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The connections between formal topology and domain theory are surveyed and various

types of continuous domains are represented as formal spaces through locally Stone and

locally Scott formal topologies.

1. Introduction

Continuous domains are partially ordered sets based on an order relation motivated by

an ideal notion of computation. A computation is viewed as a sequence of increasingly

refined approximations that give, in the limit, the result to be computed. More precisely,

a computation for x is a directed set with x as supremum. A given element a is a finite

approximation to x if, whenever a directed set D has x as supremum, some element of D

is greater than a, that is, any computation for x gives, in a finite number of steps, a value

that is closer to x than a.

Complete lattices with the property that the set of finite approximations of any element

x form a directed set having x as least upper bound are called continuous lattices.

Continuous lattices were introduced and many of their basic properties established by

Dana Scott in 1972 in the context of the abstract theory of computation. In Scott (1973)

continuous lattices were used as models for untyped λ-calculus. The theory of continuous

lattices emerged from a variety of mathematical applications in fields such as general

topology, algebraic geometry, functional analysis and category theory (cf. the introduction

of Gierz et al. (1980), and the historical notes to chapter VII in Johnstone (1982)).

Recently, continuous lattices have been used as a unifying viewpoint for domain theory

(as in Abramsky and Jung (1994)).

By requiring closure under suprema only for directed subsets, rather than for arbitrary

subsets, a computational model of useful generality is obtained. These partially ordered

sets are called continuous directedly complete partial orders, and they generalize both

continuous lattices and algebraic domains. These latter are domains with a base of

compact elements, and they have received particular attention in the literature for the

reason that Scott domains are algebraic.

Formal topology was introduced in a series of lectures by Per Martin-Löf in 1985 as an

answer to the question of whether it is possible to generalize the concept of Scott domain
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so as to comprise all thinkable topological spaces. Thus the connection to Scott domains

is one of the motivating reasons at the origin of formal topology.

In formal topology the order-theoretic properties of a topological space are assumed

as primitive by means of a relation, called formal cover, between elements and subsets

of a set. The properties that a cover relation has to satisfy correspond to the properties

of the set-theoretic relation of inclusion between a basic neighbourhood and the union

of a set of basic neighbourhoods of a topological space. Formal topology is pointfree,

as the points are not primitive objects, and constructive, as the underlying set theory is

Martin-Löf’s constructive type theory. Predicativity is the main difference between formal

topology and the development of pointfree topology called locale theory.

Points are not among the primitive notions of formal topology, but are defined as

particular, well-behaved collections of neighbourhoods. Formal spaces are the spaces

arising as spaces of formal points of a suitable formal topology.

The interplay between topology and order, perhaps the most typical feature of domain

theory, appears in this work in the form of a constructive Stone representation. We show

how the relevant structures of domain theory can be represented as formal spaces, via the

lattices of formal opens and formal points of suitable formal topologies.

We start by setting down all the basic notions of formal topology needed. Some

definitions differ from the ones given in Sambin (1987), mainly because we avoid using

the positivity predicate. Also, we define a formal topology on a preordered set, as in

Coquand (1996), rather than on a commutative monoid or semilattice.

The usual definition of the cover relation of formal topology permits a representation

of frames, that is, complete lattices with joins distributing over finite meets. A relation

more general than the cover relation is needed when facing the problem of representing

non-distributive structures. To this end, we recall that complete lattices (also called sup-

lattices in the literature) can be presented by means of closure operators, as in Joyal and

Tierney (1984). A representation for complete lattices can be given in terms of formal

topology by using a generalization of the cover relation (cf. Battilotti and Sambin (1993)).

We begin our analysis of the connections between domain theory and formal topology

by observing a common feature in the definition of formal topologies that arise in the

applications of formal topology to constructive analysis. In Section 3 we recall the formal

topology of formal reals, formal intervals and formal linear functionals (cf. Negri and

Soravia (1999), Cederquist and Negri (1996), and Cederquist et al. (1998)). In all these

cases the cover is defined by means of a finitary inductive definition, which has a precise

link to the notion of continuity in domains. By abstracting from these concrete examples,

we obtain the definition of locally Stone formal topology. The further example of partial

reals, that is, formal reals allowing unsharp points, is analyzed and generalized in the

definition of locally Scott formal topology.

In Section 4 we show that these two classes of formal topologies give rise, by consider-

ing the corresponding lattices of saturated subsets, to continuous and prime-continuous

lattices, respectively, and that every continuous or prime-continuous lattice can be rep-

resented in this way via formal topology. The representation for continuous and prime-

continuous lattices is part of the equivalence between lattice-theoretic structures and the

corresponding structures in formal topology.
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Continuous directedly complete partial orders are represented via the formal points of

a suitable class of locally Scott formal topologies. The representation of Scott domains

via formal topologies is then obtained as a special case in Section 4.5.

The idea of representing lattices by means of lattices of opens of a topological space

goes back to Stone and was often taken over in the literature for various lattice-theoretic

structures. In Section 4.6 we show how the spectral theory of continuous lattices (cf.

Hofmann and Lawson (1978), Gierz et al. (1980), chapter V, and Hofmann and Mislove

(1981)) can be rephrased in terms of formal spaces in a direct and general way.

In the final section we apply our results to give a representation theorem for sober

locally compact spaces via formal topology. The classical axiom of choice in the form of

Zorn’s lemma is here needed in order to prove spatiality of locally Stone formal topologies.

Our proofs of the representation theorems for the various domain-theoretic structures

presented in this work are all elementary. Impredicativity only appears in the proof of

equivalence between the classical notions and the corresponding constructive notions. Thus

our results show that the predicative notion of locally Stone (respectively, Scott) formal

topology can replace the classically equivalent but impredicative notion of continuous

(respectively, prime continuous) domain.

2. Formal topology and pointfree representations

In this section we present the background on formal topology needed for our developments

and the basic results on pointfree representations (Theorems 2.5 and 2.8) upon which we

build in Sections 4 and 5. We shall also discuss the role of the positivity predicate.

We remark that the definition of formal topology given here differs from the definition

in Sambin (1987): a cover is defined here on a preordered set rather than on a commutative

monoid with unit, or on a semilattice with top element, so that a more flexible definition

is obtained. The positivity predicate is left out for reasons that will be explained in

Section 2.4. Consequently, the definitions of points on a formal topology and of morphisms

between formal topologies have to be restated accordingly. Also, the definition of Scott

formal topology has to be modified in the absence of the positivity predicate.

For general motivations for formal topology as a predicative approach to pointfree

topology we refer the reader to Sambin (1987) and the introduction of Negri and Soravia

(1999) (and references therein to the more recent literature).

2.1. Basic definitions

Formal topology is a constructive approach to pointfree topology in the tradition of

locale theory (see Isbell (1972), Johnstone (1982), Johnstone (1983) and Fourman and

Grayson (1982)), which uses Martin-Löf’s constructive type theory instead of set theory.

Formal topology starts from an axiomatization of the inclusion relation between opens

of a topological space 〈X,Ω(X)〉, with no reference to the points. Since a point-set topology

can always be presented using one of its bases, the abstract structure that we consider is

a preordered set 〈S, v 〉 where the set S corresponds to a base of the point-set topology

Ω(X) and v corresponds to the inclusion relation between sets belonging to the base.
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In point-set topology any open set is obtained as a union of elements of the base;

without points we do not have such a union and we regard an open set as a subset of the

base S . Set-theoretic inclusion between basic opens and opens is replaced by a relation

C , called cover, between elements and subsets of the base S . This justifies the following

definition.

Definition 2.1. A formal topology over a set S consists of a reflexive and transitive relation

v on S and a relation C between elements and subsets of S , called (formal) cover, such

that, for any a, b ∈ S and U,V ⊆ S , the following conditions hold:

reflexivity
a ∈U
aCU

transitivity
aCU UCV

aCV
where UCV ≡ (∀u ∈U) uCV

left
b v a aCU

bCU

right
aCU aCV

aCU u V where UuV ≡ {c ∈ S | (∃u ∈U)(∃v ∈ V )(c v u& c v v)}
A quasi formal topology on a set S is given by a relation C called quasi cover† between

elements and subsets of S satisfying reflexivity and transitivity.

We shall sometimes indicate a formal topology A on S with preoder v and cover C
using the notation 〈S, v , C 〉. A similar notation will apply to quasi formal topologies.

If the preordered set S is also a ∧-semilattice, the above definition is equivalent to the

definition of cover on a semilattice (cf. Sambin (1987)), with the rules of left and right

replaced by

∧ - left
aCU

a∧bCU

∧ - right
aCU aCV

aCU ∧ V where U ∧ V ≡ {u∧v | u ∈U, v ∈ V }
Given a quasi formal topology A, we obtain a closure operator CA on P(S) defined

by

CA(U) ≡ {a ∈ S | aCU}
and denoted AU for short. Conversely, any closure operator C on P(S) gives rise to a

quasi cover C C on S defined by

aC CU ≡ a ∈ CU
and the correspondence thus established is biunivocal.

† In Battilotti and Sambin (1993) a quasi cover is called an infinitary preorder. Observe that an infinitary

preorder is not a preorder.
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The collection of subsets U of S that are closed with respect to the closure operator

induced by the quasi formal topology A, that is, that satisfy AU = U, is denoted by

Sat(A) and called the collection of saturated subsets of A. Clearly, for all U ⊆ S , AU is

in Sat(A).

For a quasi formal topology A, Sat(A) is partially ordered by inclusion, and for U, V

in Sat(A), we have U ⊆ V if and only if U ⊆ AV , if and only if UCV . Two saturated

subsets U, V are equal if UCV and V CU. Sat(A) is a complete lattice, that is, it is closed

under the formation of arbitrary joins, which are obtained as follows: if {Ui}i∈I is a family

of saturated subsets of A, then for all i ∈ I , UiC
⋃
i∈I Ui, so for all i ∈ I , Ui 6A(

⋃
i∈I Ui).

If V is a saturated subset such that Ui 6V for all i ∈ I , then
⋃
i∈I UiCV , and therefore

A(
⋃
i∈I Ui)CV . We thus have ∨

i∈I
Ui ≡ A(

⋃
i∈I
Ui) .

If A is a formal topology, by the rules of left and right we have AU ∩AV =A(U uV ),

and therefore Sat(A) is closed under intersection. Thus the meet in Sat(A) is given by

AU ∧AV ≡ AU ∩AV =A(U u V )

and it is easily seen to be distributive over arbitrary joins, hence making Sat(A) into a

frame, that is, a complete lattice with finite meets that distribute over arbitrary joins.

Instead of considering for a formal topology A the frame of saturated subsets Sat(A),

we can consider the quotient of P(S) modulo the equivalence relation

U =A V ≡ UCV &V CU .

Clearly, U =A V if and only if AU =AV . Such a quotient is denoted by Open(A) and

called the collection of formal opens of A. Open(A) is a frame isomorphic to Sat(A) by

the assignment that selects, for each equivalence class [U], the canonical representative

AU.

Frames constitute the basic structure of traditional pointfree topology: they are obtained

by abstraction from the order-theoretic properties of the lattice of opens of a topological

space. As we shall see in Section 2.2, Sat extends to a functor giving a categorical

equivalence between the category of formal topologies and the category of frames.

Summing up, we can say that the idea of formal topology is to present a topological

space as a quotient frame of P(S) for a chosen set of basic neighbourhoods S in terms of

a closure operator A on P(S) such that the opens of the topology of discourse are the

A-saturated subsets. The closure operator can be axiomatized by a quasi cover. Using a

quasi cover one can usually avoid quantification over powersets.

In topological spaces (with a sufficient separation property†) a point can be obtained

as the intersection of the opens containing it. Starting from this as the basic intuition, in

pointfree topology the definition of point is obtained through the properties of the family

of opens of a topological space containing a point: a point is contained in some open set;

† This property is the T1 separation axiom, stating that given two distinct points x and y, there is an open set

that contains y but not x.
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if two opens contain a point, their intersection does; if a point is in an open set, then it

is in any bigger open set; finally, if a point is in an union of opens, it is in some open

of the union. A subset of a frame with these properties is called a completely prime filter.

Formally, it is defined as follows.

Definition 2.2. A subset F of a frame A is a filter if the following conditions hold:

1 (∃a ∈ A)(a ∈ F)

2 a, b ∈ F implies a∧b ∈ F
3 a ∈ F , b ∈ A and a6b imply b ∈ F .

A filter is completely prime if for any subset {ai : i ∈ I} of A,
∨
i∈I ai ∈ F implies ai ∈ F for

some i ∈ I .

The definition of formal point of formal topology is obtained by a reformulation of the

definition of completely prime filter.

Definition 2.3. A formal point on a formal topology on S is a subset α of S such that, for

all a, b ∈ S , U ⊆ S , the following conditions hold:

1 (∃a ∈ S)(a ∈ α)

2
a ∈ α b ∈ α

(∃c ∈ S)(c ∈ α& c v a& c v b)

3
a ∈ α aCU

(∃b ∈U)(b ∈ α)
.

The third of the above conditions will be referred to as monotonicity. If a is a basic

neighbourhood in α, we also say that α forces a, or α is a point in a.

2.2. The category of formal topologies and the representation of complete lattices, frames,

and sober topological spaces

The inverse of a continuous function between two topological spaces X and Y gives a

map between ΩY and ΩX that preserves finite intersections and arbitrary unions, that is,

finite meets and arbitrary joins of the frames of opens of the topological spaces. These

properties are taken as the defining properties of a frame morphism. We shall denote by

Frm the category of frames.

Like frames, formal topologies are made into a category starting from a similar intuition.

The three conditions below express the fact that the map preserves the top element (nullary

meet), binary meets and arbitrary joins. For a subset U of S , f(U) denotes
⋃
a∈U f(a).

Definition 2.4. Let A = 〈S, v A, CA〉 and B = 〈T , v B, CB〉 be two formal topologies.

A morphism from A to B is a map f, from elements of S to subsets of T , such that the

following conditions are satisfied:

1 f(S) =B T
2 f(a) u f(b)CBf(a u b)
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3
aCAU

f(a)CBf(U)
.

Two morphisms f and g from A to B are equal if, for all a ∈ S , f(a) =B g(a).

It is easy to prove that formal topologies and morphisms of formal topologies, with

composition given by (f ◦ g)(a) ≡ f(g(a)) and identity defined by 1(a) ≡ {a}, form a

category, called the category of formal topologies and denoted by FTop.

If S and T are ∧-semilattices, the above definition can be reformulated with the second

condition replaced by

2′ f(a) ∧ f(b)CBf(a∧b) .

Morphisms of quasi formal topologies are defined similarly, omitting Condition 2. We

shall denote by QFTop the category of quasi formal topologies.

In the presence of the unit (or top element, if we consider ∧-semilattices rather than

monoids), the first condition of Definition 2.4 is equivalent to

f(1A) =B 1B ,

and ensures that the corresponding frame morphism (defined in the proof of Theorem 2.5)

preserves finite meets, and hence, in particular, the top element, which can be given as the

meet of the empty set.

The initial object in the category of frames will be denoted by 2. By definition, for

every frame A there exists a unique frame morphism !A : 2→ A. In traditional pointfree

topology (cf. Johnstone (1982, II, 1.3)), points on a frame A are shown to correspond to

prime elements of A, or, equivalently, to frame morphisms from A to the frame 2.

In formal topology the role of the frame 2 is taken over by the formal topology

P(1) ≡ 〈{1}, v , C 〉
with basic preordered set consisting of a singleton set with the identity relation, and cover

relation given by

a C U ≡ a ∈U .

For every formal topology A, there exists a unique morphism !A : P(1) → A, which

maps 1 in the whole set S , thus P(1) is initial object in the category of formal topologies.

Formal points of A can be characterized as morphisms from A to the initial object.

Given a formal point α of A, we define fα(a) = {1} if a ∈ α, otherwise we put fα(a) =6.

Clearly, fα is a morphism of formal topologies from A to P(1). Conversely, if f is a

morphism from A to the initial object, by defining

αf ≡ {a ∈ S : f(a) =P(1) {1}},
a formal point of A is obtained, and the correspondence thus established is biunivocal.

By viewing points as morphisms, we can define a contravariant functor Pt from formal

topologies to spaces of formal points acting on morphisms as follows: if f is a morphism

from A to B, then Pt(f) is the map from Pt(B) to Pt(A) defined by

Pt(f)(α) ≡ α ◦ f
where ◦ denotes composition of morphisms.
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We can also extend Sat from objects to morphisms as follows: for U ∈ Sat(A) and f a

morphism from A to B, we put

Sat(f)(U) ≡ Bf(U) .

It is well known (Mac Lane 1971) that a functor F between two categories C and D
gives an equivalence if and only if it is full, faithful and dense, that is, it is bijective on

morphisms and surjective, up to isomorphism, on objects.

We shall denote by SL the category of complete lattices with join preserving maps as

morphism. Because of the morphisms, this category is sometimes called the category of

sup-lattices (for example, in Joyal and Tierney (1984)). We have the following theorem.

Theorem 2.5. The functor Sat gives an equivalence between the category QFTop of quasi

formal topologies and the category SL of complete lattices.

Proof. (Sketch. See also Battilotti and Sambin (1993)) As shown in Section 2.1, for

any quasi formal topology A, Sat(A) is a complete lattice. Conversely, given a complete

lattice L with base S , we obtain a quasi formal topology AL on S by defining, for a ∈ S
and U ⊆ S

aCU ≡ a6∨U

The map

Sat(AL) → L

U 7→ ∨
U

gives a bijection between Sat(AL) and L with inverse

L → Sat(AL)

a 7→ {b ∈ S : b6a} ≡ ↓Sa
Clearly, we have

∨ ↓Sa = a. For ↓S
∨
U = U, suppose a6

∨
U. Since U is a saturated

subset, a ∈U follows, thus ↓S
∨
U ⊆ U. The other inclusion is obvious. The bijection

preserves arbitrary suprema, and therefore it is an isomorphism of complete lattices, thus

showing that Sat is a dense functor.

Next we prove that, given the quasi formal topologies A and B, the functor Sat gives

a bijection between morphisms

Sat : QFTop(A,B) → SL(Sat(A), Sat(B))

f 7→ Sat(f)

Clearly, the mapping is 1–1 by definition of equality of morphisms. As for surjectivity,

given a morphism g in SL(Sat(A), Sat(B)), define f by putting, for a in the base S of

A, f(a) ≡ g(Aa). It is routine to verify that f is a morphism of quasi formal topologies

between A and B and that Sat(f) = g.

All the equivalences throughout this paper will be proved by restriction of the basic

equivalences given in Theorem 2.5 and Theorem 2.8 below, between the category of quasi

formal topologies and the category of complete lattices, and between the category of

spatial formal topologies and the category of sober topological spaces. In these proofs we

shall make use of the following general proof method. First we recall that a subcategory
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C′ of C is full if the morphisms of C′ between two objects are the same as the morphism

in C. Suppose we are given an equivalence between C and D through a functor F which

is dense, full and faithful, and suppose we are given two full subcategories C′ and D′ of C
and D, respectively. Suppose that F restricts to a dense functor between C′ and D′, that

is, for all A in C′, FA is in D′ and for all B in D′ there exists A in C′ such that FA is

isomorphic to B. Then F is full, faithful and dense also as a functor between C′ and D′,
and therefore gives an equivalence between C′ and D′. In all these cases we shall say that

the equivalence between C′ and D′ is proved by restriction of the equivalence between C
and D.

As a first application of this method, we obtain the following corollary by restriction

of the equivalence between the category quasi formal topologies and the category of

complete lattices.

Corollary 2.6. The category of formal topologies is equivalent to the category of frames.

Proof. As indicated in Section 2.1, if A is a formal topology, Sat(A) is a frame.

Moreover, if the complete lattice is a frame, AL defined as in the proof of Theorem 2.5

is a formal topology.

We summarize these equivalences in the diagram

QFTop
∼ - SL

FTop
∪

6

∼- Frm
∪

6

(1)

where horizontal arrows are equivalences and vertical arrows inclusions of categories.

For any formal topology A, the spatial topology on Pt(A) is the topology with base

given by the family {ext(a)}a∈S where a ∈ S and ext(a) is the collection of formal points

forcing a. In this way, Pt(A) becomes a topological space, thus justifying the word ‘space’

in the expression ‘formal space’.

By the condition of monotonicity for formal points, if aCU, then, for any formal point

α such that a ∈ α, there exists b in U with b ∈ α. The converse does not necessarily hold,

and indeed is the defining property of spatial formal topologies (sometimes also called

extensional formal topologies).

Definition 2.7. A formal topology A on S is spatial if for all a ∈ S and U ⊆ S , ext(a) ⊆
ext(U) implies aCU.

The following result is the counterpart of a well-known result for spatial locales; its

details can be easily filled in from the proof of the latter (cf. Johnstone (1982, chapter II,

1.4–1.7)).

Theorem 2.8. The category EFTop of spatial formal topologies is equivalent to the category

STop of sober topological spaces with continuous maps.
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Proof. (Sketch) Given a formal topology A, the space Pt(A) with the spatial topology

is a sober topological space, and for a morphism of formal topologies f from A to B,

Pt(f) is a continuous map from Pt(B) to Pt(A). Given a sober topological space X, by

sobriety, we have X ∼= Pt(ΩX). We consider, for a base S of the topological space X, the

formal cover on S defined by

aCU ≡ a ⊆⋃U

where a is a basic open of X, U is a collection of basic opens and ⊆ is set-theoretic

inclusion. This gives a spatial formal topology A, and we have X ∼= Pt(A). We conclude

by observing that Pt is a dense, full and faithful functor between the two categories.

To be more precise, what we have proved above is a duality between the two categories,

that is, an equivalence between STop and EFTopop, the opposite category of EFTop, since

Pt is a contravariant functor, that is, a functor that reverses the direction of morphisms.

In Section 5 we shall specialize this result to an equivalence between a particular

subcategory of the category of formal topologies and the category of locally compact

sober topological spaces with continuous functions as morphisms.

2.3. Stone and Scott formal topologies and the representation of algebraic frames

We recall from Sambin (1987) that a cover C on a base S is called a Stone cover if, for all

a ∈ S and U ⊆ S , aCU implies aCU0 for some finite subset U0 of U (written U0 ⊆ω U).

We remark that the notion of being Stone can apply not just to a cover, but, with more

generality, to any quasi cover.

Before proceeding, we will recall some definitions from lattice theory.

Definition 2.9. An element a of a complete lattice L is compact (finite) if for every U ⊆ L
such that a6

∨
U, there exists K ⊆ω U such that a6

∨
K . A complete lattice is algebraic if

it has a base of compact element, that is, every element can be obtained as the supremum

of a set of compact elements.

Definition 2.10. Given a subset U of a lattice L, the ideal generated by U, denoted I(U),

is the subset of L consisting of all x in L such that x6u1 ∨ . . .∨ un for some ui in U, n>0.

If A is a Stone quasi formal topology, then, by definition, all elements of Sat(A) of the

formAa for a in the base S are compact. Furthermore, it is an immediate consequence of

the definition of compact element that finite suprema of compact elements are compact.

Therefore, saturations of finite sets of the base are compact. Conversely, if U is compact

in Sat(A), there exists a finite subset K of U such that UCK . Summing up, we have the

following lemma.

Lemma 2.11. Let A be a Stone quasi formal topology. Then an element U of Sat(A) is

compact if and only if there exists a finite subset K of U such that U =AK .

We then have the following proposition.
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Proposition 2.12. If A is a Stone quasi formal topology, then Sat(A) is an algebraic

lattice.

Proof. The complete lattice Sat(A) is generated by the base of compact elements

{Aa}a∈S since, for any element U we have U =
∨
a∈UAa, and for all a ∈ S ,Aa is compact

by definition of Stone quasi formal topology.

Corollary 2.13. If A is a Stone formal topology, then Sat(A) is an algebraic frame.

Conversely, we have the following theorem.

Theorem 2.14. Every algebraic lattice L is isomorphic to a lattice of the form Sat(A) for a

Stone quasi formal topology A. If L is an algebraic frame, A is a Stone formal topology.

Proof. Given an algebraic lattice L, the relation between elements and subsets of L

defined by

aCU ≡ a ∈ I(U)

gives a Stone quasi formal topology with a lattice of saturated subsets isomorphic to L.

If L is an algebraic frame, it gives a Stone formal topology with a frame of saturated

subsets isomorphic to L.

We use SQFTop and SFTop to denote the categories of Stone quasi formal topologies

and Stone formal topologies, respectively. Moreover, let AL and AFrm be the categories

of algebraic lattices and algebraic frames, which are full subcategories of SL and Frm,

respectively. We have the diagram

SQFTop
∼ - AL

SFTop
∪

6

∼- AFrm
∪

6

(2)

where each category is a full subcategory of the corresponding category in Diagram 1.

By Proposition 2.12, Corollary 2.13 and Theorem 2.14, and equivalence by restriction,

horizontal arrows are equivalences. In Section 4 we shall present an ‘intermediate’ diagram

between Diagram 1 and Diagram 2: each vertex is labelled with a category including

the corresponding category of Diagram 2 and included in the corresponding category of

Diagram 1.

As observed above, compact elements in a lattice are closed under finite joins. They

are not, however, closed under finite meets. An algebraic frame with the property that

compact elements are closed under finite meets is called a coherent frame.

Note that the slightly different definition of formal topology given in Sambin (1987)

gives, as a consequence of the properties of ∧-left and ∧-right, AU ∩AV =A(U ∧V ). In

particular, ifAU andAV are compact elements of Sat(A), by using the characterization

given in Lemma 2.11, we obtain that their meet is compact (this is no longer true with the

more general definition of formal topology adopted here). The representation of algebraic
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frames given above thus becomes in Sambin (1987) a representation of coherent frames.

An alternative way of representing coherent frames is given in Negri (1996) by using,

instead of Stone formal topologies, the structures called Stone bases. In these structures

the covers, which are relations between elements and subsets of a set, are replaced by

their finite traces, which are relations between elements and finite subsets of a set, thus

allowing for a predicative treatment within type theory.

We say that a cover C on S is a Scott cover (or alternatively, as in Sigstam (1990), that

it has the Scott property) if for all a ∈ S and U ⊆ S ,

aCU implies aC b for some b ∈U (3)

Note that this definition of Scott cover differs from the one given in Sambin (1987), and

used in Sambin et al. (1996), where condition (3) is only required for positive elements of

the base.

Scott quasi covers are defined similarly.

The lattice-theoretic structures corresponding to Scott quasi formal topologies are

complete lattices in which every element a is generated by supercompact elements, that is,

elements satisfying, for arbitrary subsets T

a6
∨
T implies a6b for some b ∈ T .

We could give here a diagram similar to (2) above for Scott quasi formal topologies and

Scott formal topologies. However, we will not do so in order to avoid having to introduce

more terminology than necessary, since there is no established name for the corresponding

lattice-theoretic categories.

In Section 4 we shall study a generalization of these structures, the locally supercompact

lattices, which are also known in the literature as prime-continuous lattices, and shall relate

them to a generalization of Scott quasi formal topologies.

Given two covers C 1 and C 2 on the same base S , we say that C 2 is a quotient of C 1

(or is greater than C 1) if for all a ∈ S and U ⊆ S ,

aC 1U ⇒ aC 2U .

The Stone (respectively, Scott) compactification of a cover is defined as the greatest Stone

(respectively, Scott) cover of which the given cover is a quotient. They are defined,

respectively, by

aC fU ≡ (∃U0 ⊆ω U)(aCU0)

aC sU ≡ (∃b ∈U)(aC b) .

The Stone and Scott compactifications for quasi covers are defined in the same way.

The Stone (respectively, Scott) compactification of a formal topology A ≡ 〈S, v , C 〉
is the formal topology Af ≡ 〈S, v , C f〉 (respectively, As ≡ 〈S, v , C s〉).
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2.4. Positivity and open locales

The definition of formal topology given in Sambin (1987) differs from Definition 2.1 in

two respects. The first is that in Sambin (1987) a base is a commutative monoid with

unit, rather than a preordered set. This is inessential, for, as we have shown, all the basic

concepts can be reformulated starting from the more general structure. The second, not

inessential, difference, is that in Sambin (1987) a formal topology comes equipped with a

positivity predicate, that is, a predicate Pos(a) on elements a of the base S that satisfies

monotonicity
Pos(a) aCU

Pos(U)
where Pos(U) ≡ (∃b ∈U) Pos(b)

positivity
aCU

aCU+
where U+ ≡ {b ∈ S | b ∈U& Pos(b)}

A condition equivalent to positivity is

openness aC a+ .

The choice of terminology is not casual: Positivity in formal topology corresponds to the

condition of openness in locale theory. We recall the following definition and characterizing

property from Johnstone (1984, Section 2).

Definition 2.15. A locale A is open if the unique frame map !A : 2→ A has a left adjoint

Pos.

Lemma 2.16. A locale A is open if and only if there exists a map Pos : A→ 2 such that,

whenever a ∈ A, S ⊆ A and a6
∨
S , we also have

a6
∨{s ∈ S | Pos(s)} .

We now have the following proposition.

Proposition 2.17. If a formal topology has a positivity predicate, then Sat(A) is an open

locale, and, conversely, if A is an open locale, then any formal topology representing A

via the functor Sat has a positivity predicate.

Proof. Given a formal topologyA with positivity predicate Pos, define, for U in Sat(A),

Pos(U) ≡ (∃b ∈U)Pos(b). Pos is a frame morphism from Sat(A) to 2, and, by positivity,

the condition of Lemma 2.16 is satisfied, thus Sat(A) is an open locale. Conversely, given

an open locale A, let A be a formal topology representing A via the funtor Sat, and

define, for a in the base of A, Pos(a) ≡ Pos(Aa). Monotonicity for Pos holds since a

frame morphism is order preserving and positivity follows from Lemma 2.16

Definition 2.3 of formal points reduces to the definition given in Sambin (1987) if the

formal topology A is equipped with a unit 1 and a positivity predicate Pos. Indeed, 1 ∈ α
follows from condition 1 in Definition 2.3 and the fact that if 1 is the unit, we have

aC 1 for all a; the implication a ∈ α → Pos(a) follows from positivity and condition 3 of

Definition 2.3.
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The definition of morphism of formal topologies in Sambin (1987) contains an addi-

tional requirement, namely

Pos(f(a))→ Pos(a) .

This also follows from the other properties of morphisms in the presence of a positivity

predicate. From aC a+, by condition 3 of Definition 2.4, we obtain f(a)C f(a+). If

Pos(f(a)) holds, by monotonicity we get Pos(f(a+)), that is, (∃b ∈ a+)(∃c ∈ f(b))Pos(c).

Thus, in particular, a+ contains an element, therefore Pos(a) holds.

The above shows that if the formal topology is equipped with a positivity predicate, our

definitions of formal points and of morphisms are equivalent to those in Sambin (1987).

However, the following result shows that positivity is too strong a requirement in the

presence of compactness.

Proposition 2.18. LetA = 〈S, v , C 〉 be a Stone formal topology with positivity predicate

Pos. Then Pos is decidable.

Proof. Suppose that Pos satisfies positivity, so a C a+. Since C is a Stone cover, there

exists a finite subset U0 of the base that is a subset of a+ for which a C U0. We know,

from the fact that such a U0 is a finite set, whether it is empty or contains at least one

element. In the first case we have a C 6, and therefore, by monotonicity of Pos, also

∼ Pos(a), for, if we assume Pos(a), we obtain that there exists b ∈6 such that Pos(b),

which is a contradiction. In the second case, since U0 is a subset of a+, there exists at

least one element in a+, that is, Pos(a). Therefore, for all a ∈ S , Pos(a)∨ ∼ Pos(a) holds,

that is, Pos is decidable.

For a decidable positivity predicate the property of positivity becomes trivial, as it follows

directly from monotonicity that non-positive elements are covered by the empty set. In

particular, Proposition 2.18 shows that for a given formal topology a genuine, undecidable

positivity predicate does not extend to its Stone compactification. This limitation and the

fact that the positivity predicate is not needed for the results of this work have motivated

our choice of omitting it from our definition of formal topology.

3. Reals, partial reals, and intervals

In this section we give examples of formal topologies in which the cover is presented via

a Stone or Scott cover. They are all given by means of a finitary inductive definition (cf.

Aczel (1977)), where each rule involved has only finitely many premises.

We start with the topology of formal reals (cf. Negri and Soravia (1999), Cederquist and

Negri (1996), and Cederquist et al. (1998)). This is our motivating example, and we recall

the presentation of real numbers as formal points in detail. In addition, we introduce the

topology of partial reals.

In the approach to constructive reals via formal topology, real numbers are obtained

as increasingly refined rational approximations. Formal reals are the formal points of the

formal topology on the rationals, defined as follows.

Definition 3.1. The formal topology of formal reals is the formal topology on the set Q×Q
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of pairs of rationals with preorder defined by (p, q) v (r, s) ≡ r6p& q6 s and cover CR
defined by

(p, q)CRU ≡ (∀p′, q′)(p < p′ < q′ < q → (p′, q′)CRfU),

where the relation CRf is inductively defined by

1
q6p

(p, q)CRfU

2
(p, q) ∈U

(p, q)CRfU

3
(p, s)CRfU (r, q)CRfU p6 r < s6q

(p, q)CRfU

4
(p, q) v (p′, q′) (p′, q′)CRfU

(p, q)CRfU
.

The pairs (p, q) can be interpreted as intervals with rational endpoints. With this reading,

rule 1 says that non-positive intervals are covered by anything; rule 2 is reflexivity for

CRf ; rule 3 says that a cover for an interval can be obtained by means of covers for two

overlapping sub-intervals; rule 4 says that if an open set covers an interval, then it also

covers any of its sub-interval.

There are other equivalent definitions for the topology of formal reals. We have chosen

the above definition in order to single out the feature of interest for our analysis, namely

the fact that the cover CRf is the Stone compactification of the cover CR, as proved in

Cederquist and Negri (1996).

The proof that CR is a cover makes essential use of a lemma, which we recall here

from Cederquist and Negri (1996).

Lemma 3.2. Suppose (p, q)CRfU, UCRV , and let p < p′ < q′ < q. Then we have

(p′, q′)CRfV .

The definition of formal reals can be given more explicitly by unfolding the condition of

monotonicity in the general definition of formal point and specializing it to the inductive

clauses of Definition 3.1.

Definition 3.3. A formal real is a subset α of Q× Q such that:

1 (∃(p, q) ∈ Q× Q)((p, q) ∈ α)
2 (p, q) ∈ α& (r, s) ∈ α ↔ (max(p, r),min(q, s)) ∈ α
3 (p, q) ∈ α& r < s → (p, s) ∈ α ∨ (r, q) ∈ α
4 (p, q) ∈ α → (∃(p′, q′))(p < p′ < q′ < q& (p′, q′) ∈ α) .

The collection of formal reals is extended by also allowing ‘unsharp’ elements, which we

call partial reals. The definition of partial reals is like the definition of formal reals, with

the locatedness condition of clause 3 omitted. The presentation of the formal topology

having these as formal points is obtained by omitting the first and third axiom from the

definition of CRf .

Definition 3.4. The formal topology of partial reals is the formal topology on Q× Q with
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preorder defined as in Definition 3.1. The cover relation CPR is defined as in Definition 3.1

from a relation CPRs fulfilling conditions 2 and 4 of the definition of CRf .

It is easy to prove the following result, showing that the topology of partial reals constitutes

an example of the class of locally Scott formal topologies, to be introduced in Section 4.2.

Proposition 3.5.

1 The relations CPR and CPRs are covers.

2 For all (p, q) ∈ Q× Q and U ⊆ Q× Q, (p, q)CPRsU implies (p, q)CPRU.

3 For all (p, q) ∈ Q × Q and U ⊆ Q × Q, (p, q)CPRsU implies that there exists (r, s) ∈U
such that (p, q)CPRs (r, s).

We shall use Pt(PR) to denote the formal points of PR.

The relation on partial reals defined by

α < β ≡ (∃(p, q) ∈ α)(∃(r, s) ∈ β)(q < r)

is a relation of strict linear order, that is, it satisfies, for all α, β, γ ∈ Pt(PR),

1 ∼ (α < β& β < α)

2 α < β → α < γ ∨ γ < β.

It follows that the relation defined by

α6β ≡∼ β < α

is a partial order, and that the relation

α#β ≡ α < β ∨ β < α

is an apartness relation, that is, a relation satisfying

1 ∼ α#α
2 α#β → α#γ ∨ β#γ.

By representing rationals p via the embedding p̄ ≡ {(r, s) : r < p < s}, formal reals can

be characterized as partial reals that are well located with respect to the rationals.

Proposition 3.6. Let α ∈ Pt(PR). Then the following are equivalent:

1 α ∈ Pt(R)

2 (∀p, q)(p < q → p̄ < α ∨ α < q̄)

3 (∀k ∈ Q+)(∃(p, q))(q − p < k& (p, q) ∈ α).

A global version of the above characterization is given by the following corollary.

Corollary 3.7. Pt(PR) = Pt(R) if and only if the relation # is an apartness relation on

Pt(PR).

We now turn to another example of inductively generated formal topology. As with the

definition of formal reals, we can define the formal space [a, b] that corresponds to the

closed interval of the real line with rational endpoints a and b. The formal points of this

space are exactly the formal reals α with a6α6b. The following definition is equivalent

to the one used in Cederquist and Negri (1996), but here an explicit presentation of its
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Stone compactification is given. This is achieved by adding to the axioms for the finitary

cover CRf of formal reals two axioms expressing the fact that intervals not overlapping

with [a, b] are covered by anything.

Definition 3.8. Let a, b be rationals such that a < b. The formal topology of the closed

interval [a, b] is the formal topology on Q×Q preordered as in Definition 3.1, with cover

relation C defined by

(p, q)CU ≡ (∀p′, q′)(p < p′ < q′ < q → (p′, q′)C fU),

where the relation C f is defined inductively by

1
(p, q)CRfU
(p, q)C fU

2
q6a

(p, q)C fU

3
b6p

(p, q)C fU
.

Then we have the following lemma.

Lemma 3.9. (p, q)C fU if and only if (p, q)CRfU ∪ {(p, a), (b, q)}
Proof. This is a routine induction on the derivation of covers.

Proposition 3.10. The relation C is a cover, with Stone compactification given by C f .

Proof. We begin by proving that C f is a cover. Since we already know that CRf is

a cover, to get to the conclusion, we only need to prove that transitivity, left and right

hold when (p, q)C fU is derived from the new axioms 2 and 3 in Definition 3.8, which

is straightforward. In order to prove that C is a cover, we observe that Lemma 3.2 also

holds when CR and CRf are replaced by C and C f , respectively. This can be seen by a

trivial inspection of the cases in which (p, q)C fU is obtained by axiom 2 or 3. The above

directly implies that C satisfies transitivity. The verification that it satisfies reflexivity, left

and right is easy.

The proof that C f is a Stone cover is done by induction on the derivation. If (p, q)C fU

is obtained from (p, q)CRfU, the information that CRf is a Stone cover provides us with

a finite subcover. If it is obtained from q6a or b6p, the empty set is a finite subcover of

(p, q).

The verification that C is a quotient of C f is straightforward.

If (p, q)CU, with U finite, then, by an immediate consequence of the definitions and

the lemma, we have (p, q)CRU ∪ {(p, a), (b, q)}. Since CRf is the Stone compactification

of CR, we have that (p, q)CRfU ∪ {(p, a), (b, q)}. By the lemma we obtain (p, q)C fU.

Another example of inductively generated formal topology is the topology of linear and

continuous functionals of norm 61 from a seminormed linear space to the reals (cf.

Cederquist et al. (1998)). We shall not discuss it here, but just observe that in this case

also, as for the topology of formal reals and closed intervals, the cover is given by a

quotient of a Stone cover.
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The topology of formal reals, of closed intervals, and of linear and continuous function-

als have been completely formalized in type theory and implemented in the type-theoretical

proof editor Half in Cederquist (1997; 1998).

We shall see in Section 4.2 how the above examples of formal topologies arise as

instances of two special classes of formal topologies.

4. Representation of continuous domains in formal topology

In this section we shall give representation theorems for various types of continuous

domains using formal topology. The representations will, in particular, cover continuous

directedly complete partial orders, algebraic directedly complete partial orders, Scott

domains, continuous lattices and prime-continuous lattices.

4.1. Background on continuous domains

We proceed by recalling some standard definitions and basic facts from domain theory

(Gierz et al. 1980; Abramsky and Jung 1994). We refer the reader to the bibliographical

notes of Johnstone (1982) for an account of the origins of these notions and to Smyth

(1992a) and Vickers (1989) for a general background on topology in theoretical computer

science. The relation n appears in Abramsky and Jung (1994).

Definition 4.1. A partially ordered set (L, 6 ) is directed if it is non-empty and if for all

x, y ∈ L there exists z ∈ L such that x6z and y6z.

A directedly complete partial order (dcpo for short) is a partially ordered set in which

every directed subset has a least upper bound.

Definition 4.2. Let L be a dcpo and let x, y ∈ L. We say that x approximates y, or x is

way-below y, and write

x� y ,

if, for all directed subsets A of L, y6
∨
A implies that there exists a ∈ A such that x6a.

We say that x is compact if it approximates itself.

We say that x prime-approximates y, and write

xn y ,

if, for all subsets A of L such that
∨
A exists in L, y6

∨
A implies that there exists a ∈ A

such that x6a. An element is called super-compact if it prime-approximates itself.

A dcpo is continuous if, for all x ∈ L, the set {y | y � x} is directed and x =
∨{y | y � x}.

A continuous lattice is a continuous complete lattice.

A complete lattice is prime-continuous if, for all x ∈ L, x =
∨{y | yn x}.

A dcpo is called algebraic if it has a base (defined below) of compact elements.

An algebraic dcpo D is a Scott domain if the join of every upper bounded pair of

compact elements exists in D.
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Clearly, every algebraic dcpo is continuous, but not conversely. The condition charac-

terizing Scott domains among algebraic dcpo’s is sometimes called consistent completeness

in the literature.

Observe that the above notion of compactness reduces to the usual definition for spaces,

the finite subcover property, since the least upper bound of a set is the same as the least

upper bound of the directed set of the least upper bounds of its finite subsets.

Definition 4.3. A subset S of a continuous dcpo L is a base of L if, for all a ∈ L, the

collection of x ∈ S with x� a is a directed subset (denoted by ↓↓Sa) with supremum a.

A subset S of a prime-continuous lattice L is a base of L if, for all a ∈ L, the collection

of x ∈ S with xn a is a subset (denoted by ↓↓↓Sa) with supremum a.

In the following we will refer only to set-based domains and sometimes omit the subscript

denoting the base.

We now recall some basic facts about the way-below relation.

Proposition 4.4. Let L be a dcpo and let x, y, z, w be elements of L. Then:

1 x� y implies x6y

2 x6y � z6w implies x� w

3 If y is compact, x6y implies x� y.

Proof. (1) Choose {y} as directed subset.

(2) Holds by the definitions.

(3) Follows from 2 since for compact y, we have y � y.

Definition 4.5. A subset O of a partially ordered set L is Scott open if it is upward closed

(that is, x ∈ O and x6y imply y ∈ O) and it splits least upper bounds of directed subsets

(that is, if A is directed with a least upper bound, then
∨
A ∈ O implies (∃x ∈ A)(x ∈ O)).

In any continuous dcpo, subsets of the form ↑↑b = {x | b� x}, where b belongs to a base

of L, give a base of the Scott topology.

For a subset U of a continuous dcpo L, we shall sometimes write ↓↓U for
⋃
a∈U ↓↓a and

↑↑U for
⋃
a∈U ↑↑a

Proposition 4.6. (Interpolation property) In a continuous dcpo L, if a � b, there exists c

such that a � c � b. In a prime-continuous lattice, if a n b, there exists c such that

an cn b. If S is a base of L, c may be chosen from S .

Proof. Cf. Abramsky and Jung (1994, pages 14 and 69).

The following two results for continuous lattices are instances of Theorems 7.1.1 and

7.1.3 in Abramsky and Jung (1994) (for the equational characterization of the class of

continuous lattices, see also Theorem I.2.3 in Gierz et al. (1980)). The proofs of these

stronger statements require the axiom of choice, whereas those we need have constructive

proofs.
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Lemma 4.7. A continuous lattice L satisfies the directed infinite distributive law : for any

a ∈ L and any directed subset {bi : i ∈ I} of L,

a∧
∨
i∈I
bi =

∨
i∈I
a∧bi .

Proof. The inequality from right to left holds in any lattice, so the claim amounts to

proving that a∧
∨
i∈I bi 6

∨
i∈I a∧bi. Let x� a∧

∨
i∈I bi. Then x� ∨

i∈I bi, and therefore there

exists i ∈ I such that x6bi and indeed such that x6a∧bi since x6a. Thus x6
∨
i∈I a∧bi.

Since L is continuous, this proves the claim.

Lemma 4.8. A distributive continuous lattice L satisfies the infinite distributive law: for

any a ∈ L and any subset {bi : i ∈ I} of L

a∧
∨
i∈I
bi =

∨
i∈I
a∧bi .

Proof. Just observe that
∨
i∈I bi =

∨
I0⊆ωI{∨i∈I0bi} and that the set of finite subsets of I

is directed and so are the suprema indexed on these.

The above lemma explains why distributive continuous lattices are also called continuous

Heyting algebras.

Lemma 4.9. A prime-continuous lattice L satisfies the infinite distributive law.

Proof. The proof is as for Lemma 4.7, using prime-continuity instead of continuity.

4.2. Locally Stone and locally Scott formal topologies

The examples of the topologies of formal reals and formal intervals of Section 3 motivate

the introduction of two particular classes of formal topologies. These two classes permit,

as we shall see, a representation theorem for continuous and prime-continuous lattices.

The definition of locally Stone formal topology is obtained by restating the properties of

the way-below relation in terms of formal topology. The definition of locally Scott formal

topology is obtained analogously by translating the notion of prime-approximation.

Definition 4.10. A formal topology A ≡ 〈S, v , C 〉 is called locally Stone if there exists a

map i from elements to subsets of S such that, for all a ∈ S and U ⊆ S ,

1 a =A i(a)

2 aCU implies i(a)C fi(U), where i(U) ≡ ⋃b∈U i(b).

A formal topology is called locally Scott if there exists a map i as above such that, for all

a ∈ S and U ⊆ S ,

1 a =A i(a)

2 aCU implies i(a)C si(U).

The definition of locally Stone formal topology can be explained in terms of local

compactness as it states that every basic neighbourhood is covered by relatively compact

neighbourhoods (the elements of i(a)). This informal motivation will be made precise in
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the representation theorem of Section 5. The aim of such a definition is to express local

compactness in formal topology without making use of quantification over subsets, which

is instead the evident impredicative feature of the definition of the way-below relation for

continuous lattices.

It follows from the results in the previous section that the topologies of formal reals

and of formal closed intervals are locally Stone and that the topology of partial reals is

locally Scott. In these examples we have

i((p, q)) = {(p′, q′) : p < p′ < q′ < q} .
For instance, in order to prove that the topology of formal reals satisfies condition 2

for locally Stone covers, suppose (p, q)CRU and let (p′, q′) in i(p, q). Then there exists

(p′′, q′′) with p < p′′ < p′ < q′ < q′′ < q. By definition of C , we have (p′′, q′′)CRfU and

UCRi(U), thus by Lemma 3.2, (p′′, q′′)CRf i(U), and therefore (p′, q′)CRf i(U).

The topology of linear functionals is locally Stone. Using the notation of Cederquist et

al. (1998), we have

i(〈x1 ∈ I1, . . . , xn ∈ In〉) = {〈x1 ∈ J1, . . . , xn ∈ Jn〉 | J1 < I1, . . . , Jn < In} .
The definitions of locally Stone and locally Scott quasi formal topologies are obtained

from the above in the obvious way, simply by replacing ‘formal topology’ with ‘quasi

formal topology’.

We observe that a Stone (respectively, Scott) formal topology is locally Stone (respec-

tively, Scott) with i(a) = {a}. The same holds for quasi formal topologies.

4.3. Representation of continuous and prime-continuous lattices

We proceed by showing that the frames of saturated subsets of locally Stone and locally

Scott quasi formal topologies give continuous and prime-continuous lattices, respectively.

Theorem 4.11. If A is a locally Stone quasi formal topology, then Sat(A) is a continuous

lattice.

Proof. Let U ∈ Sat(A). We have to prove that U =
∨{V ∈ Sat(A) : V � U}, that

is, U = A(
⋃{V ∈ Sat(A) : V � U}), that is, UC

⋃{V ∈ Sat(A) : V � U} and⋃{V ∈ Sat(A) : V � U}CU. Since V � U implies V 6U, which in Sat(A) means

V CU, the latter holds, so it is enough to prove the former. Observe that b ∈ i(a) im-

plies Ab � Aa: if Aa6 ∨i∈I Ui where {Ui : i ∈ I} is a directed subset of Sat(A), then

aC
⋃
i∈I Ui; since b ∈ i(a), we have bCU0 with U0 ⊆ω ⋃i∈I Ui, and since the family is

directed, there exists i ∈ I such that bCUi, so Ab6AUi. For all a ∈U and for all b ∈ i(a),
we have Ab � Aa, Aa6U, and therefore by Proposition 4.4, Ab � U. Thus, since

UC
⋃
a∈U{b : b ∈ i(a)}, we have the claim.

Corollary 4.12. If A is a locally Stone formal topology, then Sat(A) is a distributive

continuous lattice.

In order to prove the converses of the above results, we need a couple of lemmas.
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Lemma 4.13. Let L be a continuous lattice. If b � u1 ∨ . . . ∨ un, there exist b1 � u1, ... ,

bn � un such that b6b1 ∨ . . . ∨ bn.
Proof. By continuity, we have

u1 ∨ . . . ∨ un =
∨
b1�u1

b1 ∨ . . . ∨
∨
bn�un

bn

and therefore

u1 ∨ . . . ∨ un =
∨

b1�u1 ,...,bn�un
b1 ∨ . . . ∨ bn

where the right-hand side is a directed join. The conclusion follows by definition of the

way-below relation.

The following lemma is the general lattice-theoretic formulation of Lemma 3.2, with

c ∈ I(U) in place of the finitary cover, ↓↓U ⊆ I(V ) in place of the cover UCV , and the

relation � in place of strict inclusion of formal intervals.

Lemma 4.14. Let L be a continuous lattice, b, c elements of L and U,V subsets of L.

Suppose c ∈ I(U), ↓↓U ⊆ I(V ), and b� c. Then b ∈ I(V ).

Proof. If b� c and c6u1∨ . . .∨un, where ui ∈U for i = 1, . . . , n, then b� u1∨ . . .∨un. By

Lemma 4.13, there exist b1 � u1, . . . bn � un such that b6b1 ∨ . . .∨ bn. By the assumption
↓↓U ⊆ I(V ), we have that bi ∈ I(V ) for i = 1, . . . , n, and therefore b ∈ I(V ) as well.

Theorem 4.15. Every continuous lattice is isomorphic to the lattice of saturated subsets

of a locally Stone quasi formal topology. If it is distributive, it is isomorphic to the lattice

of saturated subsets of a locally Stone formal topology.

Proof. Let L be a continuous lattice with base S . For a ∈ S and U ⊆ S , let i(a) ≡ ↓↓Sa,
v ≡ 6 and

aCU ≡ i(a) ⊆ I(U) .

The relation C is a quasi cover (satisfying left also):

Reflexivity: This holds since b� a implies b6a, so if a ∈U, then b ∈ I(U).

Transitivity: Suppose aCU and UCV and let b� a. By the interpolation property, there

exists c ∈ L such that b � c � a, and therefore c ∈ I(U). By Lemma 4.14, b ∈ I(V ),

so aCV .

Left: If aCU, b v a and c� b, then c� a, so c ∈ I(U), therefore bCU.

If L is distributive, then C also satisfies right since in this case I(U)∩I(V ) ⊆ I(U uV ).

Conditions 1 and 2 of the definition of locally Stone (quasi) formal topology are

immediate consequences of the definition of C and Proposition 4.4.

Finally, the isomorphism between L and Sat(A) is given as in Theorem 2.5.

Theorems 4.11 and 4.15 show that the basic equivalence between quasi formal topologies

and complete lattices restricts to equivalences between the category of locally Stone quasi

formal topologies LSQFTop and the category of continuous lattices CL, and between
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the category of locally Stone formal topologies LSFTop and the category of continuous

distributive lattices (or continuous frames) CFrm.

We can summarize the situation with the diagram

QFTop
∼ - SL

I@@
I

I@@
I

LSQFTop
∼ - CL

I@@
I

I@@
I

SQFTop
∼ - AL

FTop
∪

6

.............................
∼

- Frm
∪

6
...........................

I@@
I

I
....
I

LSFTop
∪

6

........................
∼

- CFrm
∪

6
...........................

I@@
I

I
....
I

SFTop
∪

6

∼ - AFrm
∪

6 (4)

where all horizontal arrows are equivalences and vertical and diagonal arrows are inclu-

sions of categories

A similar representation theorem holds for prime-continuous lattices.

Theorem 4.16. If A is a locally Scott quasi formal topology, then Sat(A) is a prime-

continuous lattice.

Proof. As in the proof of Theorem 4.11, we obtain U =
∨{V ∈ Sat(A) : V n U} since

b ∈ i(a) implies AbnAa by definition of locally Scott quasi formal topology.

Theorem 4.17. Every prime-continuous lattice is isomorphic to the frame of saturated

subsets of a locally Scott formal topology.

Proof. Given a prime-continuous lattice L with base S , for a ∈ S and U ⊆ S , let

i(a) ≡ ↓↓↓Sa and

aCU ≡ i(a) ⊆ ↓U ,

where ↓U ≡ ⋃u∈U ↓u.
The verification that C is a locally Scott cover is straightforward. The bijection between

L and Sat(A) is obtained as in the proof of Theorem 2.5.

By the representation theorem for continuous lattices via locally Stone quasi formal

topologies we also obtain an alternative proof of a well-known result (cf. Scott (1972)).

Theorem 4.18. Every continuous lattice is the retract of an algebraic lattice (via a continu-

ous s-r pair).

Proof. Let L be a continuous lattice. By Theorem 4.15, there exists a locally Stone quasi

formal topology A = 〈S, C 〉 such that L is isomorphic to Sat(A).
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Let Af be 〈S, v , C f〉, with v defined as in the proof of Theorem 4.15 and C f

being the Stone compactification of C . We have the following diagram, where s ≡ i is a

morphism of FTop(A,Af) and r is the morphism of FTop(Af,A) induced by the identity

map a 7→ {a}
Af

�
�
�
�
�

s
� @

@
@
@
@

r

R
A idA - A

(5)

Since A is locally Stone, every basic neighbourhood a is equicovered with i(a), and

therefore r and s factorize the identity arrow on A so that the diagram is commutative.

By applying the functor Sat, we obtain another commutative diagram (in the category of

complete lattices)

Sat(Af)

�
�
�
�
�

Sat(s)
� @

@
@
@
@

Sat(r)

R
Sat(A)

idSat(A) - Sat(A)

(6)

which yields the conclusion since Sat(Af) is an algebraic lattice by Proposition 2.12.

Then, simply by adding distributivity we get the following corollary.

Corollary 4.19. Every distributive continuous lattice is the retract of an algebraic frame

(via a continuous s-r pair).

4.4. Representation of continuous dcpo’s

Continuous dcpo’s cannot be represented as frames of opens of a formal topology, as

these latter are complete lattices. However, continuous dcpo’s arise in a natural way as

formal spaces by considering the posets of formal points of a suitable class of locally

Scott formal topologies, as defined below.

We begin by recalling the following (cf. Theorem 3.1.7 in Sigstam (1990), where a

different terminology is used).

Proposition 4.20. If S ≡ 〈S, v , C 〉 is a Scott formal topology, then Pt(S) with order

given by set inclusion is an algebraic dcpo.

Proof. If {αi | i ∈ I} is a directed subset of Pt(S), then
⋃
i∈I αi is in Pt(S). For all a ∈ S ,

⇑a ≡ {b ∈ S | aC b} is in Pt(S) since S is a Scott formal topology, and it is compact. The

set consisting of elements of the form ⇑a, with a ranging in a formal point α is directed

(by definition of formal point, there exists c in α with c v a and c v b, therefore ⇑a and ⇑b
are both subsets of ⇑c). The compact elements of Pt(S) generate Pt(S) since for all α,

by Definition 2.3(3), α =
⋃
a∈α ⇑a.

https://doi.org/10.1017/S0960129501003450 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129501003450


Continuous domains as formal spaces 43

Definition 4.21. We say that a locally Scott formal topology A is stable if the map i,

given as in Definition 4.10, is a morphism of formal topologies from A to its Scott

compactification As, that is, it also satisfies the following conditions:

(a) i(S) =As
S

(b) i(a) u i(b)C si(a u b).
The adjective stable for denoting this class of locally Scott formal topologies is chosen

by analogy to its use in stably locally compact (cf. Johnstone (1982, p. 313); see also

Smyth (1992b)), where it means that the map a 7→ ↓↓a preserves finite meets.

If A is a stable locally Scott formal topology, we have the retraction

As

�
�
�
�
�

s
� @

@
@
@
@

r

R
A idA - A

(7)

where r and s are the maps as defined above, and As is the Scott compactification of A.

By applying the functor Pt, we obtain the retraction

Pt(As)

�
�
�
�
�

Pt(r)
� @

@
@
@
@

Pt(s)

R
Pt(A)

idPt(A) - Pt(A)

(8)

By Proposition 4.20, Pt(A) is a retract of an algebraic dcpo. It is well known (see

Section 3.1.1 in Abramsky and Jung (1994)) that retracts of algebraic dcpo’s are continuous

dcpo’s, and thus we obtain the following theorem.

Theorem 4.22. IfA is a stable locally Scott formal topology, then Pt(A) with order given

by set inclusion is a continuous dcpo.

Indeed, every continuous dcpo arises in this way, that is, for every continuous dcpo L

there is a corresponding locally Scott formal topology A such that L is isomorphic to

Pt(A).

Definition 4.23. Given a continuous dcpo 〈L, 6 〉 with base S , let AL be the formal

topology on S with v ≡ 6 op and cover relation between elements and subsets of S that

reflects the inclusion between the corresponding Scott opens,

aCU ≡ ↑↑a ⊆ ↑↑U . (9)

We have the following lemma.

Lemma 4.24. If L is a continuous dcpo, thenAL is a stable locally Scott formal topology,

with i(a) ≡ ↑↑a.
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Proof. It is straightforward to see that C defined in (9) satisfies property 1 of locally

Scott covers. As for the second property, suppose aCU and let b ∈ i(a). By the interpolation

property, there exists c such that a� c� b. Since c ∈ i(a) and i(a) ⊆ i(U), we have c ∈ i(U).

Since c� b, we have bC c, so by the definition of C s, we have bC si(U). The morphism

i is stable: i(S)C sS holds since, for all a ∈ S , b ∈ i(a) implies bC a. For the converse, let

a ∈ S . By definition of continuous dcpo, there exists b ∈ S with b� a, that is, b ∈ i(S) and

aC b, so condition (a) is proved. For condition (b), let x ∈ ↑↑a u ↑↑b. Then there exists a′, b′
with a � a′ 6x and b � b′ 6x. Since L is a dcpo, a ∨ b exists and a ∨ b � x. By the

interpolation property, there exists y in S with a∨ b� y � x. Such a y is thus in ↑↑(au b)
and xC y.

Lemma 4.25. If L is an algebraic dcpo with a base of compact elements S , the formal

topology AL with base S is a Scott formal topology.

Proof. For all a ∈ S , by compactness ↑↑a = ↑a, thus aCU if and only if (∃b ∈U)(b6a)

and therefore C is a Scott cover.

By definition, formal points are lower-directed with respect to v , and thus upper-

directed with respect to 6 . Since L is a dcpo, every point of AL has a supremum in L.

We can define a map

φ : Pt(AL) → L

α 7→ ∨
α.

To show that φ is an isomorphism we need a couple of lemmas.

Lemma 4.26. For all a ∈ S , ↓↓Sa ∈ Pt(AL).

Proof. Observe that by the definition of the base of a continuous dcpo, ↓↓Sa is directed,

thus, in particular, not empty. The rest is routine.

Lemma 4.27. For all α in Pt(AL), α =
⋃
b∈α ↓↓b, where the union is directed.

Proof. If a ∈ α, since aC ↑↑a, by monotonicity, there exists b ∈ α such that a � b,

therefore a ∈
⋃
b∈α ↓↓b. Conversely, if a� b for some b ∈ α, then bC a, so, by monotonicity,

a ∈ α. The union is directed since formal points of AL are directed.

By Lemma 4.26 we can define a map

ψ : L → Pt(AL)

a 7→ ↓↓Sa.
The maps φ and ψ are monotone and inverses of each other: φψ(a) = a holds by the

definition of continuous domain. Furthermore, since formal points are directed, we have
↓↓S (
∨
α) =

⋃
b∈α ↓↓b, and therefore, using Lemma 4.27, we have ψφ(α) = α.

We have thus proved the following theorem.

Theorem 4.28. Every continuous dcpo can be represented as the formal space of points

of a stable locally Scott formal topology.
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We remark that this result solves the problem left open in Negri (1998). Furthermore,

the representation of algebraic dcpo’s via Scott formal topologies can be obtained as a

special case, using Lemma 4.25.

Corollary 4.29. Every algebraic dcpo can be represented as the formal space of points of

a Scott formal topology.

We observe the following characterization of the way-below relation in Pt(AL).

Proposition 4.30. Given α, β ∈ Pt(AL), β � α if and only if there exists a ∈ S such that

β ⊆ ↓a ⊆ α.
Proof. If β � α, using the fact that α =

⋃
a∈α ↓↓a, we obtain that there exists a ∈ α such

that β ⊆ ↓↓a. Since ↓↓a ⊆ ↓a ⊆ α, the conclusion follows. Conversely, suppose α6
⋃
i∈I αi,

where the right-hand side is a directed union, and let β ⊆ ↓a ⊆ α. Then there exists i ∈ I
such that a ∈ αi, and therefore ↓a ⊆ αi, so β ⊆ αi.
As a consequence, we obtain the following corollary directly, instead of using Theo-

rem 4.22.

Corollary 4.31. For all α in Pt(AL), α =
⋃
β�α β.

4.5. Representation of Scott domains

Since Scott domains are a special kind of continuous dcpo, the representation of con-

tinuous dcpo’s through formal topologies can be specialized to a representation of Scott

domains. Related previous literature on the representation of Scott domains as formal

spaces is discussed in the conclusion.

In order to achieve our purpose, we have to strengthen the definition of Scott formal

topologies by adding a condition of existence of meets of lower bounded pairs.

Definition 4.32. A Scott formal topology A ≡ 〈S, v , C 〉 is consistently complete if for

all a, b ∈ S such that there exists c ∈ S with c v a and c v b, a∧b exists in S .

If one thinks of elements of the base S as fragments of information, and of the preorder

v as an order of refinement of information (with smaller elements being more refined)

the above condition expresses the requirement that if two fragments of information can

be refined to a common one, then their conjunction is also in the base. Information

fragments with a common refinement can be thought as non-contradictory, consistent,

thus justifying the name of the condition.

Theorem 4.33. If A is a consistently complete Scott formal topology, then Pt(A) with

order given by set-theoretic inclusion is a Scott domain.

Proof. By Proposition 4.20, Pt(A) is an algebraic dcpo and subsets of the form ⇑a are

compact elements of Pt(A). Conversely, if α is compact, by the directed decomposition

α =
⋃
a∈α ⇑a, we have α = ⇑a for some a. Thus the compact elements of Pt(A) are of the
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form ⇑a for a ∈ S . Suppose that ⇑a and ⇑b are two compact elements of Pt(A) bounded

above by a point α in Pt(A). Then ⇑a ⊆ α and ⇑b ⊆ α, thus a ∈ α and b ∈ α. By condition

2 in Definition 2.3, there exists c ∈ α such that c v a and c v b. By consistent completeness,

a∧b exists, and we have ⇑a ∨ ⇑b = ⇑(a∧b), since ⇑(a∧b) satisfies the defining properties of

the least upper bound of ⇑a and ⇑b: ⇑(a∧b) is in Pt(A); ⇑a ⊆ ⇑(a∧b), ⇑b ⊆ ⇑(a∧b); if α is

a formal point containing ⇑a and ⇑b, then it contains ⇑(a∧b).
Conversely, let D be a Scott domain. By definition, the compact elements K(D) of D

generate D. LetAD be the formal topology with base K(D) preordered by v ≡ 6 op with

cover defined as in Equation (9). By the proof of Lemma 4.25, the definition of its cover

reduces to

aCU ≡ (∃b ∈U)(b6a) .

We have the following proposition.

Proposition 4.34. AD is a consistently complete Scott formal topology.

Proof. By Lemma 4.25, AD is a Scott formal topology. As for consistent completeness,

suppose that a, b, c ∈K(D) and c v a, c v b. By definition of Scott domain, a∨ b exists, and

a ∨ b is the meet of a and b with respect to the partial order v given by 6 op.

The maps φ and ψ defined in the previous section give the isomorphism between D and

Pt(AD). We observe that in this case ψ(a) = {b ∈K(D) | b6a}. Summing up, we have

obtained the following theorem.

Theorem 4.35. Every Scott domain can be represented as the formal space of points of a

consistently complete Scott formal topology.

4.6. Formal topology and the spectral theory of lattices

In Hofmann and Lawson (1978) a topological representation for distributive continuous

lattices is obtained by using the hull-kernel topology on the spectrum of L (see also Gierz

et al. (1980, chapter V), and Hofmann and Mislove (1981)). We recall that the spectrum

Spec(L) of a lattice L is the set of non-top prime elements, that is, of elements p satisfying

a∧b6p implies a6p or b6p .

The hull-kernel topology is generated by the subsets Spec(L) − ↑a with a ranging in L.

For complete lattices this is the same as the spatial topology on the space of completely

prime filters on L, Pt(L): Every completely prime filter α on L is of the form L − ↓p
for a prime p (the supremum of the complement of α in L). By mapping p to L − ↓p,
an anti-order isomorphism φ is obtained between Spec(L) and Pt(L). Moreover, this

map induces an isomorphism between the hull-kernel and the spatial topology on these

spaces since φ(Spec(L)−↑a) = {α ∈ Pt(L) | a ∈ α}. From this observation it follows that the

results concerning the spectral theory of (distributive) continuous lattices are obtained in

formal topology with dualities replaced by equivalences. In particular, Theorem 4.15 is
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the pointfree part of the result in Hofmann and Lawson (1978) stating that distributive

continuous lattices are isomorphic to the lattices of opens of sober locally compact

topological spaces. This latter result in turn is obtained in our approach from the

spatiality of locally Stone formal topologies (cf. Proposition 5.1 below).

5. Representation of locally compact spaces

In this section we shall show how locally Stone formal topologies can be identified

with sober locally compact topological spaces. The identification takes the form of an

equivalence of categories. The equivalence is obtained by restriction from the equivalence

between formal topologies and sober topological spaces (Theorem 2.8). We shall give

complete proofs in order to make the exposition self-contained, although the main ideas

follow the usual pointfree approach as in Johnstone (1982).

Proposition 5.1. Locally Stone formal topologies are spatial.

Proof. Suppose that a and U are an element and a subset, respectively, of the base S

of a locally Stone formal topology A and that ∼ aCU. Our claim is that there exists a

formal point α of A such that a ∈ α and α ∩U =6. From the assumption that ∼ aCU
and that A is a locally Stone formal topology, it follows that there exists c ∈ i(a) such

that ∼ cC fi(U). In the continuous lattice Sat(A) we have, as shown in the proof of

Theorem 4.11, Ac � Aa, so, by the interpolation property, we can inductively define a

sequence D0, D1, . . . , Dn, Dn+1 in Sat(A) such that

Ac� Dn+1 � Dn � . . .� D1 � D0 �Aa .
Now we consider F ≡ ⋃{↑Dn | n > 0} =

⋃{↑↑Dn | n > 0}, where we have ↑Dn =

{V ∈ Sat(A) |DnCV } and ↑↑Dn = {V ∈ Sat(A) |Dn � V }. Clearly, F is a filter in Sat(A)

and it is Scott open (being a union of basic Scott opens). Moreover, Aa ∈ F, and for all

b ∈ i(U), we have ∼ Ab ∈ F. By Zorn’s lemma,F extends to a Scott open filter G maximal

amongst those containing Aa and having empty intersection with {Ab | b ∈ i(U)}, and

hence with {Ab | b ∈U}. By Lemma VII.4.3 in Johnstone (1982), G is prime, and since it

is Scott open, it is completely prime. By taking α ≡ {b ∈ S |Ab ∈ G}, the desired point is

obtained.

We remark that the proof is non-constructive for the use of Zorn’s lemma. The corre-

sponding result for locally compact locales (alias continuous frames) has been proved

similarly in Johnstone (1982, Theorem VII.4.3).

We also have the following proposition.

Proposition 5.2. The spatial topology on Pt(A) of a locally Stone formal topology A is

a distributive continuous lattice.

Proof. Since A is spatial by Proposition 5.1, the frame of opens in Pt(A) given by the

spatial topology is isomorphic to Sat(A). The conclusion follows by Corollary 4.12.

Proposition 5.3. If A is a locally Stone formal topology, the formal space Pt(A) with the

spatial topology is a sober locally compact topological space.

https://doi.org/10.1017/S0960129501003450 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129501003450


S. Negri 48

Proof. Let α be a point in Pt(A), and let U be a neighbourhood of α in the spatial

topology. It is not restrictive to suppose U = ext(a) for some a in the base of A. Since

aC i(a) and a ∈ α, by definition of formal points, there exists c ∈ i(a) such that c ∈ α. In

Sat(A) we have Ac�Aa. Let F be the Scott open filter constructed as in the proof of

Proposition 5.1 and let ext(F) be the family of the ext(U), for U in F. We claim that

K ≡ ⋂ ext(F) is a compact neighbourhood of α contained in ext(a).

For all U ∈ F, cCU, thus α ∈ ext(U) since c ∈ α. Therefore α ∈K . The inclusion K ⊆
ext(a) follows from Aa ∈ F.

Next we prove compactness of K . Suppose that a directed family ext(Ui), i ∈ I , of opens

of Pt(A) is given, with K ⊆ ⋃i∈I ext(Ui). We claim that every open neighbourhood of

K is in ext(F). Observe that then the conclusion follows:
⋃
i∈I ext(Ui) in ext(F) implies

(sinceF is Scott-open and ext is an order isomorphism) ext(Ui) in ext(F) for some i, and

hence K ⊆ ext(Ui). In order to prove the claim, suppose by contradiction that there exists

an open neighbourhood O of K that is not in ext(F), and assume (by Zorn’s lemma) it

maximal with respect to this property. Since ext(F) is a filter, the complement of O is

an irreducible closed set. Because the space is sober, it is the closure of a single point β.

Clearly, for all U ∈ F, β ∈ ext(U), thus β ∈K , contrary to K ⊆ O.

Observe that the proof above reproduces the arguments used in the proof of the result,

known as the Hofmann–Mislove theorem, stating that in a sober space Scott-open filters

are exactly the neighbourhoods of compact saturated† sets.

Conversely, we have the following proposition.

Proposition 5.4. Let 〈X,Ω(X)〉 be a sober locally compact topological space. Then there

exists a locally Stone formal topology A such that 〈X,Ω(X)〉 is isomorphic to the formal

space Pt(A) with the spatial topology.

Proof. We already know from the equivalence between formal topologies and sober

topological spaces that the basic preordered set of the formal topology corresponding to

the topological space X consists of the basic opens with preorder given by set-theoretic

inclusion. The cover is defined by

aCU ≡ a ⊆⋃U .

The proof that this is indeed a locally Stone formal topology is routine once we have

observed that in the topological space X, b � a iff there exists a compact open k with

b ⊆ k ⊆ a and that for any (basic) open set a in a locally compact topological space,

a =
⋃
b�a b.

By restriction of the equivalence between spatial formal topologies and sober topological

spaces, we have the following theorem.

Theorem 5.5. The category of locally Stone formal topologies is equivalent to the category

SLCTop of sober locally compact topological spaces.

† In this context, saturated sets are those sets that are intersections of their neighbourhoods.
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We observe that we can obtain this equivalence in an alternative indirect way. First, by

using the functor Sat that associates to a formal topology its frame of saturated subsets,

by Theorem 4.11 and Theorem 4.15, we obtain an equivalence between the category of

locally Stone formal topologies and the category of distributive continuous lattices. By

composing this equivalence with the equivalence between the category of distributive

continuous lattices and the category of sober locally compact topological spaces (see, for

example, Theorem 7.2.16 in Abramsky and Jung (1994)), we get an equivalence between

the category of locally Stone formal topologies and the category of sober locally compact

topological spaces.

Summing up, we have the following diagram representing the equivalences between

various locally compact structures that arise in formal topology, lattice theory and point-

set topology, where SFrm is the category of spatial frames:

EFTop
∼- SFrm

∼- STop

LSFTop
∪

6

∼- CFrm
∪

6

∼- SLCTop
∪

6

(10)

Concluding remarks and related work

The correspondence between formal spaces and locally compact frames, or, equivalently,

distributive continuous lattices, has been studied in Sigstam (1990) using neighbourhood

systems and generators for cover relations.

Another related work is Sigstam and Stoltenberg-Hansen (1997), where two representa-

tions for regular locally compact spaces, one based on domains, another on formal spaces,

are compared.

We have extended the representation of ordered structures in two directions: to non-

distributive structures using the generalization of the notion of cover relation to that of

quasi cover, and to partially ordered sets that are complete only with respect to directed

joins, namely directedly complete partial orders.

Representations of Scott domains based on formal spaces are given in Sigstam (1995)

and in Sambin et al. (1996). In the latter work it is proved that any Scott domain is

isomorphic to the partially ordered structure given by the formal points of a Scott formal

topology, and an essential use of the positivity predicate is made.

Different definitions of formal space have been used in relation to the representation

of Scott domains: in Martin-Löf (1985) a formal space is axiomatized through a formal

intersection and union of basic neighbourhoods and a consistency predicate Con. In

Sigstam (1990) (see also Section 6.2 in Stoltenberg-Hansen et al. (1994)) the definition of

a formal space is given through a partial operation a∧b that is defined when a and b are

consistent (Con(a, b)) and a covering relation. The condition of consistent completeness

(a, b lower bounded implies Con(a, b)) characterizes neighbourhood systems among pre-
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neighbourhood systems. In Sambin et al. (1996) a formal space is defined through a total

monoid operation, a cover relation and a consistency predicate Pos.

Here a formal space is defined without an operation and a consistency predicate, by

requiring only a preorder relation. In Coquand (1996) it is shown that a similar definition

allows us to maintain the representation of frames and naturally connects to the definition

of cover used in category theory.

In Sambin et al. (1996) the representation of Scott domains is obtained by defining the

cover relation on particular subsets of the given Scott domain by inducing the monoid

operation through set-theoretic intersection. It is not clear how to extend such a procedure

to include the case of continuous dcpo’s, hence our choice of definition of formal space.

Furthermore, we have seen how the inclusion of a positivity predicate in the general

definition of a formal space leads to some limitations in its scope.

We have solved the problem, left open in Negri (1998), of representing continuous

dcpo’s. Structures of this kind are used in the domain-theoretic approach to integration in

locally compact topological spaces (cf. Edalat and Negri (1998)). One direction of research

is to use the representation here established for a constructive approach to measure and

integration within the theory of formal spaces.

In Smyth (1977) the notion of R-structure has been introduced as a basis for the study

of effectiveness in domains. R-structures are defined by requiring a suitable interpolation

property on a transitive relation, and they suffice to obtain continuous dcpo’s by ideal

completion. A related direction of research not undertaken here is to give a direct

presentation of continuous domains by means of an axiomatization of the way-below

relation.

A preliminary report of some of the results of this work appeared in Negri (1998).
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Martin-Löf, P. (1985) Formell (punktfri) topologi, unpublished seminar notes, Stockholm.

Negri, S. (1996) Stone bases, alias the constructive content of Stone representation. In: Ursini, A.

and Aglianó, P. (eds.) Logic and Algebra, Dekker, New York 617–636.

Negri, S. (1998) Continuous lattices in formal topology. In: Gimenez, E. and Paulin, C. (eds.) Types

for Proofs and Programs, Selected papers, Types ’96. Springer-Verlag Lecture Notes in Computer

Science 1512 333–353.

Negri, S. and Soravia, D. (1999) The continuum as a formal space. Archive for Mathematical Logic

38 423–447.

Sambin, G. (1987) Intuitionistic formal spaces – a first communication. In: Skordev, D. (ed.)

Mathematical Logic and its Applications, Plenum Press, New York 187–204.

Sambin, G., Valentini, S. and Virgili, P. (1996) Constructive domain theory as a branch of intuition-

istic pointfree topology. Theoretical Computer Science 159 319–341.

Scott, D. S. (1972) Continuous lattices. In: Lawvere, F. W. (ed.) Toposes, Algebraic Geometry and

Logic. Springer-Verlag Lecture Notes in Computer Science 274 97–136.

Scott, D. S. (1973) Models for various type-free calculi. In: Suppes, P. et al. (eds.) Logic, Methodology

and Philosophy of Science IV, North-Holland 157–187.

Sigstam, I. (1990) On formal spaces and their effective presentations, Ph. D. thesis, Department of

Mathematics, University of Uppsala. (Report 1990:7.)

https://doi.org/10.1017/S0960129501003450 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129501003450


S. Negri 52

Sigstam, I. (1995) Formal spaces and their effective presentation. Archive for Mathematical Logic 34

211–246.

Sigstam, I. and Stoltenberg-Hansen, V. (1997) Representability of locally compact spaces by domains

and formal spaces. Theoretical Computer Science 179 319–331.

Smyth, M .B. (1977) Effectively given domains. Theoretical Computer Science 5 257–274.

Smyth, M. B. (1992a) Topology. In: Abramsky, S. et al. (eds.) Handbook of Logic in Computer

Science, vol.1, Clarendon Press, Oxford 641–761.

Smyth, M. B. (1992b) Stable Compactification I. Journal of the London Mathematical Society 45

321–340.

Stoltenberg-Hansen, V., Lindström, I. and Griffor, E. R. (1994) Mathematical Theory of Domains,

Cambridge University Press.

Vickers, S. (1989) Topology via Logic, Cambridge University Press.

https://doi.org/10.1017/S0960129501003450 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129501003450

