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Abstract

We propose a focusing mechanism of high-energy ions by an electron cloud produced by a laser interaction with slab
plasma. In our 2.5-dimensional (2.5D) particle-in-cell simulations, the laser intensity is 2 X 10%° W/cm? the laser
wavelength A is 1.053 pum, and the laser spot size is 2.5A. When the high intensity laser irradiates slab plasma, electrons
are accelerated, oscillate around the plasma and produce the electron cloud locally at the sides of the plasma. Because
the electrons are localized transversely, a static electric potential is formed to focus ions and at the same time the ions
are accelerated longitudinally. Though the longitudinal ion acceleration has been studied well, the ion focusing effect
is reported for the first time in this paper. In our calculations, the maximum energy and intensity of the protons
are 8.61 MeV and 1.89 X 10'7 W/cm?, and the diameter of the proton bunch accelerated are focused to 71.2% of its initial

size.
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1. INTRODUCTION

In recent years, we have seen remarkable progresses in laser
intensity improvement (Mourou et al., 1998; Strickland &
Mourou, 1985), and new particle acceleration schemes have
been explored, such as electron acceleration in a vacuum
(Hafizi et al., 1997; Kawata et al., 1991; Kong et al., 2003;
Malka & Miquel, 1997), high-energy ion production (Allen
etal.,2003; Nakamura & Kawata, 2003; Passoni & Lontano,
2004; Pommiers & Lefebvre, 2003; Ramirez et al., 2004;
Shorokhov & Pukhov, 2004; Wilks et al., 2001; Chen &
Wilks 2005). There was also a remarkable progress in the
simulation of high intensity laser plasma interactions, which
were discussed recently (Lebo et al., 2004; Limpouch et al.,
2004). When an intense laser irradiates thin slab plasma,
electrons are accelerated by the laser and oscillate around
the plasma (Kawata et al., 2005). Therefore, the electrons
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accelerated produce an electron cloud at the sides of the
plasma (see e.g., Nakamura & Kawata, 2003). The electron
cloud extracts and accelerates ions. This acceleration mech-
anism is well known in laser-plasma interactions.

In this paper, we study an ion focusing mechanism in an
interaction of intense laser and thin slab plasma by using
2.5-dimensional (2.5D) particle-in-cell (PIC) simulations.
The electron cloud generated on the opposite side of the
irradiation surface of laser is formed locally in the trans-
verse and longitudinal directions. Therefore, a static electric
potential is formed as well by the electron cloud, and ions
are focused and accelerated by the strong static electric
potential. Consequently, even in the slab plasma target, one
can expect the progress of ion focusing effect. In our ion
acceleration and focusing mechanism, a magnetic field
influences the electrons and the static electric potential. We
also investigated an influence of the magnetic field on our
mechanism.

The simulation model and parameters are presented in
Section 2. In Section 3, the simulation results of proton
focusing and acceleration processes are presented. In Sec-
tion 4, the conclusions are described.
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2. SIMULATION MODEL

Figure 1 shows the schematic view of the calculation model.
The slab plasma consists of an Al*!'! layer of 0.5 um
thickness with an additional 1.5 um linearly-changing den-
sity slope, and an H" layer of 0.5 um thickness. The peak
density of Al1*!! is a solid density and the H* plasma is in its
solid density. At the initial time, the temperature of plasma
ions and electrons are in the Maxwell distribution with 10
KeV and 100 KeV, respectively. The laser intensity is 2 X
10%° W/cm?, the wave length of laser A is 1.053 um, the
laser spot size wy is 2.5\, and the duration of Gaussian laser
pulse 7is 10 fs. The laser propagates in the x direction and is
polarized in the y direction. The center of laser is at y = 6 A.
In this paper, the target side irradiated by the laser is called
the laser side and the other side is called the rear side.

3. SIMULATION RESULTS

In this section, the simulation results of proton acceleration
and focusing mechanism are presented. In order to clarify a
detail of proton focusing and acceleration, we show in
Figure 2 the time developments of distributions of high-
energy (>2.0 MeV) electrons, static electric potential, and
magnetic field. The laser peak reaches the target at t =
27.6 fs. The electrons are accelerated strongly by the laser
and generate the electron cloud at the rear side. In this paper,
we focus on the rear side for practical reasons. Therefore, a
static electric potential is generated, and protons are accel-
erated by this static electric potential longitudinally, and
obtain a MeV order of energy in the parameter range employed
in this paper. In our calculations, the spot size of laser is
small compared with the target width. Therefore, the elec-
trons accelerated are localized in the rear side and produce
the static electric field locally as shown in Figure 2a and
Figure 2b. To investigate the detail of localized static elec-

Pl I'S}' .
1.55 LAl
(.54
Densit
) e Y
125,
¥
V NG ~
2.5
R E— x
opTom|®

X

Fig. 1. Aschematic view of calculation model. The slab plasma consists of
an A" layer of 0.5 um thickness with an additional 1.5 um linearly-
changing density slope and a H" layer of 0.5 um thickness. The laser
propagates in the x direction and is polarized in the y direction. The laser
center is at y = 6A.
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Fig. 2. The time development of distribution of (a) the high-energy
(>2.0 MeV) electrons, (b) the static electric potential, and (¢) the magnetic
field. Each distributions are corresponding to the time of ¢+ = 30.0 fs,
t=38.0fs, and r = 42.0 fs, respectively.

tric potential, a precise distribution of static electric poten-
tial is shown in Figure 3. The localization of the static
electric potential can be seen clearly in Figure 3. The pro-
tons are extracted and accelerated from the rear side by this
localized static electric potential. Consequently, the proton
divergence in the transverse direction is suppressed and
protons are focused on the center. A strong magnetic field is
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Fig. 3. Distribution of the static electric potential (a) in the x-y plane,
(b) versus y at x = 7.85A, and (c) versus x at y = 6.0\ at 1 = 42.0 fs.
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Fig. 4. The maps of proton bunch focused at = 28.0 fs, t = 38.0 fs, and
t=58.0fs.

also produced by the electrons accelerated in the rear side as
shown in Figure 2c. The magnetic field may influence the
electrons motion and consequently may have an influence
on the form of static electric potential. The magnetic effect
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Fig. 5. The intensity distribution of protons bunch accelerated (a) versus x
and (b) versus y at t = 26.0 fs, = 36.0 fs, and 1 = 42.0 fs.
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is important in our ion focusing and acceleration mecha-
nism. The analyses of the magnetic field effect are described
later on this paper. Figure 4 shows the distributions of the
proton bunch focused at r = 28.0 fs, r = 38.0 fs, and 1 =
58.0 fs, respectively. The divergence of the protons is sup-
pressed by the static electric potential, and the protons are
accelerated and slightly focused on the center. In this spe-
cific case, the maximum proton energy is 8.61 MeV, and the
average proton energy is 0.672 MeV. Figure 5a and Fig-
ure 5b shows the time developments of the intensity distri-
butions of the protons bunch accelerated in the transverse
and longitudinal directions at = 26.0 fs, = 36.0 fs, and t =
58.0 fs. The protons are extracted and accelerated by the
localized static electric potential. Consequently, the inten-
sity of proton beam increases near the center. The maximum
intensity of proton bunch is 1.89 X 10'7 W/cm? at t =
58.0 fs. A diameter of the proton bunch accelerated at r =
58.0 fs is decreased to 71.2% compared with ¢ = 22.0 fs.
Here the diameter of the proton bunch accelerated is defined
by the intensity FWHM of the proton bunch. Figure 2 to
Figure 5 show clearly that the protons are focused and
accelerated by the localized electron cloud and the gener-
ated electric potential. As shown in Figure 2c, one can
imagine that the magnetic field can have an influence on the
proton focusing. Figure 6 shows results without the influ-
ence of the magnetic field: in this case, the magnetic field is
set to zero in the equation of motion in order to check the
magnetic effect on the proton focusing, though the Maxwell
equation is fully solved. Figure 6a, Figure 6b, and Figure 6¢
show the distributions of high-energy electron (>2.0 MeV),
the static electric potential, and the magnetic field at t =
42.0 fs in the case without the magnetic field effect. The
detail of the static electric potential is presented in Figure 7.
Figure 6a show that the electrons are slightly diffused in
transverse, and the magnetic field in the rear side is weak as
shown in Figure 6¢. Consequently, the static electric poten-
tial in the rear side is weak and it is also relatively flat as
shown in Figure 6b and Figure 7.
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Fig. 6. The distributions of (a) the high-energy electrons, (b) the static
electric potential, and (¢) the magnetic field at # = 42.0 fs. In this calcula-
tion, the magnetic field is set to zero in order to investigate the effect of
magnetic field on the proton focusing, though the Maxwell equation is fully
solved.
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Fig. 7. The details of the static electric potential (a) in the x-y plane,
(b) versus y at x = 7.85A, and (c) versus x at y = 6.0A at t = 42.0 fs.

Figure 8 shows the intensity distribution of proton bunch
accelerated in the y direction. In this specific case, the
protons are not well focused by the static electric potential.
Therefore, the intensity is nearly flat and the peak of inten-
sity is decreased compared with that in Figure 5. The peak
intensity of proton bunch accelerated is 1.24 X 10'7 W/cm?,
the maximum proton energy is 8.59 MeV, and the averaged
energy is 0.353 MeV. Figure 6, Figure 7, and Figure 8
demonstrate that the magnetic field influences the distribu-
tion of the electron cloud and the static potential, and
consequently the protons are focused much.
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Fig. 8. The intensity distribution of proton bunch accelerated versus y
direction at r = 26.0 fs and r = 58.0 fs.
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4. CONCLUSIONS

In this paper, the proton bunch focusing and acceleration
effects are clarified and demonstrated by the particle simu-
lations. The proton focusing effect comes from the localiza-
tion of the electron cloud and the static electric potential. In
our study, the effect of magnetic field is also investigated.
The strong magnetic field has a great influence on the proton
focusing effect.
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