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We carry out direct numerical simulations of turbulent Rayleigh–Bénard convection in a
square box with rough conducting plates over the Rayleigh number range 107 � Ra � 109

and the Prandtl number range 0.01 � Pr � 100. In Zhang et al. (J. Fluid Mech., vol. 836,
2018, R2), it was reported that while the measured Nusselt number Nu is enhanced at
large roughness height h, the global heat transport is reduced at small h. The division
between the two regimes yields a critical roughness height hc, and we now focus on
the effects of the Prandtl number (Pr) on hc. Based on the variations of hc, we identify
three regimes for hc(Pr). For low Pr, thermal boundary layers become thinner with
increasing Pr. This makes the boundary layers easier to be disrupted by rough elements,
leading to the decrease of hc with increasing Pr. For moderate Pr, the corner-flow rolls
become much more pronounced and suppress the global heat transport via the competition
between the corner-flow rolls and the large-scale circulation (LSC). As a consequence, hc
increases with increasing Pr due to the intensification of the corner–LSC competition.
For high Pr, the convective flow transitions to the plume-controlled regime. As the rough
elements trigger much stronger and more frequent plume emissions, hc again decreases
with increasing Pr.

Key words: Bénard convection, turbulent convection

1. Introduction

As a typical fluid flow phenomenon, turbulent thermal convection that is driven by the
temperature gradient occurs ubiquitously in nature. For example, it plays a crucial role in
the atmospheric and oceanic circulations, the Earth’s mantle movement, the formation
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of the geomagnetic field, as well as numerous industrial applications. A paradigmatic
model to study this kind of flow is turbulent Rayleigh–Bénard (RB) convection (Ahlers,
Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012; Sun & Zhou
2014), i.e. the motion of a fluid layer sandwiched between two horizontal conducting plates
heated from below and cooled from above. From a fundamental point of view, a key issue
for turbulent RB convection is to reveal the relationship between the global heat-transfer
efficiency, which is expressed in terms of the Nusselt number

Nu = Q
χΔ/H

, (1.1)

and the control parameters of the system, called the Rayleigh number Ra and the Prandtl
number Pr, namely

Ra = αgΔH3

νκ
and Pr = ν

κ
, (1.2a,b)

where Q is the transported heat flux across the fluid layer of height H for an applied
temperature difference Δ, g is the gravitational acceleration, χ , α, ν and κ are the thermal
conductivity, thermal expansion coefficient, kinematic viscosity and thermal diffusivity
of the working fluid, respectively. Some of the earliest systematic studies and important
theories (Malkus 1954; Priestly 1954; Kraichnan 1962; Howard 1963; Spiegel 1971)
focused on this issue, and have stimulated many experimental (Xia, Xin & Tong 1995; Xin,
Xia & Tong 1996; Xia, Lam & Zhou 2002; du Puits, Resagk & Thess 2010; Roche et al.
2010; He et al. 2012; Bao et al. 2015; Lepot, Aumaître & Gallet 2018; Wang, Mathai &
Sun 2019; Zhu et al. 2019a), numerical (Verzicco & Camussi 1999; Silano, Sreenivasan
& Verzicco 2010; Stevens, Lohse & Verzicco 2011; Huang & Zhou 2013; Kaczorowski
& Xia 2013; van der Poel, Stevens & Lohse 2013; Pandey & Verma 2016; Zwirner &
Shishkina 2018; Wang, Zhou & Sun 2020) and theoretical (Dubrulle 2002; Grossmann &
Lohse 2004, 2011; Whitehead & Doering 2011; Shishkina et al. 2015) investigations in
the past several decades. Among these studies, the scaling relation has been widely used
to describe the dependence Nu(Ra, Pr) (see, Ahlers et al. (2009); Chillà & Schumacher
(2012), for recent reviews).

Although thermal convection is believed to be an effective means to transport heat via a
moving fluid – it carries upwards a heat flux which is normally many times larger than
that by thermal diffusion – the turbulent heat-exchange efficiency is vastly limited by
thermal diffusion in the boundary layers (BLs). As the enhancement of heat transfer is of
fundamental interest and especially useful in many thermal engineering processes, some
strategies have been put forward to overcome the BL limitation and to achieve high heat
flux. Among these methods, the introduction of wall roughness is the most widely used
one (Roche et al. 2001; Qiu, Xia & Tong 2005; Tisserand et al. 2011; Wei et al. 2014; Liot
et al. 2017; Xie & Xia 2017; Jiang et al. 2018; Rusaouen et al. 2018; Foroozani et al. 2019;
Zhu et al. 2019b). For instance, Du & Tong (1998, 2000) experimentally observed that
rough surfaces could enhance the detachment of the thermal BL from the tips of rough
elements, and hence the heat transport across the cell with rough upper and lower surfaces
is increased by more than 76 %. Numerical results of Stringano, Pascazio & Verzicco
(2006) and Salort et al. (2014) also reported an increase of heat transfer when the mean
thermal BL thickness becomes smaller than the roughness height. In a cylindrical cell with
a set of isothermal obstacles attached to the plates, Emran & Shishkina (2020) recently
showed that the global heat flux can be several times that in the traditional smooth cell
when the obstacle rings are very tall and the gaps between them are sufficiently wide.
On the other aspect, Ciliberto & Laroche (1999) experimentally found that the scaling
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exponent of heat transport between Nu and Ra increases if the roughness has power-law
distributed heights and the thermal BL thickness is smaller than the maximum roughness
size. With sinusoidally rough upper and lower surfaces in two dimensions, Toppaladoddi,
Succi & Wettlaufer (2015, 2017) numerically showed that the Nu(Ra) scaling exponent
reaches the value of 0.5 for a certain roughness wavelength. Recent studies (Zhu et al.
2017; MacDonald et al. 2019; Emran & Shishkina 2020) further revealed that at height
Ra the Nu(Ra) exponent decreases back to the exponent in the smooth cell, due to the
competition between the turbulent bulk and BL flow.

Nevertheless, when looking closely into the results in the literature, some data
(Stringano et al. 2006; Zhu et al. 2017) seem to suggest that surface roughness would
also reduce the global heat transport through the convection system. Indeed, Shishkina
& Wagner (2011) argued that when the distances between rough elements are very small,
a reduction of the resulting Nu is possible due to the decrease of the effective Ra. In
a previous work, we systematically investigated Nu(h) in both two-dimensional (2-D)
and three-dimensional (3-D) cells with rough elements of height h (Zhang et al. 2018).
Our results revealed that when h is small or Ra is low, the global heat transport may
be suppressed as the hot/cold fluid is trapped and accumulates inside the cavity regions
between the adjacent rough elements, leading to much thicker thermal BLs in these
regions. On the other hand, when h is large or Ra is high enough, the large-scale circulation
(LSC) in the bulk can penetrate into the cavities, vigorously mixing the trapped hot/cold
fluid, and thus significantly improving the heat-exchange efficiency of the system. The
division between these two regimes (i.e. the Nu-reduction and Nu-enhancement regimes)
then gives a critical roughness height hc, at which Nu(h) crosses the value of Nu(h = 0)

of the smooth cell.
As a typical length scale for the convective heat transfer, hc denotes the onset of

the Nu-enhancement induced by rough surfaces. Therefore, it is of great interest and
fundamental importance to reveal its dependence on the control parameters of the system,
such as hc(Ra, Pr). Our previous results have shown that hc decreases with growing Ra
as hc ∼ Ra−0.6. The objective of the present paper is to reveal the Pr effects on hc with
the help of direct numerical simulations of turbulent thermal convection in a 2-D square
box. Note that the Pr-dependence in three dimensions may be different from that in two
dimensions, as the observed phenomenon at low to intermediate Pr could be different in
three dimensions (van der Poel et al. 2013). The paper is organized as follows. Section 2
gives a brief description of the governing equations and numerical methods adopted. The
Pr-dependence of hc is discussed and analysed in § 3, where we try to understand the
mechanism that dominates the observed hc(Pr) relation in three different Pr regimes.
Finally, we summarize our results in § 4.

2. Numerical methods

The coupled equations of motion for the velocity field u (= ux + wz) and the temperature
field θ in the Oberbeck–Boussinesq approximation of turbulent thermal convection are
numerically solved,

∇ · u = 0, (2.1)

∂tu + (u · ∇)u = −∇p +
√

Pr
Ra

∇2u + θz, (2.2)
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Figure 1. A sketch of the 2-D convection cell with the coordinate system. Right-triangular rough elements
with a vertex angle of 90◦, height h and base width 2h are located on either of the conducting plates.

∂tθ + (u · ∇)θ =
√

1
RaPr

∇2θ, (2.3)

where p is the kinematic pressure field and x and z are, respectively, the unit vectors in
the horizontal and vertical directions. The equations have been non-dimensionalized with
respect to the cell height H, the imposed temperature difference across the cell Δ and the
free-fall velocity

√
αgΔH.

The convection cell adopted is a 2-D square box of height H = 1, width D = 1 and
aspect ratio Γ = D/H = 1. As shown in figure 1, the triangular rough elements with a
vertex angle of 90◦, height h and base width 2h are located on both of the upper and
lower conducting plates. To study the effects of surface roughness on the global heat
transport, we systematically vary the roughness height h. For such roughness geometry,
the contact area of the rough surface is 41 % larger than the smooth surface and does not
change with the roughness height h. Hence, the contact area does not contribute to the
variations in the measured Nu when changing h. In the present study, we simulate over the
parameter ranges 107 � Ra � 109 and 0.01 � Pr � 100, mainly focusing on the effects
of the Prandtl number Pr on the global heat transport through the RB system with rough
surfaces. At least 10 individual simulations with different hc were carried out for each set
of (Ra, Pr), and a total of more than 400 independent realizations of 2-D turbulent RB
convection with rough surfaces have been performed in the present study.

During the simulations, the temperatures of the upper and lower conducting plates are
fixed at θt = −0.5 and θb = 0.5, respectively, while the vertical sidewalls are thermally
insulated (i.e. ∂θ/∂n = 0). No-slip boundary conditions are applied at all solid surfaces
for the velocity field. In our numerical code, a fourth-order finite-difference scheme with
staggered grids is adopted to solve the governing equations and an immersed boundary
method is applied to deal with the boundaries of rough elements. Non-equidistant meshes
are implemented and the computational meshes are refined close to all solid walls so that
the thermal and viscous BLs near the rough surfaces are, respectively, resolved with at
least 16 and 15 grid points for all runs.

Our numerical code has been extensively used in previous studies (Bao et al. 2015;
Zhang et al. 2018, 2019). Here, to further validate the code, we compare in figure 2(a) the
measured Nusselt number Nu as a function of the Prandtl number Pr obtained at Ra = 108
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Figure 2. (a) The Nusselt number Nu as a function of Pr obtained in the smooth cell at Ra = 108. For
comparison, we also plot the data from Huang & Zhou (2013) (triangles) and van der Poel et al. (2013)
(diamonds). (b) The Nusselt number Nu as a function of Pr at Ra = 108 obtained in the smooth cell and rough
cells of three typical roughness heights h = 0.02, 0.05 and 0.125. (c) The corresponding ratio Nu(h)/Nu(0) as
a function of Pr. The data are the same as those in panel (b). Different colours mark the three regimes and the
two dashed lines indicate the two transitional Prandtl numbers, Prt1 and Prt2, obtained at Ra = 108.

in the smooth cell with those of Huang & Zhou (2013) and van der Poel et al. (2013).
Although the dependence between Nu and Pr seems to be a bit complicated, excellent
agreement among the three data sets can be clearly observed, illustrating the good quality
of the present simulations. We further note that the Nusselt number of the smooth cell we
measure (Nu = 50.85 at Ra = 109 and Pr = 1) is in agreement with the one computed
using the open-source code Nek5000 by Xu et al. (2018) (Nu = 50.833) to a precision of
less than 1 %.

3. Results and discussion

We first examine the Nusselt number Nu, which is calculated as

Nu =
√

PrRa〈wθ〉 − 〈∂zθ〉, (3.1)

where w is the vertical velocity, ∂z is the vertical derivative and 〈·〉 indicates the average
over time and over the midheight horizontal plane. The temporal average is performed
over a duration of more than 500 dimensionless time units after the convective flow in the
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system has been fully developed. The time convergence of Nu is checked by comparing
the time-averages over the first and the last halves of the simulation, and the resulting error
is smaller than 2 % for all runs.

In figure 2(b) we show a semilog plot of the numerically measured Nu versus the
Prandtl number Pr obtained in rough cells of three typical heights h = 0.02, 0.05 and
0.125. For comparison, the global convective heat flux through a smooth cell, Nu(h =
0), is also plotted. In general, the heat-transfer efficiency is enhanced with increasing
Pr. For most values of Pr studied, Nu(h) is higher than that of the smooth cell for
large roughness height (e.g. h = 0.125, blue down-triangles), and is lower than the
corresponding Nu(0) for small h (e.g. h = 0.02, green squares). The situation for medium
roughness height (e.g. h = 0.05, pink diamonds) seems to be more complicated. To
better compare the data, we adopt Nu(0) of the smooth cell to normalize Nu(h) of
the rough cells, and the corresponding results are displayed in figure 2(c). Clearly, the
data of h = 0.05 exhibit a zigzag dependence on Pr, i.e. Nu(h)/Nu(0) is an increasing
function for small or large Pr and is a decreasing function for intermediate Pr. As
discovered by Zhang et al. (2018), there is a critical roughness height hc: Nu(h)/Nu(0) > 1
for h > hc, while Nu(h)/Nu(0) < 1 for h < hc. The zigzag behaviours of Nu(h)/Nu(0)

on Pr thus imply a complicated Pr-dependence of hc. Indeed, as we shall see below,
the zigzag behaviour of the h = 0.05 data exactly coincides with the three regimes of
hc(Pr).

The normalized Nusselt number, Nu(h)/Nu(0), is plotted in figure 3(a,c,e) as a function
of the roughness height h for several values of Pr varying from 0.01 to 100. Similar
to our previous results at fixed Pr = 0.7 (Zhang et al. 2018), the data sets of all Pr
studied can be divided into two regimes: the Nu-reduction regime at small h and the
Nu-enhancement regime at large h. The crossover between these two regimes thus yields
a critical roughness height hc, at which Nu(hc) = Nu(h = 0), denoting the onset of
Nu-enhancement induced by rough surfaces. The dashed lines in figure 3(e) illustrate how
hc is obtained in our simulations. Specifically, a linear function is used to fit the data of
Nu(h) around Nu(h)/Nu(0) = 1, and then the critical roughness height hc is determined
by the crossing between the fitting and the value of unity. It is clearly seen that hc varies
with Pr, i.e. hc is in general large for low Pr, but small for high Pr. Furthermore, the
overall magnitudes of Nu for high Pr are in general larger than those for low Pr, i.e.
the Nu-reduction is more pronounced and the Nu-enhancement is much weaker for low
Pr. Therefore, the Nu-reduction problem induced by surface roughness becomes more
relevant for low Pr. For moderate Pr, on the other hand, the dependence of hc on Pr
seems to be a bit complicated. Note that Nu(h)/Nu(0) varies non-monotonically with h
for h > hc. As argued by Zhu et al. (2017) and Zhang et al. (2018), this may be caused
by the transition from the bulk-controlled regime to the BL-dominated regime with the
increasing roughness size.

To compare Nu(h) obtained at different Pr, we use hc to normalize the data, and the
corresponding results are plotted in figure 3(b,d, f ). Unlike our previous results which
show a nearly universal profile between Nu(h)/Nu(0) and h/hc for different Ra (Zhang
et al. 2018), the symbols for different Pr cannot collapse well on top of each other.
This discrepancy is a result of the different regimes, i.e. the convective flow in different
Pr-regimes is governed by different dynamics.

In order to reveal the detailed relation between hc and Pr, we plot in figure 4 the
measured hc as a function of Pr for three Ra. The value of hc decreases with increasing
Pr for too small and too large Pr, but increases with ascending Pr for medium Pr. Based
on the observed hc(Pr) relation, one can identify three flow regimes, which are marked
by different colours as shown in figure 4. As we shall see below, the three regimes are
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Figure 3. The ratio Nu(h)/Nu(0) as a function of (a,c,e) h and (b,d, f ) h/hc obtained at (a,b) Ra = 107,
(c,d) Ra = 108 and (e, f ) Ra = 109 for Pr varying from 0.01 to 100. The dashed lines in panel (e) show the
determination of the critical roughness height hc at which Nu(h)/Nu(0) = 1.

governed by different flow dynamics, and can be referred to the LSC-controlled regime,
the corner–LSC-competition regime and the plume-controlled regime, respectively.

It should be noted that based on dimensional analysis, our previous work (Zhang et al.
2018) yielded a scaling relation between hc and the Reynolds number Re, i.e. hc ∼ Re−1,
by assuming a balance between the inertial and viscous forces. This, taken together with
the results of Re ∼ Pr−0.88±0.04 in § 3.4, one obtains hc ∼ Pr0.88. In figure 4, we plot
this scaling as the solid line for reference. It is clearly seen that the scaling is a good
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Figure 4. Log–log plot of the critical roughness height hc as a function of Pr obtained at Ra = 107 (triangles),
Ra = 108 (circles) and Ra = 109 (diamonds). Three flow regimes can be separated by two transitional
Prandtl numbers, Prt1 and Prt2, and indicated by different colours: the LSC-controlled regime (yellow), the
corner–LSC-competition regime (pink) and the plume-controlled regime (cyan). The solid line indicates the
scaling hc ∼ Re−1 ∼ Pr0.88 (Zhang et al. 2018) for reference.

description for the data at Ra = 108, but the data at Ra = 107 and 109 are less well
described by this trend, which indicates that the dynamics are not as simple as suggested by
the previous dimensional analysis. Indeed, a much more complicated zigzag dependence
of hc(Pr) is obtained in the present study. The reason for this discrepancy may be due to
the fact that thermal effects (or the plume dynamics) are not considered in the previous
dimensional analysis. As we shall see below, the plume dynamics plays a central role in
the transitions among the three regimes. In the remainder of this paper, we will focus on
the flow dynamics in each regime.

3.1. The LSC-controlled regime
We next focus on the low-Pr regime. Figure 5(a,b) shows the time-averaged temperature
and velocity fields obtained at Ra = 108 and Pr = 0.01 in the smooth cell and in the
rough cell with h = 0.05, respectively. The mean dominant flow pattern is a square-like
anticlockwise rotatory motion. From the corresponding movie, one can also see some
smaller secondary rolls at the corners of the cell. In this low-Pr regime, however, these
corner-flow rolls are not stable and could detach from the corners and hence are not
pronounced in the mean flow field, as shown in figure 5(a). This is because the corner-flow
rolls are energetically fed by thermal plumes that are emitted from thermal BLs (Sugiyama
et al. 2010). But at low Pr (i.e. for large thermal diffusivity), thermal plumes are hardly
being generated (Verzicco & Camussi 1999), since they can much more easily lose their
thermal energy through thermal diffusion. Therefore, for low Pr, the flow is dominated by
the single LSC, which we refer to as the LSC-controlled regime.

To understand the behaviour of hc(Pr) in the LSC-controlled regime, we note that the
global heat flux through the RB system is depressed for too small Pr. Indeed, as revealed
by figure 2(a), Nu decreases from 25.5 at Pr = 0.2 to 16.4 at Pr = 0.01. The decrease in
heat transport for a given Ra as Pr drops has already been observed in previous numerical
(Verzicco & Camussi 1999; Scheel & Schumacher 2016; Zwirner & Shishkina 2018; Xu,
Shi & Xi 2019) and experimental (Horanyi, Krebs & Müller 1999; Xia et al. 2002; Frick
et al. 2015) studies. The reason for such a decrease in Nu(Pr), as argued by Grossmann
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Figure 5. Snapshots of the time-averaged temperature (colour) and velocity (arrows) fields at Ra = 108 and
Pr = 0.01 in the LSC-controlled regime obtained (a) in the smooth cell and (b) in the rough cell with h = 0.05
(the Nu-reduction regime). The corresponding movie is provided in the supplementary material available at
https://doi.org/10.1017/jfm.2020.1091.

& Lohse (2004, 2008), is that the convective flow at low Prandtl numbers is dominated
by molecular transport, and correspondingly does not significantly contribute to the global
heat transport.

As the convective heat transport is mainly determined by the conductive thermal BLs
in the classical regime of turbulent thermal convection, the decrease in Nu(Pr) with
descending Pr means the thickening of thermal BLs. Figure 6(a) shows the mean thermal
BL thickness δ0

th, estimated using δ0
th = 1/[2Nu(0)], as a function of Pr obtained in the

smooth cell at Ra = 108. Here, only part of the data is shown because we mainly focus on
the flow dynamics in the low-Pr regime. It is illustrated that δ0

th is elevated with descending
Pr in the LSC-controlled regime (i.e. the yellow-shaded area), as expected from the Nu
data in figure 2(a). Figure 6(b) displays the local thermal BL thickness δ0

th(x) along the
lower plate obtained at three Pr in the smooth cell. Here, δ0

th(x) is determined as the
distance at which the tangent of the time-averaged temperature profile at the lower plate
meets the bulk temperature (Zhou & Xia 2013). It is further illustrated that at low Prandtl
numbers thermal BLs thicken with decreasing Pr. A thicker thermal BL would make the
bulk flow harder to penetrate into the cavities between the rough elements and properly
mix the trapped hot/cold fluid. Therefore, higher rough elements are needed to disrupt
thermal BLs and enhance the global heat transport through the system, which leads to the
increase of hc with decreasing Pr in the LSC-controlled regime.

3.2. The corner–LSC-competition regime
With the increase in Pr (i.e. the decrease in thermal diffusivity), thermal plumes become
more coherent and then detach from thermal BLs. Some of these plumes are trapped in the
corner and provide energy to the corner flows. Correspondingly, some stable corner-flow
rolls can be developed at medium Prandtl numbers. Figure 7(a) shows the time-averaged
velocity and temperature fields at Ra = 108 and Pr = 0.4 in the smooth cell. As we can
see, except for the dominant stadium-like LSC that is diagonally orientated in the cell, two
smaller clockwise rolls are built up well at the two opposite corners. When the hot/cold
fluids move upwards/downwards with the corner flows, they encounter and then compete
with the LSC. Due to the relatively weak strength of the corner rolls, these hot/cold fluids
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Figure 6. (a) The mean thermal BL thickness, δ0
th, as a function of Pr obtained in the smooth cell at Ra =

108. Here, δ0
th is estimated using δ0

th = 1/[2Nu(0)]. The yellow-shaded area corresponds to the LSC-controlled
regime. (b) The local thermal BL thickness, δ0

th(x), in the z-direction near the lower plate as a function of
the horizontal position x obtained in the smooth cell at Ra = 108 and at three different Pr. Here, δ0

th(x) is
determined from the time-averaged temperature profiles using the ‘slope’ method (Zhou & Xia 2013).
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Figure 7. Snapshots of the time-averaged temperature (colour) and velocity (arrows) fields at Ra = 108 and
Pr = 0.4 in the corner–LSC-competition regime obtained (a) in the smooth cell and (b) in the rough cell
with h = 0.0833 (the Nu-enhancement regime). The corresponding movie is provided in the supplementary
material.

are forced back to the hot/cold plates. This process gives rise to strong counter-gradient
local heat flux that negatively contributes to the global heat transport (Huang & Zhou
2013). Such a competition also plays a crucial role in the flow dynamics of turbulent
RB convection, such as the reversals of the LSC (Sugiyama et al. 2010; Chandra &
Verma 2013). Therefore, for moderate Pr, there exists an intense competition between the
corner-flow rolls and the LSC, which we refer to as the corner–LSC-competition regime.

When wall roughness is introduced into the system, more plumes are produced and
erupted from the tips of rough elements (Du & Tong 1998, 2000), and then enter the
convective bulk. A detailed observation of the supplementary movie corresponding to
figure 7 reveals that these plumes interact with the large-scale flow structures in the bulk.
When these plumes are strong enough (i.e. for rough elements high enough), they make
the corner-flow rolls unstable. Figure 7(b) shows the time-averaged flow field obtained
in a rough cell with h = 0.0833 in the Nu-enhancement regime. Unlike the smooth case
(see figure 7a), the corner-flow rolls are dramatically suppressed in this rough case due to
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Figure 8. Typical snapshots of the instantaneous temperature (colour) and velocity (arrows) fields at Ra = 108

and Pr = 100 in the plume-controlled regime obtained (a) in the smooth cell and (b) in the rough cell with
h = 0.0417 (the Nu-enhancement regime). The corresponding movie is provided in the supplementary material.

the disturbance induced by the interaction of thermal plumes from the roughness tips. As
stated above, the corner-flow rolls negatively contribute to the global heat transport via the
corner–LSC competition, and thus the suppression of the corner flows would result in an
enhancement of the heat-transfer efficiency of the system.

In the corner–LSC-competition regime, the increase of the critical roughness height hc
with Pr may be attributed to two effects. First, as Pr increases, the corner rolls grow in
both kinetic energy and size and their strength becomes stronger (Sugiyama et al. 2010;
Huang & Zhou 2013). Correspondingly, higher rough elements are needed to disrupt the
stronger corner-flow rolls and suppress the counter-gradient heat transport induced by the
corner–LSC competition. The second possible factor is that the flow inside the cavities
between the rough elements becomes more viscous with the increase in Pr (i.e. the increase
in kinematic viscosity). Accordingly, a larger roughness height is needed to vigorously
mix the trapped hot/cold fluid within the cavity regions and achieve a heat-transport
enhancement (Zhang et al. 2018).

3.3. The plume-controlled regime
As Pr continues to elevate, the Reynolds number decreases and the large-scale flows
weaken due to the increase of fluid viscosity (Verzicco & Camussi 1999; Breuer et al.
2004). Then, thermal plumes become more dominant and are responsible for most of the
heat transport (Shang, Tong & Xia 2008). Figure 8(a,b) shows typical snapshots of the
instantaneous temperature and velocity fields at Pr = 100 in the smooth cell and in
the rough cell with h = 0.0417, respectively. A corresponding video can be viewed as
supplementary material. As we can see, thermal plumes are generated and erupted from
thermal BLs at random positions (at random tips in rough cells). In the bulk region, they
are fully developed with a well-defined spatial structure, and bring about a multicellular
structure of the flow. Therefore, for high Pr, the flow is dominated by thermal plumes,
which we refer to as the plume-controlled regime.

To physically understand why the critical roughness height hc decreases with Pr in the
plume-controlled regime, we look closely into the flow structures near the lower plate, as
illustrated in figure 9. At medium Pr (figure 9a), the convective bulk is mainly controlled
by large-scale flow structures, like the corner flows and the LSC, which sweep the upper
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Figure 9. Typical snapshots of the instantaneous temperature (colour) and velocity (arrows) fields near the
centre of the lower plate. The data are obtained in the rough cell with h = 0.0625 at Ra = 108 and at (a) Pr = 1
and (b) Pr = 100. The corresponding movie is provided in the supplementary material.

and lower horizontal plates. As the separation between the adjacent rough elements is not
large enough, like the situation shown in figure 9(a), the large-scale flow cannot effectively
penetrate into the cavity regions. This results in the accumulation of the hot/cold fluid in
the cavities and correspondingly impedes the global heat flux, as revealed by Zhang et al.
(2018). At high Pr (figure 9b), on the other hand, thermal dissipation is much slower than
viscous dissipation. Thermal structures, like plumes, can thus sustain their thermal energy
(i.e. keep their temperature higher/lower than the environment) for a long time. Under the
effects of buoyant forces, these structures move upwards/downwards, carry and transfer
most of the heat through the system. Since the rough elements can trigger the massive
eruption of thermal plumes, they speed up this process. As shown in figure 9(b), the
hot fluid moves upwards along the sides of rough elements and eventually forms thermal
plumes and detaches from the rough tips, rather than being trapped inside the cavities.
Therefore, at high Prandtl numbers, it is much easier for the roughness to produce thermal
plumes and contribute to the Nu-enhancement, which leads to a small hc for high Pr.

3.4. Transitions among the three regimes
According to the above discussions, thermal plumes play a crucial role in the transitions
among the three hc–Pr regimes. For too small Pr (i.e. the LSC-controlled regime), thermal
plumes hardly appear due to large thermal diffusivity and the heat transport is mainly
dominated by molecular transport (Grossmann & Lohse 2004, 2008). For medium Pr (i.e.
the corner–LSC-competition regime), thermal plumes begin to be produced and detach
from thermal BLs. After entering the bulk region, these plumes organize themselves into
the large-scale flow structures (Xi, Lam & Xia 2004), like the corner-flow rolls and the
LSC. For too large Pr (i.e. the plume-controlled regime), the large-scale flows weaken due
to large fluid viscosity and most of the heat in the system is carried and transferred by
thermal plumes. Taken together, there are two transitions among these three regimes; the
first one corresponds to the emergence of thermal plumes, and the second one is due to the
thermal plumes becoming dominant in the convective flow.

To confirm that the different regimes discussed above coincide with the transitions of
hc(Pr) identified in figure 4, we note that there are stable corner-flow rolls for medium Pr
(see figure 10b), while the corner rolls are less pronounced for too small (see figure 10a) or
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Figure 10. (a–c) Typical snapshots of the instantaneous temperature (colour) and velocity (arrows) fields in
the lower-left corners of the smooth convection cell at Ra = 108 and at (a) Pr = 0.01 (the LSC-controlled
regime), (b) Pr = 0.4 (the corner–LSC-competition regime) and (c) Pr = 100 (the plume-controlled regime).
The dashed squares indicate the regimes where the angular velocity Ω of the lower-left corners is calculated.
(d–f ) The compensated angular velocity, ΩH/Urms, as a function of Pr obtained at (d) Ra = 107, (e) Ra = 108

and ( f ) Ra = 109. Different colours mark the three regimes identified from figure 4 and the dashed lines
indicate the transitional Prandtl numbers at the corresponding Ra.

too large Pr (see figure 10c). To quantitatively characterize these flow states, we calculate
the angular velocity in the lower-left corners as

Ω =
〈

u(x, z, t)
z − 0.1H

− w(x, z, t)
x − 0.1D

〉
corner,t

, (3.2)

where 〈· · · 〉corner,t denotes an average over time and over a spatial regime 0 < x < 0.2D
and 0 < z < 0.2H, as indicated by the dashed squares in figure 10(a–c). Based on this
definition, a large magnitude of Ω corresponds to a stable corner-flow roll and thus signals
the corner–LSC-competition regime, while the corner flow is weak and unstable when the
magnitude of Ω is small. Figure 10(d–f ) shows the measured Ω as a function of Pr, where
Ω has been compensated by Urms/H with Urms =

√
〈(u2 + w2)〉V,t being a typical root

mean square (subscript rms) velocity of the system and 〈·〉V,t being a space–time average.
For comparison, different background colours of figure 10(d–f ) mark the three regimes
identified at the corresponding Ra in figure 4. For all three Ra studied, the magnitude of
the compensated ΩH/Urms is close to the value of zero in the LSC-controlled regime
(the yellow-shaded area), as for small Pr the convective flow is dominated by a single
large-scale wind and the corner-flow rolls are not stable and could detach from the
corners. The magnitude of ΩH/Urms raises rapidly in the corner–LSC-competition regime
(the pink-shaded area), indicating that stable corner-flow rolls are well developed in this
regime. In the plume-controlled regime (the cyan-shaded area), the value of ΩH/Urms
drops with increasing Pr, as both the LSC and the corner-flow rolls weaken for large Pr.
Therefore, the flow analysis in figure 10(d–f ) quantitatively verifies that the three regimes
(i.e. the LSC-controlled, corner–LSC-competition and plume-controlled regimes) indeed
correspond to the transitions of hc(Pr) identified in figure 4.
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Figure 11. Explored phase diagram of different regimes in the Ra–Pr plane. The two dashed lines mark the
transitional Prandtl numbers Prt1 and Prt2 that separate the three regimes. Here, Prt1 and Prt2 are determined
from the zigzag dependence of hc(Pr) (see figure 4) and both have a scaling of ∼ Ra−0.27±0.02.
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Figure 12. Log–log plot of the Reynolds number Re as a function of Pr for Ra = 107 (triangles), Ra = 108

(circles) and Ra = 109 (diamonds) obtained in the smooth cell. Here, the Reynolds number in our simulations
is calculated as Re = UrmsH/ν. The dashed lines are the best power-law fits to the corresponding data. The
fitted scaling exponents are similar, but decrease with Rayleigh number from 0.9 ± 0.03 for Ra = 107 and
0.91 ± 0.03 for Ra = 108 to 0.84 ± 0.03 for Ra = 109.

In figure 11, we present the explored control parameters and a quantitative division
of phase space based on the zigzag dependence of hc(Pr) (as shown in figure 4). Three
regimes are separated by two transitional Prandtl numbers Prt1 and Prt2 (see the two
dashed lines in figure 11), both of which follow a similar scaling ∼ Ra0.27±0.02. This
implies that both transitions are governed by the same mechanism. As discussed above,
the plume dynamics may be the possible mechanism that determines the transitions. On
the basis of this view, we are now in a position to understand the scaling that separates the
three regimes. In turbulent thermal convection, thermal plumes are subject to two kinds of
dissipation: one is thermal dissipation and the other is viscous dissipation. When thermal
dissipation is faster, plumes much more easily lose their thermal energy and coherence,
and then they either hardly appear in the convective bulk or are entrained by the large-scale
flows. In this situation, the convective bulk is dominated by the large-scale flows. On the
other hand, when viscous dissipation is faster, the flows much more easily lose their kinetic
energy, and plumes can sustain their thermal energy (as well defined thermal structures)
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for a long time and hence become more prominent in the system. Therefore, the transition
can be quantified by the balance between the viscous dissipation time τu = U2/εu and
the thermal dissipation time τθ = Δ2/εθ , where U is the typical velocity, and εu and
εθ are the viscous and thermal dissipation rates, respectively. By making use of the
two exact relations of the dissipation rates εu = ν3H−4NuRaPr−2 and εθ = κH−2Δ2Nu
(Ahlers et al. 2009), and the definition of the Reynolds number Re = UH/ν, one can
obtain Re2 ∼ RaPr−1. According to previous results of Re ∼ Ra0.6 in 2-D turbulent RB
convection (Sugiyama et al. 2009; Zhang, Zhou & Sun 2017), together with our present
results of Re ∼ Pr−0.88±0.04 (as shown in figure 12), the balance between τu and τθ yields
Prt ∼ Ra0.26±0.03, which agrees remarkably well with that of Prt1, Prt2 ∼ Ra0.27±0.02 in
figure 11, within uncertainty.

4. Conclusion

In summary, we have made a numerical exploration of 2-D turbulent RB convection
over rough conducting plates. The critical roughness height hc, denoting the onset of
heat-transport enhancement owing to the wall roughness, is systematically investigated
over a wide range of Prandtl number, with 107 � Ra � 109 and 0.01 � Pr � 100. Three
regimes of hc(Pr) are identified in the phase diagram. For low Pr, the global Nu is mainly
determined by molecular transport and decreases with descending Pr, resulting in the
thickening of thermal BLs. This makes thermal BLs harder to be disrupted by rough
elements and leads to a large hc at small Pr. For medium Pr, the corner-flow rolls begin
to be well developed due to the emergence of thermal plumes. The enhancement of the
corner-flow strength and the increase of fluid viscosity both make hc increase with Pr
in this regime. For high Pr, the convective flow becomes dominated by thermal plumes.
Since the rough elements can trigger massive eruptions of thermal plumes, it is much
easier for the wall roughness to enhance the global Nu, leading to a small hc at large Pr.
Our detailed analysis further reveals that the plume dynamics plays a crucial role in the
transitions among the three regimes.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1091.
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