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Abstract. For differentiable dynamical systems with dominated splittings, we give upper
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primary application, we verify the upper semi-continuity of metric entropy in various
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1. Introduction
Let f be a homeomorphism on a compact metric space M . For K ⊂ M , n ∈ N and any
observable scale ε > 0, a subset K1 ⊂ K is called (n, ε)-spanning for K if for any x ∈ K
there exists y ∈ K1 such that d( f i (x), f i (y))≤ ε for all i ∈ [0, n). Let rn( f, K , ε) denote
the smallest cardinality of any (n, ε)-spanning set of K . The ε-topological entropy of K is
defined by

h( f, K , ε)= lim sup
n→∞

1
n

log rn( f, K , ε).

The topological entropy of f on K is defined by

h( f, K )= lim
ε→0

h( f, K , ε).

For x ∈ M , n ∈ N and ε > 0, let

Bn( f, x, ε)= {y ∈ M : d( f i (x), f i (y)) < ε, |i |< n},

B∞( f, x, ε)=
⋂
n∈N

Bn( f, x, ε);
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then the ε-tail entropy at x is defined by

h∗( f, x, ε)= h( f, B∞( f, x, ε)).

Tail entropy has been studied broadly since the pioneering works of Bowen [5] and
Misiurewicz [16] in the 1970s, because of its fundamental role in the estimates of entropy
in both the topological and measure-theoretic sense.

Given a compact f -invariant set 3⊂ M and ε > 0, denote

h∗( f, 3, ε)= sup
x∈3

h∗( f, x, ε).

We say that f on3 is entropy expansive [5] if there exists δ > 0 such that h∗( f, 3, δ)= 0
and asymptotically entropy expansive [16] if limδ→0 h∗( f, 3, δ)= 0. Both of these
properties imply the upper semi-continuity of metric entropy.

Denote by Minv( f, 3) and Merg( f, 3) the sets of f -invariant and ergodic f -invariant
Borel probability measures on a compact f -invariant set 3⊂ M , respectively. Consider
µ ∈Merg( f, 3); then h∗( f, x, ε) is a constant for µ-almost every (a.e.) x [9, Proposition
2.8], which we denote by h∗( f, µ, ε). In general, when µ ∈Minv( f, 3), denoting its
ergodic decomposition by µ=

∫
Merg( f,3) dτ(m), we define the measure-theoretic tail

entropy of µ as

h∗( f, µ, ε)=
∫
Merg( f,3)

h∗( f, m, ε) dτ(m).

By the tail variational principle [6, 10], one has

lim
ε→0

sup
µ∈Minv( f,3)

h∗( f, µ, ε)= lim
ε→0

h∗( f, 3, ε).

However, it is unknown if supµ∈Minv( f,3) h∗( f, µ, ε)= h∗( f, 3, ε) for any ε > 0.
Tail entropy measures the local dynamical complexity in the process of observation

with respect to the evolutions of dynamical systems. It is known that uniformly hyperbolic
systems are entropy expansive and so are all diffeomorphisms away from tangencies [13].
As a more general concept, dominated splitting exhibiting uniformly hyperbolic behavior
on projective bundles is admitted by plenty of systems beyond uniform hyperbolic systems
[2–4, 14, 20]. In the present paper, we attempt to study tail entropy in the setting of
dominated splitting.

Let Diff(M) be the space of C1 diffeomorphisms on a compact boundaryless
Riemannian manifold M . For f ∈ Diff(M), a splitting T3M = E1 ⊕< · · · ⊕< E` over
a compact f -invariant set 3⊂ M is said to be dominated if there exists L ∈ N such that
for any x ∈3, v ∈ Ei (x), w ∈ E j (x) with ‖v‖ = ‖w‖ = 1 and 1≤ i < j ≤ `,

‖Dx f Lv‖ ≤ 1
2‖Dx f Lw‖.

Taking an adapted metric [17], we may assume that L = 1 in the following discussion for
dominated splittings.

Recall that the geometric divergent rate of any x ∈ M relative to a direction v ∈ Tx M is
given by the limit

lim
n→∞

1
n

log ‖Dx f nv‖,
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which exists and is called the Lyapunov exponent along v for almost every point x of every
f -invariant measure by Oseledec’s theorem [18]. For a dominated splitting T3M = E1 ⊕<

· · · ⊕< E` over 3, for the purpose of studying the approximation process of Lyapunov
exponents with respect to the evolution time N , we define, for any 1≤ i ≤ `,

1±f (x, Ei ; N )= lim
n→±∞

1
|nN |

n−1∑
k=0

log+ ‖(D f k N (x) f ±N
|Ei )
∧
‖,

1 f (x, Ei ; N )=min{1+f (x, Ei , N ), 1−f (x, Ei , N )},

1 f (x; N )=min{1 f (x, Ei , N ) : 1≤ i ≤ `},

where log+ t =max{0, log t} and, for a linear transformation T : X1→ X2 between two
finite-dimensional linear spaces X1 and X2, T∧ denotes the map on the exterior algebra of
X1 (in this manner, ‖T∧‖ is the maximum of the absolute values of Jacobians of T on any
linear subspace of X1). Denote 1+f (x, Ei ) (1−f (x, Ei )) as the sum of positive Lyapunov
exponents on Ei (the sum of the absolute values of negative Lyapunov exponents on Ei );
then by Oseledec’s theorem [18] one could get that for µ-a.e. x of every µ ∈Minv( f, 3),

1 f (x, Ei ; N )→1 f (x, Ei ) :=min{1+f (x, Ei ), 1
−

f (x, Ei )} as N →+∞,

1 f (x; N )→1 f (x) :=min{1 f (x, Ei ) : 1≤ i ≤ `} as N →+∞.

For µ ∈Minv( f, 3), let

1 f (µ, Ei )=

∫
1 f (x, Ei ) dµ(x),

1 f (µ; N )=
∫
1 f (x; N ) dµ(x),

1 f (µ)=

∫
1 f (x) dµ(x).

By analyzing the approximation process of Lyapunov exponents, we can get the
estimates concerning the relationship between the scale of measure-theoretic tail entropy
and the evolution time.

THEOREM 1.1. Let f ∈ Diff(M) and T3M = E1 ⊕< · · · ⊕< E` be a dominated splitting
over a compact f -invariant set 3, then there exists a sequence {εN }N∈N of positive
numbers with limN→+∞ εN = 0 such that

lim
N→+∞

sup
µ∈Minv( f,3)

(h∗( f, µ, εN )−1 f (µ; N ))≤ 0.

In particular, we have
lim
ε→0

h∗( f, µ, ε)≤1 f (µ)

for any µ ∈Minv( f, 3).

Remark. The tail entropy was studied with respect to a dominated splitting over the
manifold M by Buzzi, Crovisier and Fisher [8, Theorem 7.6]. In Theorem 1.1, we focus on
the uniform difference between the tail entropy of measures and the Lyapunov exponents
of themselves relative to the evolution time.

https://doi.org/10.1017/etds.2019.10 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.10


2308 Y. Cao et al

In order to use the measure-theoretic tail entropy to estimate the difference between the
full metric entropy hµ( f ) and the metric entropy hµ( f, P) with respect to some partition
P , we further establish the following theorem, which is a strengthening version of [12,
Proposition 2.1] for the use of infinite Bowen balls in the definition of tail entropy here.

THEOREM 1.2. Let M be a compact metric space and f : M→ M a homeomorphism
with finite topological entropy. For any µ ∈Minv( f, M), we have

hµ( f )− hµ( f, P)≤ h∗( f, µ, ρ)

for any finite measurable partition P with diam(P)≤ ρ.

In what follows, applying Theorems 1.1 and 1.2, we may deduce the upper semi-
continuity property of metric entropy in case that 1 f (µ)= 0.

COROLLARY 1.3. Let f ∈ Diff(M) and T3M = E1 ⊕< · · · ⊕< E` be a dominated
splitting over a compact f -invariant set3. Then the metric entropy map in Minv( f, 3) is
upper semi-continuous at any µ with 1 f (µ)= 0.

In fact, Corollary 1.3 could give rise to the upper semi-continuity of metric entropy for
plenty of systems with domination.

Combining with [15] and [1, Theorem 3.3], for a C1 generic f ∈ Diff(M), a generic
element µ in Merg( f, M) admits dominated Oseledec splittings, so the corresponding
1 f (µ)= 0, which implies, by Corollary 1.3, the upper semi-continuity of metric entropy
at µ in Minv( f, supp(µ)), where supp(µ) is the support of µ. Moreover, given a
homoclinic class H , if we denote by Mper(H) the closure of the convex hull of periodic
measures supported on H , then, by [1, Theorem 3.1’], supp(µ)= H and hµ( f )= 0 for
generic µ ∈Mper(H); thus, we can obtain the following result.

COROLLARY 1.4. For a C1 generic f in Diff(M) and any homoclinic class H of f , the
set of continuity points of metric entropy in Minv( f, H) includes a residual subset of
Mper(H).

In the setting of conservative systems, for a C1 generic f in Diffvol(M), which denotes
the space of C1 diffeomorphisms on M preserving the volume measure vol, by [2, 3], the
Oseledec splitting of vol is dominated. Thus, we have the following result.

COROLLARY 1.5. For a C1 generic f in Diffvol(M), the volume measure vol is an upper
semi-continuity point of metric entropy in Minv( f, M).

Besides, by Corollary 1.3, we may also get an alternative criterion for the upper semi-
continuity of metric entropy for dominated splittings consisting of bundles without mixed
behavior or of one dimension in [9, 13, 22], since1 f (µ)= 0 is satisfied in those contexts.

2. Dynamics of foliations
Let f ∈ Diff(M), 3 be a compact f -invariant set and there exists a dominated splitting
T3M = E1 ⊕< · · · ⊕< E` over 3. For 1≤ i ≤ j ≤ `, denote

Ei(i+1)··· j = Ei ⊕ · · · ⊕ E j .
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Let ξ0 be a positive lower bound for the angles between any pair of bundles Ei and E j ,
1≤ i 6= j ≤ `. By [7, 11], with respect to the given domination structure, one may have
a family of local invariant fake foliations. In the following content, given a foliation F
and a point y in the domain, we denote by F(y) the leaf through y and by F(y, ρ) the
neighborhood of radius ρ around y inside the leaf.

PROPOSITION 2.1. For any ξ ∈ (0, ξ0/4), there exist 0< ρ2 < ρ1 such that the
neighborhood B(x, ρ1) of every x ∈3 admits foliations

{F∗x : x ∈3}, ∗ ∈ {i(i + 1) · · · j : 1≤ i ≤ j ≤ `}

such that for any y ∈ B(x, ρ1) and ∗ ∈ {i(i + 1) · · · j : 1≤ i ≤ j ≤ `}:
(i) almost tangency: TyF∗x (y) lies in a cone of width ξ of E∗(x);
(ii) local invariance: f ±F∗x (y, ρ2)⊂ F∗f ±(x)( f ±(y));

(iii) coherence: F∗x is subfoliated by F#
x whenever # is a subsentence of ∗.

Along the leaves of foliations F∗x , we could define the projections as follows: for
y ∈ B(x, ρ1), 1≤ i ≤ `− 1, let

[y]1···ix =F (i+1)···`
x (y) ∩ F1···i

x (x),

[y](i+1)···`
x =F1···i

x (y) ∩ F (i+1)···`
x (x),

wherever they are well defined. The almost tangency property (i) and the uniform positive
lower bound among angles of different bundles E∗ allow us to be able to choose a constant
C1 > 0 such that for any ρ ∈ (0, ρ1/C1), y ∈ B(x, ρ) and

∗ ∈ {1 · · · i, (i + 1) · · · ` : 1≤ i ≤ `− 1},

one has
[y]∗x ∈ F∗x (x, C1ρ).

By taking some local trivialization of the tangent bundle, for any N ∈ N and ρ ∈

(0, ρ1/C1), we define

σ(N , ρ)=max
{

log
(
‖(Dx1 f ±N )∧k‖

‖(Dx2 f ±N )∧k‖

)
: x j ∈ F∗x (x, C1ρ), j = 1, 2,

1≤ k ≤ dim E∗(x), ∗ ∈ {1 · · · i, (i + 1) · · · ` : 1≤ i ≤ `− 1}, x ∈3
}
.

Denote eP
=max{‖D±x f ‖ : x ∈ M}. For any N ∈ N, one may let ξ and ρ1 be small such

that ρ(N )= ρ1e−N P/C1 satisfying σ(N , ρ(N )) < 1/N .

LEMMA 2.2. (Pliss [19]) Let b0 ≤ c2 < c1 and θ = (c1 − c2)/(c1 − b0). Given real
numbers b1, . . . , bT with

∑T
i=1 bi ≤ c2T and bi ≥ b0 for every i , there exist τ ≥ T θ and

1≤ k1 < k2 < · · ·< kτ ≤ T such that

k j∑
i=k+1

bi ≤ c1(k j − k), 0≤ k < k j , 1≤ j ≤ τ.
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LEMMA 2.3. There exists N0 > 0 such that for any N ≥ N0 and µ ∈Minv( f, 3), for
µ-a.e. x, B∞( f, x, ρ(N ))= {x} or B∞( f, x, ρ(N ))⊂ F i

x (x, C1ρ(N )) for some i ∈
{1, . . . , `}.

Proof. Let N0 = [16/(log 2)] + 1. So, σ(N , ρ(N )) < (log 2)/16 for any N ≥ N0. For
µ ∈Minv( f, 3) and 1≤ i ≤ `, we denote for µ-a.e. x ,

a+Ei
(x)= lim

n→∞

1
|nN |

n−1∑
k=0

log m(D f k N (x) f N
|Ei ),

a−Ei
(x)= lim

n→∞

1
|nN |

n−1∑
k=0

log ‖D f −k N (x) f −N
|Ei ‖.

Let

i0(x)=min
{

1≤ i ≤ ` : a+Ei
(x) >

log 2
2

}
;

then by the domination T3M = E1 ⊕< · · · ⊕< Ei0(x)−1 ⊕< Ei0 ⊕< · · · ⊕< E`, one has
a−Ei0(x)−1

(x)≤
log 2

2
,

a−E j
(x)≤−

log 2
2

for all j ∈ [1, i0(x)− 2],

a+E j
(x)≥

log 2
2

for all j ∈ [i0(x), `].

Hence, there exist 1< n1 < n2 < · · ·< nt < · · · such that for any t ∈ N,

1
nt

nt−1∑
k=0

log m(D f k N (x) f N
|Ei0(x)⊕···⊕E`) >

log 2
4
,

i.e.,
1
nt

nt∑
k=1

log ‖D f k N (x) f −N
|Ei0(x)⊕···⊕E`‖<−

log 2
4
.

Let b0 =−N P, c1 =−(log 2)/4, c2 =−(log 2)/8 and θ = (c1 − c2)/(c1 − b0).
Applying Lemma 2.2, for each nt , we can find ñt ∈ [θnt , nt ] such that

ñt∑
k= j+1

log ‖D f k N (x) f −N
|Ei0(x)⊕···⊕E`‖ ≤ −

log 2
8
(ñt − j), 0≤ j < ñt .

By the choice of N ≥ N0, we have

‖D f −N
z |

TzF
i0(x)(i0(x)+1)···`
y (z)

‖ ≤ 21/16
‖D f −N

y |Ei0⊕···⊕E`‖

for all z ∈ F i0(i0+1)···`
y (y, C1ρ(N )) for all y ∈3.

Therefore, for 1≤ j ≤ ñt ,

f − j N0(F i0(i0+1)···`
f ñt (x)

( f ñt (x), C1ρ(N )))⊂ F i0(x)(i0(x)+1)···`
f ñt− j (x)

( f ñt− j (x), 2−(ñt− j)/16C1ρ(N )).

For any y ∈ B∞( f, x, ρ(N )),

[ f n(y)]i0(x)(i0(x)+1)···`
∈ F i0(x)(i0(x)+1)···`

f n(x) ( f n(x), C1ρ(N )).
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By the local invariance of fake foliations,

[y]i0(x)(i0(x)+1)···`
= f −n([ f n(y)]i0(i0+1)···`) for all n ∈ N.

Especially,

[y]i0(x)(i0(x)+1)···`
= f −ñt ([ f ñt (y)]i0(x)(i0(x)+1)···`) ∈ F i0(x)(i0(x)+1)···`

x (x, 2−ñt/16C1ρ(N )).

Letting t→+∞, we get that

[y]i0(x)(i0(x)+1)···`
= {x}.

Similarly, one can deduce that [y]1···(i0(x)−2)
= {x}, since a−E j

(x)≤−(log 2)/2 for any
j ∈ [1, i0(x)− 2]. Then

B∞( f, x, ρ(N ))⊂F1···(i0(x)−1)
x (x, C1ρ(N )) ∩ F (i0(x)−1)···`

x (x, C1ρ(N ))

⊂F i0(x)−1
x (x, C1ρ(N )).

Furthermore, if a−Ei0(x)−1
(x)≤−(log 2)/2, then [y]1···(i0(x)−1)

= {x}; thus,

B∞( f, x, C1ρ(N ))= {x}. �

3. Tail entropy along leaves
By Lemma 2.3, given N ≥ N0, µ ∈Minv( f, 3), without loss of generality, for µ-a.e. x ,
we may assume that B∞( f, x, C1ρ(N ))⊂ F i

x (x, C1ρ(N )) for some i . Therefore, in what
follows, we only need analyze the dynamics on leaves F∗y (y), ∗ ∈ {1, . . . , `}, y ∈3. For
the simplicity of symbols, we write V ∗y = F∗y (y). Moreover, we denote by BV ∗y (z, ρ) the
ball in V ∗y centered at z with radius ρ and define Bowen balls along leaves as follows:

BV ∗y ,n(z, ρ)= {p ∈ V ∗y : dV ∗
f j (y)

( f j (p), f j (z)) < ρ, | j |< n},

where dV denotes the distance in a submanifold V ⊂ M . For the convenience of
computations, we intend to approximate the local complexity of dynamical systems by that
of their linearity. Taking local trivializations, we may assume that V ∗y ⊂ Rdim E∗ . Note that
there exists a constant C2 > 0 depending only on dim M such that for any 1≤ j ≤ dim M
and any linear map X : R j

→ R j , one has

0(X (BR j (0, 1)), R j , 1/2)≤ C2‖X∧‖+,

where 0(U, V, ρ) denotes the minimal cardinality of covers for U whose elements are
balls with radius ρ in a manifold V , and ‖X∧‖+ = elog+ ‖X∧‖.

LEMMA 3.1. There exists η1 > 0 such that for any y ∈3, ∗ ∈ {1, . . . , `}, z ∈
BV ∗y (y, C1ρ(N )) and η ∈ (0, η1),

0( f ±N (BV ∗y (z, η)), V ∗f ±N (y), η/2))≤ C2e2/N
‖(Dy f ±N

|Ei )
∧
‖
+.
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Proof. From the definition of ρ(N ), for ∗ ∈ {1, . . . , `}, z ∈ BV ∗y (y, C1ρ(N )),

‖(Dz f ±N
|Tz V ∗y )

∧
‖
+
≤ e1/N

‖(Dy f ±N
|Ei )
∧
‖
+.

For η > 0, define gη,z(p)= ηp + z, z ∈ V ∗y . Let F±N ,η,z(p)= g−1
η, f ±N (z) ◦ f ±N

◦ gη,z(p).
Then

‖F±N ,η,z(p)− Dz f ±N
|Tz V ∗y (p)‖ converges to 0 as η→ 0

uniformly for p ∈ BRdim E∗ (0, 1), z ∈ BV ∗y (y, C1ρ(N )). Observe that

0( f ±N (BV ∗y (z, η)), V ∗f ±N (y), η/2)= 0(F±N ,η,y(BRdim E∗ (y, 1)), Rdim E∗ , 1/2).

So, there exists η1 > 0 uniformly such that for any η ∈ (0, η1),

0( f ±N (BV ∗y (z, η)), V ∗f ±N (y), η/2)

≤ e1/N0((Dz f ±N
|Tz V ∗y (BRdim E∗ (0, 1)), Rdim E∗ , 1/2)

≤ C2e1/N
‖(Dz f ±N

|Tz V ∗y )
∧
‖
+

≤ C2e2/N
‖(Dy f ±N

|E∗)
∧
‖
+. �

Let N ≥ N0, µ ∈Minv( f, 3); then, for µ-a.e. x , there exists i such that
B∞( f, x, C1ρ(N ))⊂ V i

x (x, C1ρ(N )). For η ∈ (0, η1), let {y1, . . . , yk(0)} be a finite η-
net of BV i

x ,n
( f N , x, C1ρ(N )). Let R j0 = BV i

x
(y j0 , η) ∩ BV i

x ,n
( f N , x, C1ρ(N )), 1≤ j0 ≤

k(0). By induction, for 0≤ s ≤ n − 2, suppose that

y j0,...,y js
, R j0,..., js : 1≤ j0 ≤ k(0), 1≤ jt ≤ k(0, j0, . . . , jt−1), 1≤ t ≤ s

have been defined. Given y j0,...,y js
, using Lemma 3.1, one may take a set D

which is an η/2-net of f N (BV i
f s N (x)

(y j0,...,y js
, η)) and has cardinality not more than

C2e2/N
‖(D f s N (x) f N

|Ei )
∧
‖
+. Observe that from the η/2-net D, we can choose a set

{y j0,..., js , js+1 : 1≤ js+1 ≤ k(0, j0, . . . , js)}

with k(0, j0, . . . , js)≤ ]D, which forms an η-net of f N (BV i
f s N (x)

(y j0,...,y js
, η)) ∩

f N (R j0,...,y js
). For 1≤ js+1 ≤ k(0, j0, . . . , js), denote

R j0,..., js , js+1 = BV i
f (s+1)N (x)

(y j0,..., js , js+1 , η) ∩ f N (R j0,..., js ).

In this way we could define all situations for 0≤ s ≤ n − 1.
For 1≤ j0 ≤ k(0), 1≤ jt ≤ k(0, j0, . . . , jt−1), 1≤ t ≤ n − 1, define

U j0,..., jn−1 = {y ∈ BV i
x ,n
( f N , x, C1ρ(N )) : f t N (y) ∈ R j0,..., jt , 0≤ t ≤ n − 1}.

Then ⋃
j0,..., jn−1

U j0,..., jn−1 = BV i
x ,n
( f N , x, C1ρ(N )).

Note that for any y, z ∈U j0,..., jn−1 , 0≤ t ≤ n − 1,

dV i
f t N (x)

( f t N (y), f t N (z))≤ dV i
f t N (x)

( f t N (y), y j0,..., jt )+ dV i
f t N (x)

( f t N (z), y j0,..., jt )≤ 2η.
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Therefore,

rn( f N , BV i
x ,n
( f N , x, C1ρ(N )), 2η)

≤

∑
k(0, j0, . . . , jn−2)≤ k(0) ·5n−2

t=0 (C2e2/N
‖(D f t N (x) f N

|Ei )
∧
‖
+),

which implies that

lim sup
n→∞

1
n

log rn( f, BV i
x ,n
( f, x, C1ρ(N )), 2η)

≤ lim sup
n→∞

1
nN

log rn( f N , BV i
x ,n
( f N , x, C1ρ(N )), 2η)

≤ lim sup
n→∞

1
nN

log(5n−2
t=0 (C2e2/N

‖(D f t N (x) f N
|Ei )
∧
‖
+))

≤
2+ log C2

N
+1+f (x, Ei , N ).

By the arbitrariness of η, we obtain

h∗( f, x, ρ(N ))≤ lim
η→0

lim sup
n→∞

1
n

log rn( f, BV i
x ,n
( f, x, C1ρ(N )), 2η)

≤
2+ log C2

N
+1+f (x, Ei , N ).

Similarly, considering the inverse f −1, we get

h∗( f −1, x, ρ(N ))≤ lim
η→0

lim sup
n→∞

1
n

log rn( f −1, BV i
x ,n
( f −1, x, C1ρ(N )), 2η)

≤
2+ log C2

N
+1−f (x, Ei , N ).

4. Measure-theoretic tail entropy and upper semi-continuity
In this section, we first analyze the relationship between the scale of measure-theoretic tail
entropy and the evolution time and hence give the proof of Theorem 1.1.

Proof of Theorem 1.1. For N ≥ N0, let εN = ρ(N ). If µ ∈Merg( f, 3), then
h∗( f ±, x, εN ) are constants for µ-a.e. x , which we denote by h∗( f ±1, µ, εN ). By
[9, Proposition 2.7], one further obtains

h∗( f, µ, εN )= h∗( f −1, µ, εN ).

Hence,

h∗( f, µ, εN )≤
2+ log C2

N
+min{1±f (µ, Ei ; N ) : 1≤ i ≤ `}

=
2+ log C2

N
+1 f (µ, N ).

When µ ∈Minv( f, 3), using the ergodic decomposition µ=
∫
Merg( f,3) dτ(m), we

deduce that

h∗( f, µ, εN )≤
2+ log C2

N
+

∫
Merg( f,M)

1 f (m, N ) dτ(m)

=
2+ log C2

N
+ 1 f (µ, N ),
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which gives rise to

sup
µ∈Minv( f,3)

(h∗( f, µ, εN )−1 f (µ, N ))≤
2+ log C2

N
→ 0 as N →+∞.

In particular, since 1 f (µ, N )→1 f (µ) as N →+∞, we have

lim
ε→0

h∗( f, µ, ε)≤1 f (µ)

for any µ ∈Minv( f, 3). �

Next we are going to prove Theorem 1.2.

Proof of Theorem 1.2. By Jacobs’ theorem (see [21, Theorem 8.4]), it suffices to consider
µ to be ergodic. Moreover, by [12, Proposition 2.1] (note that the finiteness of topological
entropy is used in the proof there), it is in fact enough to prove that for µ-a.e. x ,

lim
δ→0

lim sup
n→0

1
n

log rn( f, Bn( f, x, ρ), δ)≤ lim
δ→0

lim sup
n→0

1
n

log rn( f, B∞( f, x, ρ), δ)

= h∗( f, µ, ρ).

Note that, given γ > 0, for µ-a.e. x , there exist L(x) ∈ N and a finite subset DL(x)(x)⊂
B∞( f, x, ρ) with

⋃
y∈DL(x)(x) BL(x)( f, y, δ)⊃ B∞( f, x, ρ) satisfying

]DL(x)(x)= rL(x)( f, B∞( f, x, ρ), δ)≤ eL(x)(h∗( f,µ,ρ)+γ ).

Furthermore, one may choose T (x) ∈ N such that⋃
y∈DL(x)(x)

BL(x)( f, y, δ)⊃ BT (x)( f, x, ρ),

which implies that

rL(x)( f, BT (x)( f, x, ρ), δ)≤ ]DL(x)(x)≤ eL(x)(h∗( f,µ,ρ)+γ ).

For any j ∈ N, denote Y j = {x : L(x)≤ j, T (x)≤ j}; then µ(Y j )→ 1 as j→+∞. For
µ-a.e. x , by the ergodicity of µ, for large n, one has

]{0≤ k < n : f k(x) /∈ Y j }

n
≤ 1− µ(Y j )+

1
j
.

We define a sequence 0= n0 < n1 < · · ·< nk−1 < nk = n of integers by induction.
Suppose that ns is defined; then

ns+1 = ns + L( f ns (x)) if f ns (x) ∈ Y j and ns + j ≤ n,

ns+1 =min{t > ns : f t (x) ∈ Y j } if f ns (x) /∈ R j and min{t > ns : f t (x) ∈ Y j } ≤ n,

ns+1 = n otherwise.

Since the elements of {x, f (x), . . . , f n−1(x)} outside Y j do not exceed n(1− µ(Y j )+

1/j), by [5, Lemma 2.1],

rn(Bn( f, x, ρ), 2δ)≤ en(h∗( f,µ,ρ)+γ )
· r1( f, M, δ)n(1−µ(Y j )+1/j)+ j ,
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which implies that

lim sup
n→+∞

1
n

log rn( f, Bn( f, x, ρ), 2δ)

≤ h∗( f, µ, ρ)+ γ +
(

1− µ(Y j )+
1
j

)
log r1( f, M, δ).

Since j and γ are arbitrary, it follows that

lim sup
n→+∞

1
n

log rn( f, Bn( f, x, ρ), 2δ)≤ h∗( f, µ, ρ).

Letting δ→ 0, we finish the proof of Theorem 1.2. �

Now, together with the uniform arguments in Theorems 1.1 and 1.2, we are in a position
to prove Corollary 1.3.

Proof of Corollary 1.3. If 1 f (µ)= 0, then, given δ > 0, for large N ∈ N one has
1 f (µ, N )≤ δ. Besides, by Theorem 1.1, taking N sufficiently large in advance, we have

h∗( f, ν, εN )≤1 f (ν, N )+ δ

for any ν ∈Minv( f, 3). Note that1 f (ν, N ) is continuous relative to ν ∈Minv( f, 3), so,
for ν close to µ, we have 1 f (ν, N )≤ 2δ and hence

h∗( f, ν, εN )≤ 3δ.

Let P be a finite measurable partition with µ(∂(P))= 0 and diam(P)≤ εN . By
Theorem 1.2,

hν( f )− hν( f, P)≤ h∗( f, ν, εN )≤ 3δ.

Moreover, for the fixed P , hν( f, P) is upper semi-continuous at µ, which implies that

hν( f, P)≤ hµ( f, P)+ δ,

when ν is close to µ. Therefore,

hν( f )≤ hν( f, P)+ 3δ ≤ hµ( f, P)+ 4δ,

which, consequently, combining with the arbitrariness of δ, gives the upper semi-
continuity of metric entropy at µ in Minv( f, 3). The proof of Corollary 1.3 is
completed. �
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