minimizers).

4.2. Global bifurcation for (GL 1 ;g )

We obtain the same abstract bifurcation result for the extreme type-II model
(GL 1 ;g). Namely, the value

g ¤
1 = inf

w 2 H f0g

»Z
[(w0)2 (1 ~f 2

1 )w2]r dr

¿Z
w2r dr

¼
> 0

is a bifurcation point for non-trivial (m > 0) solutions from the (trivial) curve of
normal core solutions ( ~f1 ; 0; g). But in this case we can make a much more precise
statement.

Proposition 4.4. Let

§ = f(f; m; g) : (f; m) is an admissible solution to (GL 1 ;g) with m > 0g:

Then C = § [ f( ~f1 ; 0; g ¤
1 )g is a connected C1 curve, parametrized by g. Moreover,

for any g0 > 0, C \ fg > g0g is compact.

As a consequence, we have the following exact solvability theorem for (GL 1 ;g).

Theorem 4.5. For g > g ¤
1 , the normal core solutions ( ~f1 ; 0) are the only admis-

sible solutions of (GL 1 ;g).
For 0 < g < g ¤

1 , there is a unique solution with m > 0. This solution is the global
minimizer of E 1 ;g.

The proofs of these two results hinge on the powerful theorem 3.1 and the fol-
lowing compactness theorem, which will be proven in x 6.

Theorem 4.6. Let 0 < a < b. Then the set of all admissible solutions of (GL 1 ;g)
with g 2 [a; b] is compact in Z .

Proof of theorem 4.4. Let C 0 be a maximally connected component of C and suppose
that (f0; m0; g0) 2 C 0 but (f0; m0; g0) 6= ( ~f1 ; 0; g ¤

1 ). Since m = 0 only when g = g ¤
1 ,

we must have m0 > 0. By theorem 3.1, (f0; m0; g0) is a non-degenerate zero of F
in Z £ R, so by the implicit function theorem, there exists a neighbourhood U of
(f0; m0; g0) in Z £ R, an interval J = (g0 ¯ ; g0 + ¯ ) and a C1 function © : J ! Z
so that all solutions of F = 0 in U are of the form ( © (g); g) with g 2 J .

Let
ĝ = supfg : there exists a solution (f; m; g) 2 C 0g > g0:

Note ­ rst that any solution must satisfy

0 6
Z

(m0)2r dr 6
Z

(1 g)m2r dr;

and hence g < 1 for any solution with m 6² 0. Since, by proposition 4.6,

C 0 \ fg > g0g = C 0 \ fg0 6 g 6 1g
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is compact, there exists a solution at g = ĝ, (f̂ ; m̂; ĝ) 2 C 0. First we claim that
m̂ = 0. If not, then by proposition 2.5, m̂(r) > 0 for all r > 0, so by theorem 3.1,
(f̂ ; m̂) is a non-degenerate minimum of (GL 1 ;ĝ). By the implicit function theorem
argument above, there exists a C1 curve of non-trivial solutions through (f̂ ; m̂; ĝ),
parametrized by g. In particular, we contradict the de­ nition of ĝ is the supremum
of all g for solutions in the connected component C 0. Hence m̂ = 0, as desired.

Now we show that ĝ = g ¤
1 . Take a sequence (fn; mn; gn) 2 C 0 with gn ! ĝ, so

the above arguments imply that fn
~f1 ! 0 in X and mn ! 0 in H. Let

tn =

Z
(1 f 2

n)m2
nr dr ! 0:

Then wn = mn=tn solves

w00
n

1

r
w0

n + gnwn = (1 f 2
n m2

n)wn: (4.1)

Since
Z

((w0
n)2 + gw2

n)r dr =

Z
(1 f 2

n m2
n)w2

nr dr 6
Z

(1 f 2
n)w2

nr dr = 1 (4.2)

(by the choice of tn), we have kwnkH 6 1=g and we may extract a subsequence
(which we continue to call wn) which converges wn * w 1 weakly in H and strongly
in L2

loc. By the strong convergence of fn ! ~f 1 , we have
Z

(1 ~f 2
1 )w2

1 r dr = 1;

so w 1 6² 0 and w 1 > 0. Passing to the limit in (4.1), we have
Z

(w0
1 ¿ 0 + ĝw 1 ¿ (1 ~f 2

1 )w1 ¿

´
r dr = 0; (4.3)

for all ¿ 2 H . This can only occur when ĝ = g ¤
1 , the ground state eigenvalue of the

above Schr�odinger operator.
We have just shown that the point ( ~f1 ; 0; g ¤

1 ) belongs to every connected com-
ponent of C , and hence C is connected. The solution set C is everywhere a C1 curve;
for g > g ¤

1 , this results from the implicit function theorem argument in the ­ rst
paragraph, and at g ¤

1 it is a consequence of bifurcation from a simple eigenvalue [8].
We now claim that there exists exactly one solution in C for every g 6 g ¤

1 . Suppose
not, and consider

D = fg 2 (0; g ¤
1 ) : there exist two distinct

solutions (fg;1; mg;1), (fg;2; mg;2) in C at gg

and
g0 = sup D:

First we note that g0 < g ¤
1 . To see this, we note that the only solution in C with

g = g ¤
1 is the normal core solution, and the bifurcation theorem ensures that the

solution set in a neighbourhood of the bifurcation point ( ~f1 ; 0; g ¤
1 ) is a single

smooth curve.
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Next we claim that g0 62 D. Indeed, if g0 2 D, there exist two distinct solutions
(fg0;1; mg0;1) and (fg0;2; mg0;2) for g = g0. By the implicit function theorem argu-
ment of the ­ rst paragraph, there exist neighbourhoods U1 (of (fg0;1; mg0;1; g0))
and U2 (of (fg0;2; mg0;2; g0)) in Z £ R such that all solutions of F = 0 in U1, U2 are
given by smooth curves parametrized by g. In particular, C contains two distinct
solutions for g in an interval to the right of g0, contradicting the de­ nition of g0 as
the supremum.

Hence g ¤
1 > g0 62 D and there exists a sequence gk ! g0 for which C contains

two distinct solutions, (fgk;1; mgk ;1), (fgk;2; mgk ;2). By theorem 4.6, along some
subsequence these solutions converge and since g0 62 D, they both converge to
a single solution, (fg0 ; mg0 ). But this contradicts the implicit function theorem
argument, which implies that the solution set near (fg0 ; mg0 ; g0) is a single curve
parametrized by g. We conclude that the AF core solutions are unique for each
g 2 (0; g ¤

1 ).

4.3. Behaviour for g ! 0, · < 1
For the problem (GL µ ;g), we do not have the strong information provided by

theorem 3.1 which determines the global structure of the solution set, and hence we
cannot make the same elegant conclusion about the uniqueness of AF core solutions.
However, we may still say something about the global structure of the continuum
bifurcating from the normal cores at g = g ¤

µ . When µ2 > 2d2, we may apply the
global bifurcation theorem of Rabinowitz [15] to conclude that the continuum § µ

of zeros of F(f; S; m; g) = 0 with m > 0 is unbounded in the space Y £ R. (Note
that § µ cannot contain any other eigenvalues of the linearization about the normal
core solutions, as is easily seen from the calculations (4.1){(4.3) above.) In the
next section we will prove the following a priori estimate, which has as a direct
consequence the fact that § µ can only become unbounded as g ! 0 + .

Theorem 4.7. Let d, µ be ¯xed. For any compact interval J 2 (0; 1), there exists
C0 = C0(µ; d; J) > 0 such that every admissible solution (f; S; m) of (GL µ ;g) with
g 2 J satis¯es k(f; S; m)kY 6 C.

Let us now concentrate on this loss of compactness in the continuum § µ as
g ! 0 + . We prove the following.

Theorem 4.8. For any sequence of (absolute) minimizers (fg; Sg; mg) 2 Y with
g ! 0 + , we have fg ! 0 in Xloc, Sg ! 0 locally uniformly and mg ! 1 in Hloc.

Fix µ 2 R and for any g > 0 consider a minimizer (fg ; Sg ; mg) 2 Y of E µ ;g .

Lemma 4.9. Eµ ;g(fg; Sg; mg) ! 0 as g ! 0.

Proof. We will show that for any ° > 0, there exist g ° > 0 and H radial functions
(f ° ; S ° ; m ° ) 2 Y such that 0 < E µ ;g(f° ; S ° ; m ° ) < ° for any g < g ° .

For a ­ xed » > 0, we de­ ne

u» (r) =

8
><

>:

1 if r 6 » ;

ln(r=» 2)= ln(1=» ) if » 6 r 6 » 2;

0 if r > » 2
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and consider

f» (r) = cos(u » (r) º =2); m » (r) = sin(u » (r) º =2)

and

S» (r) =

(
0 if r 2 (0; » =2);

d if r 2 ( » ; 1):

A direct computation shows that

E µ ;g(f » ; S » ; m » ) 6 C

» 2
+

º 2

4 ln »
+ 1

2µ2g» 4

for any g > 0.
For a given ° > 0, we choose a » ° such that

C

» 2
°

+
º 2

4 ln » °
< 1

2 °

and a g° = g° ( » ° ) for which 1
2
µ2g ° »

4
° < 1

2
° , i.e.

g ° < 1
2 °

2

µ2 » 4
°

:

Then E µ ;g(fg; Sg; mg) 6 E µ ;g(f» ° ; S » ° ; m » ° ) < ° for any g < g ° .

Proof of theorem 4.8. By lemma 4.9, each term in the energy tends to zero as g ! 0.
First note that Z

(S 0
g=r)2r dr ! 0;

combined with (1.4) in [5], implies that

Sg(r)=r ! 0 uniformly: (4.4)

For any R0 > 0, we then have

o(1) =

Z
(d Sg)2

r2
f 2

g r dr

>
Z R0

0

(d Sg)2

r2
f 2

g r dr

=

Z R0

0

d2

r2
f 2

g r dr + o(1):

In particular, fg ! 0 in L2
loc, Xloc. Finally, by the reverse triangle inequality,

o(1) =

s
1
2
µ2

Z R0

0

(1 f 2
g m2

g)2r dr

=
µp
2

k1 f2
g m2

gkL2([0;R0])

> µp
2

[k1 m2
gkL2([0;R0 ]) kf 2

g kL2([0;R0 ])]

> µp
2

k1 mgkL2([0;R0]) + o(1);
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where we have also used 0 6 fg < 1, 0 < mg < 1 and fg ! 0 in L2
loc. In conclusion,

mg ! 1 in L2
loc and, in fact, in H1

loc, since
Z

(m0
g)2r dr ! 0

by the energy estimate.

5. The limit · ! 1

In this section we show that the problem (GL 1 ;g) arises as a limiting case of (GL µ ;g)
as µ ! 1. For any solution (fµ ; Sµ ; m µ ) of (GL µ ;g), de­ ne

f̂µ (r) = fµ

³
r

µ

´
; Ŝ µ (r) = Sµ

³
r

µ

´
; m̂ µ (r) = m µ

³
r

µ

´
: (5.1)

We prove the following result.

Theorem 5.1. Let (fµ ; Sµ ; m µ ) be any family of solutions of (GL µ ;g) for µ > 0
and (f̂ µ ; Ŝµ ; m̂ µ ) de¯ned as in (5.1). For any sequence µn ! 1, there exists a sub-
sequence and a solution (f1 ; m 1 ) of (GL 1 ;g) so that (as µnk

! 1) f̂µ n f1 ! 0
in X, m̂ µ n m 1 ! 0 in H and Ŝ µ n

! 0 locally uniformly. Moreover we have the
following.

(i) If g > g ¤
1 , then m µ ! 0.

(ii) If m µ 6² 0 for all large µ and g 6= g ¤
1 , then lim µ ! 1 m̂ µ = m 1 > 0.

As a simple consequence of the uniform convergence of f̂µ ! ~f 1 , we have the
following.

Corollary 5.2. g ¤
1 = lim µ ! 1 g ¤

µ .

Remark 5.3. This implies that the bifurcation diagram for (GL µ ;g) with µ very
large should strongly resemble the very precise image given for (GL 1 ;g) by the-
orem 4.5. In particular, for any ­ xed g > g ¤

1 , the system (GL µ ;g) cannot have
solutions (fµ ;g ; S µ ;g; m µ ;g) with m µ ;g > 0 for µ large.

Simple calculations using the energy E µ ;g show that infY E µ ;g ¹ ln µ, and hence
we require require energy-independent estimates for our solutions (f̂µ ; Ŝ µ ; m̂ µ ). To
obtain these estimates, we begin with a simple version of the celebrated Pohozaev
identity. This identity will also be essential for proving the a priori estimates used
in the bifurcation analysis in the previous section.

Proposition 5.4. For any ¯nite energy solution (f; S; m) of (GL µ ;g), we have

gµ2

Z
m2r dr + 1

2µ2

Z
(1 f2 m2)2r dr =

Z µ
S 0

r

¶2

r dr:

For any ¯nite energy solution (f; m) of (GL 1 ;g), we have

g

Z
m2r dr +

1

2

Z
(1 f2 m2)2r dr = 1

2
d2:
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Proof. We multiply the ­ rst equation in (GL µ ;g) by f 0(r)r and integrate r dr to
obtain

1
2 µ2

Z
(1 f 2 m2)(f 2)0r2 dr =

Z
(d S)2( 1

2f 2)0 dr

=

Z
(d S)S 0f 2 dr =

Z ³
S 0

r

0́
S 0r dr

=

Z
S 0

r
(S 0r)0 dr =

Z ³
S 0

r

2́

r dr;

using the equation for S(r) and integrating by parts whenever necessary. We also
multiply the third equation in (GL µ ;g) by m0(r)r and integrate r dr to obtain

1
2
µ2

Z
(1 f 2 m2)(m2)0r2 dr = 1

2
gµ2

Z
(m2)0r2 dr

= gµ2

Z
m2r dr:

Together,

Z ³
S 0

r

2́

r dr = gµ2

Z
m2r dr + 1

2
µ2

Z
(1 f 2 m2)(m2 + f2)0r2 dr

= gµ2

Z
m2r dr + 1

2 µ2

Z
(1 f 2 m2)2r dr:

For the case µ = 1, we proceed in the same way, except the equation for f yields
Z

(1 f 2 m2)( 1
2
f 2)0r2 dr = 1

2
d2:

The calculation then continues as above.

Proof of theorem 5.1.

Step 1 (bounding the sequence). From the Pohozaev identity (proposition 5.4)
and lemma 4.2 of [5] after rescaling, we have

d2 >
Z ³

S 0
µ

r

2́

r dr

= µ2

Z ³
Ŝ 0

µ

r

2́

r dr (5.2)

= g

Z
m̂2

µ r dr +
1

2

Z
(1 f̂2

µ m̂2
µ )2r dr: (5.3)

Using (5.2) and lemma 1.2 (ii) in [5], we have

sup
r 2 [0;1 )

­­­­
Ŝ µ (r)

r

­­­­! 0; (5.4)
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and hence Ŝµ ! 0 locally uniformly. From (5.3) we obtain the uniform bound
km̂ µ k2 6 C (depending on g, which we assume is ­ xed). From the equation for m µ ,
after a change of scale, we obtain

Z
[(m̂0

µ )2 + gm̂2
µ ]r dr =

Z
(1 f̂ 2

µ m̂2
µ )r dr

6
Z

m̂2
µ r dr

6 C

and therefore km̂ µ kH 6 C uniformly in µ.
Recalling proposition 2.5, any solution satis­ es 0 < m̂ µ (r) < 1 and we may

conclude that km̂ µ kq 6 km̂ µ k2 6 C for all p 2 [2; 1]. By the triangle inequality,

k1 f̂ 2
µ k2 6 k1 f̂2

µ m̂2
µ k2 + km̂2

µ k2

6 jdj + C;

and hence we obtain
Z

(1 f̂µ )2r dr 6
Z

(1 f̂2
µ )2r dr

6 C

(since f̂µ > 0).
Choose a function ² 2 C 1 (R) with

² (r) =

(
1 if r 6 2;

0 if r > 3

and 0 6 ² (r) 6 1 for all r. Using ² 2f̂ µ as a test function in the weak form of the
rescaled equation for f̂µ ,

Z
² 2

µ
(f̂ 0

µ )2 +
d2

r2
f̂ 2

µ

¶
r dr =

Z
[(1 f̂ 2

µ m̂2
µ )f̂2

µ ² 2 ² ² 0f̂ µ f̂ 0
µ ]r dr

6
Z

[ 1
2(1 f̂ 2

µ )2 + 1
2 ² 4 + 1

2 ² 2(f̂ 0
µ )2 + 2f̂ 2

µ ( ² 0)2]r dr

6 C +
1

2

Z
² 2(f̂ 0

µ )2r dr:

Absorbing the last term back to the left-hand side,

Z
² 2

µ
(f̂ 0

µ )2 +
d2

r2
f̂ 2

µ

¶
r dr 6 C: (5.5)

Now choose another smooth function f0 with

f0(r) =

(
0 if r > 1;

1 if r > 2
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and 0 6 f0(r) 6 1. Note that, with this choice, f 2
0 + ² 2 > 1. We use (f̂ µ 1)f 2

0 as
a test function in the equation for f̂ µ to obtain

Z µ
(f̂ 0

µ )2 +
d2

r2
(f̂ 2

µ 1)2

¶
r dr

=

Z
[(1 f̂ 2

µ m̂2
µ )f̂µ (f̂µ 1)f 2

0 (f̂ µ 1)f̂ 0
µ f 0

0f0]r dr

+

Z µ
d2

r2
(f̂ µ 1)f 2

0 +
Ŝµ (2d Ŝ µ )

r2
(f̂ µ 1)2f 2

0

¶
r dr

6 C

Z 2

1

(f̂µ 1)jf̂ 0
µ jf0r dr +

Z 1

1

µ
d2

r2
(1 f̂µ ) +

4d

r2
(f̂µ 1)2

¶
r dr

6 1

2

Z
(f̂ 0

µ )2f 2
0 r dr + Ck ~f µ 1k2

2 +

Z µ
C

r4
+ (f̂2

µ 1)4

¶
r dr

6 C +
1

2

Z
(f̂ 0

µ )2f2
0 r dr:

(Note that in the ­ rst line, the ­ rst integrand is non-positive.) In conclusion,
Z µ

(f̂ 0
µ )2 +

d2

r2
(f̂ 2

µ 1)2

¶
r dr 6 C: (5.6)

Now de­ ne u µ = f̂µ f0 2 X . Then, from (5.5) and (5.6), we obtain
Z µ

(u0
µ )2 + u2

µ +
d2

r2
u2

µ

¶
r dr

6 2

Z
[(f̂ 02

µ ) + (f0)2]r dr +

Z 2

0

2d2

r2
f̂2

µ r dr +

Z 1

2

(d2 + 1)(f̂ µ 1)2

6 2

Z µ
( ² 2 + f 2

0 )(f̂ 0
µ )2 +

d2

r2
f̂ 2

µ ² 2

¶
r dr + C

6 C:

In other words, u µ is uniformly bounded in X and we may extract weakly convergent
subsequences un = u µ n * u ¤ (in X), mn = m µ n ! m ¤ (in H).

Step 2 (strong convergence). We next show that the sequences un, mn converge
in norm. Let fn = f0 + un and Sn = Ŝ µ n . First note that

(1 f2
n m2

n)mn (1 f 2
p m2

p)mp = (1 f 2
n)w (m2

n+mnmp+m2
p)w+(f 2

n f 2
p )mp:

Hence, using compact embeddings of X , H into Lq for 2 < q < 1,
Z

[((mn mp)0)2 + g(mn mp)2]r dr

=

Z
[(1 f 2

n) (m2
n + mnmp + m2

p)(mn mp)](mn mp)2r dr

+

Z
(fn + fp)(un up)mp(mn mp)r dr

= o(1):

Therefore, mn ! m ¤ in norm.
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We proceed in the same way with un,

Z »
(u0

n u0
p)2 +

µ
(d Sn)2

r2
fn

(d Sp)2

r2
fp

¶
(un up)

¼
r dr

=

Z
f(1 f 2

n m2
n)fn (1 f 2

p m2
p)fpg(un up)r dr: (5.7)

Now we expand,

(d Sn)2

r2
fn

(d Sp)2

r2
fp

=

µ
d2

r2

Sn

r2
(2d Sn)

¶
(un up) + fp

µ
Sp

r2
(2d Sp)

Sn

r2
(2d Sn)

¶
:

Now we take each term separately,
Z 1

0

Sn

r2
(2d Sn)(un up)2r dr 6 sup

r 2 [0;1]

jSnj
Z 1

0

2d
(un up)2

r2
r dr ! 0;

since Sn ! 0 locally uniformly and un are uniformly bounded. By (5.4),
Z 1

1

Sn

r2
(2d Sn)(un up)2r dr 6 sup

­­­­
Sn

r

­­­­

Z 1

1

2d(un up)2r dr ! 0:

Choose r0 > 0 so that
R 1

r0
r 2 dr < 1

4 "2 and µ su¯ ciently large so that

dr2
0 sup

­­­­
Sp

r

­­­­kun upkX < 1
2":

Then

Z r0

0

fp
Sp

r2
(2d Sp)(un up)r dr 6 dr2

0 sup
06r6r0

­­­­
Sp

r

­­­­

sZ r0

0

(un up)2

r2
r dr 6 1

2 "

and
Z 1

r0

fp
Sp

r2
(2d Sp)(un up)r dr 6 2d2

µZ 1

r0

dr

r3

¶1=2µZ 1

0

(un up)2r dr

¶1=2

< 1
2":

We return to (5.7) and substitute the above estimates,
Z »

(u0
n u0

p)2 +
d2

r2
(un up)2

¼
r dr + o(1)

=

Z
f(1 f 2

n m2
n)fn (1 f 2

p m2
p)fpg(un up)r dr

=

Z
f(1 3f2

0 )(un up)2 3f0(u2
n u2

p)(un up)

(u3
n u3

p)(un up) f0(m2
n m2

p)(un up)

m2
n(un up)2 up(m2

n m2
p)(un up)gr dr

= 2

Z
(un up)2r dr + o(1);
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where we use the facts that mn ! m ¤ strongly in H, un is bounded in X and
un ! u ¤ in L2

loc. In conclusion, the subsequence un ! u ¤ strongly in X.

Step 3 (determining when m 1 = 0). Since all solutions of (GL 1 ;g) with g > g ¤
1

have m 1 = 0, we have m̂ µ ! 0 when g > g ¤
1 . On the other hand, suppose m̂ µ > 0

for all su¯ ciently large µ, but m̂ µ ! 0. By uniqueness of the normal core solution,
f̂ µ ! ~f1 , the unique solution of

¢r
~f 1 +

d2

r2
~f1 = (1 ~f 2

1 ) ~f1 :

Let

t µ =

Z
(1 f̂2

µ )m̂2
µ r dr ! 0

and set w µ = m̂ µ =tµ . Then

¢rw µ + gw µ = (1 f̂ 2
µ m̂2

µ )wµ :

Since Z
[(w0

µ )2 + gw2
µ ]r dr =

Z
(1 f̂ 2

µ m̂2
µ )w2

µ r dr 6 1

(by the choice of t µ ), the bound kw µ kH 6 1=g results. We extract a subsequence
(which we still denote by w µ ) with w µ * w 1 weakly in H . Note that w 1 > 0.
By the choice of t µ , the uniform convergence f̂ µ ! ~f1 and the L2

loc convergence of
w µ ! w 1 , we have

Z
(1 ~f 2

1 )w2
1 r dr =

Z
[(1 ~f2

1 )(w2
1 w2

µ ) + (f̂ 2
µ

~f 2
1 )w2

µ + (1 f̂2
µ )w2

µ ]r dr

= 1 + o(1):

In particular, w 1 6² 0. By weak convergence, we may pass to the limit in the
equation for w µ , and hence w 1 is a non-trivial non-negative solution of

¢rw1 + gw 1 = (1 ~f 2
1 )w 1 :

This can only occur when g = g ¤
1 .

This completes the proof of theorem 5.1.

6. Estimates and existence

In this section we derive the technical estimates which were needed in our analysis of
the bifurcation problem in x 4. We also provide the details of the proof of existence
of minimizers of the energies E µ ;g and E 1 ;g.

6.1. A priori estimates

We may now prove a priori estimates for the solutions of our system (GL µ ;g),
theorem 4.7, as well as the compactness result for solutions of (GL 1 ;g) (both theo-
rems as stated in the previous section). Note that both theorems are stated for all
solutions, not only energy minimizers, and hence we will use our Pohozaev identity
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(proposition 5.4) to obtain energy-independent estimates. As before, we denote by
~f µ , ~Sµ a normal core solution at µ, and u = f ~fµ , v = (S ~Sµ )=r.

By the Pohozaev identity and lemma 4.2 of [5], we have

µ2

Z
[gm2 + 1

2(1 f2 m2)2]r dr =

Z ³
S 0

r

2́

r dr 6 1
2d2: (6.1)

In particular, we obtain
Z

(1 f)2r dr 6 C +
C

g
;

Z
m2r dr 6 C

g
;

with constant C depending on µ, d. From the ­ rst estimate, we obtain

kuk2 6 k ~fµ + u 1k2 + k ~fµ 1k2 6 C + C=g:

The equation for m, together with the second estimate, gives
Z

[(m0)2 + µ2gm2]r dr = µ2

Z
(1 f 2 m2)m2r dr 6 µ2

Z
m2r dr 6 C

g
:

In particular, kmkH 6 C, kuk2 6 C and the constant depending on µ, d may be
chosen uniformly for g 2 J .

Using the right half of (6.1), we have

1
2 d2 >

Z ³
S 0

r

2́

r dr =

Z µ³
~S 0

µ

r

2́

+ 2
~S 0

µ

r

(rv)0

r
+

³
(rv)0

r

2́¶
r dr: (6.2)

Since ­­­­2
Z ~S0

µ

r

(rv)0

r
r dr

­­­­6 2

Z ³
~S0

µ

r

2́

+
1

2

Z ³
(rv)0

r

2́

r dr

and Z ³
(rv)0

r

2́

r dr =

Z µ
(v0)2 +

v2

r2

¶
r dr;

we may conclude from (6.2) that

Z µ
(v0)2 +

v2

r2

¶
r dr 6 C; (6.3)

with constant depending only on d. From the embedding properties of X , lemma 2.1,
we conclude that kvk 1 6 C.

We now use v as a test function in the weak form of the equation for S to obtain
an estimate,

­­­­
Z

d S

r
f2vr dr

­­­­=

­­­­
Z

S 0

r2
(rv)0r dr

­­­­

6 1

2

Z ³
S 0

r2

2́

r dr +
1

2

Z µ
(v0)2 +

v2

r2

¶
r dr

6 C: (6.4)
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On the other hand, expanding the left-hand side of (6.4),

Z ³
d S

r

´
f 2vr dr =

Z µ
d ~Sµ

r
v

¶
( ~fµ + u)2vr dr

=

Z ³
d ~S µ

r

´
[ ~f 2

µ + 2 ~f µ u + u2]vr dr

Z
2 ~fµ uv2r dr

Z
v2 ~f2

µ r dr

Z
v2u2r dr: (6.5)

To bound the term Z
v2 ~f2

µ r dr;

we need to evaluate the other terms,

­­­­
Z

d ~S µ

r
~f 2
µ vr dr

­­­­6 2

Z µ
d ~Sµ

r

¶2

~f 2
µ r dr +

1

8

Z
~f2
µ v2r dr

6 C +
1

8

Z
~f 2
µ v2r dr;

2

­­­­
Z

d ~S µ

r
~f µ uvr dr

­­­­6
Z µ

d ~S µ

r

¶2

~f2
µ r dr + kvk2

1 kuk2
2

6 C;
­­­­
Z

d ~Sµ

r
u2vr dr

­­­­6 1
2
kuk2

2kvk2
1 +

1

2

Z µ
d ~Sµ

r

¶2

u2r dr;

2

­­­­
Z

~fµ uv2r dr

­­­­6 8kuk2
2kvk2

1 +
1

8

Z
~f2
µ v2r dr

6 C +
1

8

Z
~f 2
µ v2r dr;

Z
v2u2r dr 6 kvk2

1 kuk2
2

6 C:

Hence

3

4

Z
v2 ~f2

µ r dr 6 C +
1

2

Z µ
d ~S µ

r

¶2

u2r dr: (6.6)

Finally, we use u as a test function in the weak form of the equation for f .
Recalling the de­ nition of ~f µ as a normal core solution, we expand and cancel
terms to arrive at
Z µ

(u0)2 +

³
d ~S µ

r

2́¶
r dr =

Z µ
2

³
d ~S µ

r

´
( ~fµ + u)uv ( ~fµ + u)uv2

¶
r dr

+ µ2

Z µ
(1 3 ~f 2

µ )u2 3 ~f µ u3 u4 m2fu

¶
r dr:

(6.7)
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Each term on the right-hand side may be controlled as follows,
­­­­
Z

m2fur dr

­­­­6 1

2

Z
m4 +

1

2

Z
u2r dr

6 C;­­­­
Z

(1 3 ~f 2
µ )u2r dr

­­­­6 3kuk2
2

6 C;

2

­­­­
Z ³

d ~Sµ

r

´
~fµ uvr dr

­­­­6 kuk2
2kvk2

1 +

Z ³
d ~Sµ

r

2́

~f 2
µ r dr

6 C;­­­­
Z

~fµ u3r dr

­­­­6 3

2

Z
~f 2
µ u2r dr +

1

2

Z
u4r dr;

2

­­­­
Z ³

d ~Sµ

r

´
u2vr dr

­­­­6 6kuk2
2kvk2

1 +
1

6

Z ³
d ~S µ

r

2́

u2r dr

6 C +
1

6

Z ³
d ~S µ

r

2́

u2r dr;

­­­­
Z

~fµ uv2r dr

­­­­6 1
2
kuk2

2kvk2
1 +

1

2

Z
~f 2
µ v2r dr

6 C +
1

3

Z ³
d ~S µ

r

2́

u2r dr;

where, in the last estimate, we apply (6.6). Using (6.7), we have

Z µ
(u0)2 +

1

2

³
d ~Sµ

r

2́

u2

¶
r dr 6 C:

Consequently, kukX 6 C . Returning to (6.6), it follows that

Z
~f 2
µ v2r dr 6 C +

2

3

Z ³
d ~Sµ

r

2́

u2r dr 6 C;

and hence (6.3) yields kvkX 6 C . This concludes the proof of theorem 4.7.
An analogous result may be proven for solutions of (GL 1 ;g).

Theorem 6.1. Let d be ¯xed. For any compact interval J 2 (0; 1), there exists
C0 = C0(d; J) > 0 such that every admissible solution (f; m) of (GL 1 ;g) with g 2 J
satis¯es k(f; m)kZ0 6 C.

The proof of theorem 6.1 is similar to (and simpler than) the previous one and
is left to the reader.

6.2. Compactness

Here we prove theorem 4.6, which asserts that the family of solutions to (GL 1 ;g)
with g bounded away from zero is a compact set. The same result holds for (GL µ ;g),
although the proof is more complicated due to the additional terms involving S(r).
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Proof of theorem 4.6. Suppose fn = ~f1 + un, mn, gn are a sequence of solutions
of (GL 1 ;gn ) with gn 2 [a; b]. By the theorem, we have kunkX ; kmnkH 6 C, and
hence we may extract a subsequence with un * ~u, mn * ~m and gn ! ~g 2 [a; b].
Then we have

Z µ
(u0

n u0
k)2 +

d2

r2
(un uk)2

¶
r dr

=

Z
[(1 f 2

n m2
n)fn (1 f 2

k m2
k)fk](un uk)r dr (6.8)

and

Z
[(m0

n m0
k)2 + ~g(mn mk)2]r dr

=

Z
[(1 f 2

n m2
n)mn (1 f 2

k m2
k)mk](mn mk)r dr + o(1): (6.9)

We now expand the two right-hand side terms. First we use the embedding prop-
erties of X, H and the fact that 0 6 fn < 1 for any solution to show

[(1 f 2
n m2

n)fn (1 f2
k m2

k)fk](un uk)

=

Z
2 ~f2

1 (un uk)2r dr +

Z
(1 ~f 2

1 )(un uk)2r dr

2

Z
[ ~f 1 (un + uk)(un uk)2 fn(un + uk)(un uk)2]r dr

Z
[fn(mn + mk)(mn mk)(un uk) + (u2

k + m2
k)(un uk)2]r dr

=

Z
2 ~f2

1 (un uk)2r dr + o(1):

Applying the above estimate to (6.8), we have

Z µ
(u0

n u0
k)2 +

³
d2

r2
+ 2 ~f 2

1

´
(un uk)2

¶
r dr ! 0

as n; k ! 1, so un ! ~u in norm on the space X.
Similarly, we estimate

Z
[(1 f2

n m2
n)mn (1 f 2

k m2
k)mk](mn mk)r dr

=

Z
(1 ~f2

1 )(mn mk)2r dr
Z

[2 ~f1 un(mn mk)2 + 2 ~f1 mk(m mk)(un uk) + u2
n(mn mk)2]r dr

Z
[mk(u2

n u2
k)(mn mk) + (m3

n m3
k)(mn mk)]r dr

= o(1):
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Therefore, equation (6.9) implies that mn ! ~m in H . By passing to the limit in
the weak formulation of (GL 1 ;gn

), we easily obtain that ( ~f ; ~m) solve (GL1 ;~g), and
hence the speci­ ed solution set is compact.

6.3. Existence

Let (un; vn; mn) be a minimizing sequence for I µ ;g, so

(fn; Sn; mn) = (f0 + un; S0 + rvn; mn)

is a minimizing sequence for E µ ;g. To prove theorem 2.2, we ­ rst observe that the
energy E µ ;g is a sum of positive terms, and hence each is individually bounded. In
particular, mn is uniformly bounded in H .

Now we must estimate un. First note that E µ ;g(jfnj; Sn; mn) = E µ ;g(fn; Snmn),
and so we may assume that our minimizing sequence satis­ es fn(r) > 0 for all r.
Next we observe

k1 f 2
nk2 6 k1 f 2

n m2
nk2 + km2

nk2 6 k1 f 2
n m2

nk2 + C: (6.10)

Hence we conclude that

C > E µ ;g(fn; Sn; mn)

>
Z »

(f 0
n)2 +

µ
S 0

n

r

¶2

+
(d Sn)2f 2

n

r2
+ 1

2
µ2(1 f2

n)2

¼
r dr:

The right-hand side of the above inequality is the free energy of conventional
Ginzburg{Landau vortices studied in [1]. The boundedness of kunkX , kvnkX then
follows from the argument of proposition 4.2 of [1]. We may then pass to the limit
in E µ ;g via lower semicontinuity of the norms and Fatou’s lemma.

To prove theorem 2.3, let (un; mn) be a minimizing sequence for I1 in X £ H ,
so (fn; mn) = ( ~f1 + un; mn) is a minimizing sequence for E 1 ;g. Choose rg > 1, so
that d2=r2

g 6 g=2. Then

E 1 ;g(fn; mn)

>
Z rg

0

µ
(m0

n)2 + gm2
n

d2

r2
~f2
1

¶
r dr

+

Z 1

rg

µ
(m0

n)2 +

³
g

d2

r2

´
m2

n +
d2

r2
(f2

n + m2
n 1)

+ 1
2
(f2

n + m2
n 1)2 +

d2

r2
(1 ~f2

1 )

¶
r dr

>
Z 1

0

[(m0
n)2 + 1

2
gm2

n]r dr

Z rg

0

d2

r2
~f2
1 r dr +

Z 1

rg

µ
d2

r2
(1 ~f 2

1 )
d4

2r4

¶
r dr;

where we have used the elementary bound ax + x2=2 > a2=2. In particular, E1 ;g

is bounded below and the minimizing sequence has kmnkH 6 C uniformly in n. By
Sobolev embedding, we also conclude that kmnkp 6 Cp for all p 2 [2; 1).

Now we must estimate un. As above, we note that E 1 ;g(jfnj; mn) = E 1 ;g(fn; mn),
and so we may assume that our minimizing sequence satis­ es fn(r) > 0 for all r,
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and the bound (6.10) holds. Note that we also have

kunk2 6 k ~f1 1k2 + k1 fnk2 6 C + k1 fnk2: (6.11)

By the estimate on mn, (6.10) and (6.11), we now have

C >
Z µ

(f 0
n)2 +

d2

r2
(f 2

n
~f2
1 ) + 1

2(1 f 2
n)2

¶
r dr

=

Z µ
(u0

n)2 + 2 ~f 0
1 u0

n + ( ~f 0
1 )2 +

d2

r2
(2 ~f1 un + u2

n) + 1
2
(1 f 2

n)2

¶
r dr

=

Z µ
(u0

n)2 + ( ~f 0
1 )2 +

d2

r2
u2

n + 1
2
(1 f 2

n)2 + 2(1 ~f 2
1 ) ~f1 un

¶
r dr

>
Z µ

(u0
n)2 +

d2

r2
u2

n + 1
4
u2

n 8(1 ~f 2
1 )2 1

8
~f 2
1 u2

n

¶
r dr C

>
Z µ

(u0
n)2 +

d2

r2
u2

n + 1
8
u2

n

¶
r dr C:

In conclusion, kunkX 6 C . We extract a subsequence for which both un * u0 and
mn * m0 weakly in X , H , respectively, and pointwise almost everywhere.

By semicontinuity of the norm, Fatou’s lemma (for the positive terms) and the
L2

r;loc convergence of un ! u0, we can pass to the limit in (2.3),

I1 ;g(u0; m0) 6 lim inf
n! 1

I1 (un; mn) = inf
X£H

I 1 :

So the in­ mum of I 1 is attained.
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