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Abstract. In his Tractatus, Wittgenstein maintained that arithmetic consists of equations
arrived at by the practice of calculating outcomes of operations Ωn(�̄) defined with the help of
numeral exponents. Since Num(x) and quantification over numbers seem ill-formed, Ramsey
wrote that the approach is faced with “insuperable difficulties.” This paper takes Wittgenstein
to have assumed that his audience would have an understanding of the implicit general rules
governing his operations. By employing the Tractarian logicist interpretation that the N-operator
N (�̄) and recursively defined arithmetic operators Ωn(�̄) are not different in kind, we can address
Ramsey’s problem. Moreover, we can take important steps toward better understanding how
Wittgenstein might have imagined emulating proof by mathematical induction.

§1. Introduction. In my Wittgentein’s Apprenticeship with Russell (Landini (1996,
2013)), I set out a new interpretation I called “Tractarian Logicism.” Tractarian
logicism is not logicism in Frege sense (which maintained that numbers are themselves
logical abstract particulars) nor is it logicism in the Whitehead–Russell’s sense (which
maintained that there are no abstract particulars—propositions, classes, relations
in extension, numbers, spatial figures, etc., in any branch of mathematics). But
central to both Frege’s logicism and the quite different Whitehead–Russell logicism
is impredicative comprehension in logic (cp-Logic) which enables the definition of
the ‘ancestral’ relation. Frege and Russell accepted that there is a genuine science
of mathematical logic precisely because they accepted that logic embodies (or
emulates, as Russell hoped) impredicative comprehension. This makes logic into
a synthetic a priori science in its own right. In 1914, Russell’s sought a conception of
philosophy that made it a unique science, partly synthetic a priori (with cp-Logic as
its essence) and partly synthetic a posteriori—using the latest empirical theories and
mathematical logic to undermine the indispensability arguments of the metaphysicians
for special kinds of necessity and special abstract particulars governed by them.
Rejecting the notion that logic and mathematics are sciences (in the sense of bodies
of truths), Wittgenstein’s Tractatus Logico-Philosophicus had to reject impredicative
comprehension and cpLogic. His Tractatus endeavors to remake Russell’s “scientific
method in philosophy” into a method for showing (illucidating) logical forms.

Tractarian logicism is simply the thesis that there is no difference in kind between
the applications of the operations of the N-operator N (�) involved in calculating the
tautologies of logic and the operations Ωn(�) defined recursively by means of numeral
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974 GREGORY LANDINI

exponents that are involved in the practice of calculating the correctness of outcomes
of arithmetic equations. This respects what I take to be Wittgenstein’s thesis that while
neither logic nor arithmetic are sciences (i.e., bodies of truths) both have a common
source in the practice of calculating the sameness of outcomes of operations that show
the correctness of equations. This interpretation is corroborated by Waismann, who
in 1931 offered the following explanation of Wittgenstein’s conception of logic and
arithmetic (Waismann, 1931, p. 218):

What is right about Russell’s idea is that in mathematics as well as in
logic, we are dealing with systems. Both systems are due to operations.

The Tractatus adopted a Doctrine of Showing which eliminates logical and arithmetic
truths so that they show their content rather than saying it. In this paper, I endeavor to
work out the Tractarian Logicist interpretation as applied to arithmetic, number and
mathematical induction.

§2. The ‘ancestral’ problem. Frege’s Begriffsschrift (1879) was the first to maintain
that logic is a genuine science assuring impredicative comprehension. It thereby
captured inductive proofs within pure logic—proofs that had hitherto been thought
to require distinctly arithmetic intuitions of consecutive series. Frege made this point
explicitly, and it is important that it came well before he had a working theory of
numbers as objects. Frege designed his logic to be the study of functions (understood
in a mathematical sense and not as many-one relations). He embraced impredicative
comprehension of a hierarchy of levels of functions from entities (each of a given level)
to objects. Frege’s functions are “unsaturated” and thus are not themselves objects. It
was not until Frege’s Grundlagen (1884) and finally his Grundgesetze (1893) that he was
able to put forth a mature theory of numbers as purely logical objects

,
z f z correlated

one-to-one to functions f � by a heterogeneous second-level function
,
z Φ z. Russell

revealed that any such function violates a heterogeneous formulation of Cantor’s power
theorem. Russell advocated for Cantor’s work. Frege was never a strong advocate of
Cantor and though alarmed by Russell’s discovery, he continued to resist Cantor’s
analyses of cardinals and ordinals and the far-reaching implications of his work in
mathematics that Whitehead and Russell so lauded.

The formal syntax of Principia has been a subject of continued controversy for
more than 100 years. Part of the reason is that the work attempted to set out its
formal grammar through a convenience of typical ambiguity. The simple type indices
were suppressed throughout the work and as a result it was left to interpreters
to add them in ways they thought intended by the semantic statements Russell
made in the informal introductory commentaries. As I see it, Principia grammar is
that of simple type theory. In the Preface of Principia, both the introduction and
summaries are explicitly stated not to be part of the work. Whitehead, who later
explicitly disavowed Russell’s introduction to both the first and second edition, never
agreed nor was required to agree with Russell’s semantic experiments set out in his
introductions.1 Whitehead’s Prefatory Statement of volume 2 reveals that that while he
accepted Principia’s no-classes and no-relation-e (no relations-in-extension) theories,
he imagined a Realist (objectual) semantics for the formal system of bindable simple

1 See Whitehead (1929), p. 12 footnote.
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type-regimented individual variables. This is in stark contrast to Russell’s appeal
in the introduction to the first edition to a nominalistic (modern substitutional)
semantics for the simple (impredicative) type-regimented individual variables above
the lowest simple type (i.e., variables ϕ!, �!, f!, g!, etc., with the exclamation). (The
letters ϕ. �, f and g are schematic letters for wffs and are not bindable.) Russell’s
nominalist semantic interpretation was based on a recursive definition of “truth”
(and “falsehood”) whose base case was to be handled by a multiple-relation theory
of judgment. The semantics was a disaster. It could not validate ∗12.n (see below).
Ultimately, in 1919 Russell admitted it, and it was Ramsey (not Wittgenstein) who
convinced him. Unfortunately, in the absence of an explicit syntax set out, Russell’s
nominalistic (modern substitutional) semantic experiment became conflated with the
formal theory by interpreters (e.g., Carnap, Church) who endeavored to “fix” the work
by offering a syntax guided by the semantics (but ignoring it’s nominalistic orientation).
Thus was born ramified types (e.g., Church’s r-types).

Principia embraces simple type regimentation and impredicative comprehension.
Had the work given its formal syntax, individual variables of lowest type look like this
xo and the individual variables that serve as predicate variables look like this x(t1,...,tn).
An atomic wffs looks like this:

y(t1,...,tn)(xt11 , ... , x
tn
n ).

Suppressing the simple type indices one needs first to put

ϕ(t1,...,tn)(xt11 , ... , x
tn
n )

and then to mark the bindable predicate variable one uses an exclamation thus:

ϕ! (x1, ... , xn).

The definition of a simple type symbol is this:

(i) o is a simple type symbol;
(ii) if t1, ... , tn are simple type symbols then so is (t1, ... , tn);
(iii) there are no other simple type symbols.

For example, there are xo, x(o), x((o)) etc., and x(o,o), x(o), x((o),o) and so forth. Any
individual variable whose simple type index is not o is a predicate variable. In Principia,
impredicative comprehension of relations (and properties) in intension is introduced
by the following axiom schema:

∗12.n (∃ f)(ϕ(x1, ... , xn) ≡x1,...xn f! (x1, ... , xn)),

where the predicate variable f! is not free in ϕ. This impredicative axiom schema is
sometimes called the “axiom of reducibility.” The monadic case ∗12.1 is called the
“axiom of classes” and the dyadic case ∗12.11 is called the “axiom of relations.” It
should be noted that impredicativity is not a matter of semantic interpretation. It
is a matter of the syntactically unbridled rules of quantification theory governing
bindable predicate variables together with syntactic fact that the above axiom schema
allows the schematicϕ to stand in for any wff of the formal language not containing the
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predicate variablef! free. The syntax is impredicative because it has no order indices on
variables.2

Principia regards logic as a genuine synthetic a priori science that studies
relations-in-intension independently of the contingencies of their exemplification.3

The informativity of logic (whether that of Frege or that of Whitehead-Russell) comes
directly from its embracing impredicative comprehension. It assures existence and
thus is synthetic. Frege’s (and Russell’s) approach to the ‘ancestral’ relation (and its
accompanying informative theorem of induction) requires that one admit impredicative
comprehension in logic. Principia advances a theory of inductive cardinals that parallels
the Fregean impredicative analysis of the ‘ancestral’ relation, while adhering to the
Cantorian analysis of cardinality in terms of one-to-one correspondence. Wittgenstein
rejected both. Logic is shown, not said and thus it must consist in generalized
tautologies. He often put this point, as did Ramsey, as a rejection of ∗12.n because its
instances are not generalized tautologies.

Russell thought impredicative comprehension is the key to the ‘ancestral’ and for
that reason it is the key to capturing within logic the “and so on” notion. In fact, this is
explicitly stated in Principia in the introduction to section ∗90 on the ancestral relation
(vol. 1, p. 543):

It would commonly be said that a has to z the relation of ancestor to
descendent if there are a certain number of intermediate people b, c, d,
...such that in the series a, b, c, d, ... , z each term has to the next the
relation of parent and child. But this is not an adequate definition,
because the dots in “a, b, c, d, ... z” represent an unanalyzed idea. We
may then try to amend this definition by saying that there is a finite
class α of intermediate terms... This definition is open to a number
of objections. ...we must not use the notion of finitude in defining the
ancestral relation.

Frege introduces the strong ancestral (where nothing is its own ancestor) using
impredicative comprehension. Then the weak ancestral is easily defined in terms of it.
Principia introduces the notion of the weak ancestral of a using the following instance
of comprehension ∗12.n:

(∃ f)(f! z ≡z (ϕ)(ϕ! a ∧ (x)(ϕ!x . ⊃ . ϕ! (x + 1)) . ⊃ . ϕ! z)).

For convenience put:

Anca(z) = df (ϕ)(ϕ! a ∧ (x)(ϕ!x . ⊃ . ϕ! (x + 1)) . ⊃ . ϕ! z)).

One can then easily arrive at the inductive theorem:

(ϕ)(ϕ! a ∧ (x)(ϕ!x . ⊃ . ϕ! (x + 1)) . ⊃ . (x)(Anca(x) ⊃ ϕ!x)).

2 The thesis that Principia is a theory of r-types (ramified types) with order (levels) coded
into a syntax that allows nonpredicative type indices and the separation of predicative
comprehension from an axiom of reducibility of order, is the invention of interpreters. In
Church (1979), where cumulative r-types became the orthodoxy we find an admission of
this.

3 Inventing a new meaning of “analytic” for the new cp-Logic helps distance it from Kant’s
Transcendental Aesthetic. But one should not let it hide the synthetic a priori nature of
cpLogic.
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From that theorem, together with impredicative instance of ∗12.n, one proves:

Induction:

(ϕ)(ϕ! a ∧ (x)(Anca(x) ∧ ϕ!x . ⊃ . ϕ! (x + 1)) . ⊃ .
(x)(Anca(x) ⊃ ϕ!x)).

Once 0 is introduced and replaced for a, and with Anca(x) replaced with Anc0(x)
abbreviated as Num(x), we have mathematical induction. One gets:

Mathematical Induction:

(ϕ)(ϕ! 0 ∧ (x)(Num(x) ∧ ϕ!x . ⊃ . ϕ! (x + 1)) . ⊃ .
(x)(Num(x) ⊃ ϕ!x)).

It is the theorem of induction that provides the analysis of the notion “and so on.”
This history lies importantly behind Wittgenstein’s 1919 letter to Russell which

heralded the existence of an Abhandlung on logic and arithmetic that he had compiled
sporadically from 1913 through 1917 even while caught up in the first world war. It is
one of the most interesting and yet perplexing of the many letters of correspondence
between Wittgenstein and Russell. He wrote:

I have written a book called Logisch Philosophische Abhandlung
containing all my work of the last 6 years. I believe I have solved our
problems finally. ... But it upsets all our theory of truth, of classes, of
numbers and all the rest.

The book, of course, came to be the Tractatus. What did Wittgenstein mean in
speaking to Russell of upsetting “our” theory of truth, of classes, and of numbers?
The work, at least as Russell interpreted it, was offering an alternative to the approach
to these notions that are found in Principia. Thus, rather than saying “upsetting,” a
better description would be to say “replacing.” The Tractatus envisioned achieving
important results of Principia and certainly a recovery of the uses of the ‘ancestral’
notion. This plan is to do without emulating impredicative comprehension, without
emulating classes, numbers and all the rest. Finding a better understanding of
Wittgenstein’s endeavor to find a replacement forms the core task of the Tractarian
logicist interpretation.

Wittgenstein saw that the “and so on” concept and ‘ancestral’ notion are connected
at the chest. But unlike Principia Wittgenstein adopts the “and so on” concept as an
indefinable primitive built into his notion of an “operation.” I hold that Wittgenstein’s
operations are functions (in Frege’s sense), but comprehension is allowed only when
the function is introduced by a “rule” (or recipe for “and so on”) indicated by � that
establishes the general term of the series generated by its applications. Some of these
operations, as we shall see, are explicitly characterized recursively. (It is not known
whether he required that all operations be recursively defined.) It is my thesis is that
Wittgenstein hoped to emulate the use of the ‘ancestral’ relation in arithmetic by appeal
to operations. We find:

TLP4.1273
If we want to express in conceptual notation the general proposition
‘b is a successor of a’, when we require:
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aRb

(x)(aRx ∧ xRb)
(x, y)(aRx ∧ xRy ∧ yRb), ...

In order to express the general term of a series of forms, we must use
a variable, because the concept ‘series of forms’ is a formal concept.
(This is what Frege and Russell overlooked; consequently the way in
which they want to express general propositions like the ones above
is incorrect; it involves a vicious circle.) We can determine the general
term of a series of forms by giving its first term, and the general form
of the operation that produces the next term out of the proposition
that precedes it.

Wittgenstein’s plan is to remake the ‘ancestral’ relation in terms of his formal concept
‘general term of a series’—i.e., the notion of ‘and so on’ which renders the repetition of
an operation. Tractatus 6.03 endeavors to do this when it offers [0, �, �+1] as the general
form of an integer (i.e., the use of operations replacing the notion of a natural number).
The concept of the general term of a series is thereby given by a structured variable
expressing a formal concept which shows (and does not say as Frege and Russell
thought) how to go on. Instead of appeals to a proved theorem of mathematical
induction of a would-be science of arithmetic, Wittgenstein imagined that one can
reveal the correctness of an equation by appeal to the “and so on” of his recursive recipes
for arithmetic operations. Instead of using impredicative comprehension, Wittgenstein
hoped to capture the ‘ancestral’ relation by appeal to series of iterations of an operation,
defined by an “and so on” clause that shows how to generate a consecutive series.
The recursive characterization provides the “and so on” pattern for the operation’s
continued application.

When Wittgenstein wrote his Tractatus, there had already had been a long history of
criticisms of so-called impredicative “definition” and most famously Poincaré regarded
it as a “viciously circular” definition. Russell lampooned Poincaré’s proposal to add
antecedent clauses on quantifiers that assure vicious circles are avoided. It was Russell’s
nominalistic (modern substitutional) semantics for Principia’s bindable predicate
variables that forced him to be concerned about vicious circles. His substitutional
semantics must put: (iϕ)Aiϕ! is true iff every wff B� of language Li is such that
A[B�/ϕ! ] is true. The wffs of Li must not include the bound variable iϕ! else the
truth-conditions would be viciously circular. There is little doubt that Wittgenstein
agreed that it is viciously circular, since he expresses just this criticism at TLP 4.1273.
An objection to the impredicativity of ∗12.n on grounds that it allows viciously circular
“definition,” however, is completely vapid and should be ignored. When carefully put,
the issue of impredicativity does not concern definition at all. Indeed, all the definitions
in Principia are stipulative conveniences of notation. More importantly still, the proper
source of Wittgenstein’s objection derives, not from an concern over an alleged “vicious
circularity,” but from his rejection of the thesis that mathematical logic is a genuine
science (a body of truths). It must be shown, not said. Wittgenstein’s ab-Notation,
extended to quantifiers, was designed to to show that logic consists of tautologies and
generalized tautologies. And it is clear from a November 1913 letter to Russell4 that

4 See Wittgenstein (1979, p. 123).
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Wittgenstein endeavored to use his ab-Notation to argue that comprehension does not
belong to logic.

Russell was keenly interested in Wittgenstein’s ideas. In the letter to Russell of 1919,
he speaks of “our” theory of “truth, “classes” and “number.” This is not only suggestive
of the many discussions between the two, but also of Russell’s having at some point
admitted that his semantic endeavors did not succeed. But once he understood it,
Russell never accepted showing. Neither did Ramsey! In his paper “The Foundations
of Mathematics,” Ramsey spoke of “propositional functions in extension” which is
a phrase he used to characterize a new nominalistic (i.e., substitutional) semantics
for Principia’s object language bindable variables. It allows infinite conjunctions and
disjunctions in the semantics, but leaves intact the simple type grammar. He wrote
(Ramsey, 1925, p. 56):

By using these variables we obtain the system of Principia
Mathematica, simplified by the omission of the Axiom of Reducibility,
and a few corresponding alterations. Formally it is almost unaltered;
but its meaning has been considerably changed.

The comment is ironic because, as Ramsey himself intimates, ∗12.n and the grammar
of Principia’s impredicative simple types remains unchanged.5 It is Russell’s failed
nominalist semantics that Ramsey changed. Relative to Ramsey’s nominalistic
semantics, as opposed to Russell’s nominalistic semantics, the axiom schema ∗12.n
of impredicative comprehension is acceptable because valid in the semantics. Russell
remarks in his My Philosophical Development that he was pleased but he remained
unconvinced (Russell, 1959, p. 26). Wittgenstein was certainly not pleased. Ramsey’s
work in “The Foundations of Mathematics” did not adopt showing or the reorientation
to functions recursively defined.

Neither was Wittgenstein pleased by Russell’s new experiments in the introduction
to the 1925 second edition of Principia which changed the grammar to open the way for
the Tractarian ideas of radical extensionality and ramified orders coded into syntax.
(Whitehead was unhappy that this new introduction emphasizing Wittgenstein’s
ideas was included. See Lowe & Schneewind (1990).) We get important insight into
Wittgenstein’s disappointment by noticing the comments Ramsey made in a letter to his
mother. The letter reports on the meeting he had with Wittgenstein in 1924 at which he
had discussed Russell’s plans for the second edition. Ramsey had seen Russell’s work
notes for the new edition and likely he recounted to Wittgenstein that in Russell’ s
assessment the Tractarian ideas he worked with do recover mathematical induction
but fail to recover Cantor’s work and Analysis. Ramsey indicates to his mother
that Wittgenstein was annoyed by Russell’s efforts. At first, his reaction seems quite
unwarranted. Why should he be annoyed? Ramsey wrote (Wittgenstein 1973), p. 78):

5 Followers of Church’s interpretation that Principia has the grammar of r-types came to
invent the story that Ramsey, and not Russell, was advocating that Principia’s grammar and
axioms should be that of simple impredicative type theory. Russell’s 1925 introduction to
the second edition made things even more confusing. It includes an experiment that adopts
Wittgenstein’s idea that a theory of induction could be proved in a system with a grammar
that embraces ramified orders, but allows a wff nϕ(t)(n+m�t) so long as the simple type
indices are proper, and embraces radical extensionality. Russell concluded that it is too weak
to recover Analysis and Cantor work. For a discussion of the 1925 theory, see Landini (1996,
2013).
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He is, I can see, a little annoyed that Russell is doing a new edit[ion]
of Principia because he thought he had shown R[ussell] that it was so
wrong that a new edit[ion] would be futile. It must be done altogether
afresh. He has a week with Russell 4 yrs ago.

I think the reason he was annoyed has become clear. Wittgenstein did not see his
central Tractarian ideas represented in Russell’s Tractarian-inspired experiments for
the new edition’s Introduction. The Tractarian rejection of identity and reorientation
to operations was completely ignored. This orientation to operations recursively
defined, Wittgenstein thought, was the proper direction of further research. This
new orientation is what Wittgenstein meant in saying that Principia must be
done “afresh.”

When we understand the history in this way, we can find many passages that offer
abductive evidence in favor of it. That is, this historical account offers the better
explanation of the existence of passages written later and their content. For example,
remembering Wittgenstein’s objection to identity in his My Philosophical Development,
Russell wrote (Russell, 1959, p. 115):

At one time I accepted this criticism [TLP 5. 5302; 5.5303], but I soon
came to the conclusion that it made mathematical logic impossible
and, in fact, that Wittgenstein’s criticism is invalid.

The elimination of identity forced Wittgenstein into a combinatorial logic and
arithmetic of operations defined by rendering general terms of series. A purely
combinatorial logic and arithmetic does indeed jeopardize mathematical logic. Russell’s
dalliance with the criticism of identity was short. All the same, he was concerned to
understand and assess the viability of Wittgenstein’s technique for recovering arithmetic
in a way that, unlike Principia, avoids the need to capture the ‘ancestral’ relation by
impredicative comprehension and the need to emulate a theory of classes and relations-
in-extension. In a August 13, 1919 letter, we find (Russell, 1990, p. 108):

I do not understand why you are content with a purely ordinal theory
of number, nor what you use for the purpose an ancestral relation,
why you object to ancestral relations. This part of your work I want
further explained.

This expresses to Wittgenstein a serious concern over how the ‘ancestral’ relation is
supposed have been recovered. Russell did not take the notion of “and so on” to be
something that can be adopted as a primitive idea. As noted earlier, he would naturally
object that it is the concept of the ancestral relation that captures the “and so on”
concept, and it depends upon impredicative comprehension.

In letters as early as August 13, 1919, Russell had written several questions about
Wittgenstein’s Abhandlung and its approach to number. At one point he focused on its
complete neglect of Cantor’s work. The following is quite revealing Russell (1990):

4.1272 I suppose this hangs together with the rejection of identity. It
is awkward to be unable to speak of Nc ‘V. ...

6.03 “General form of an integer: [0, �, � + 1].” You only get finite
ordinals. You deny classes, so cardinals collapse. What happens to
ℵ0? If you said classes were superfluous in logic I would imagine
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that I understood you, by supposing a distinction between logic and
mathematics, but when you say they are unnecessary in mathematics
I am puzzled. E.g., something true is expressed by

Nc‘Cl ‘ α = 2Nc‘α . How do you re-state this prop?

There is no known evidence of Wittgenstein’s reply. It is conspicuously absent from the
replies he did send to Russell on 19 August. This is a casualty of his abandonment of the
relation of identity and impredicative comprehension. It commits him to the rejection
of Principia’s Cantorian analysis of cardinal numbers in terms of ‘similarity’ (onto
relations of one-to-one correspondences). Wittgenstein viewed relations of ‘similarity’
as outside of arithmetic since, without ‘identity’ as a genuine logical relation, they
would rely upon contingently exemplified relations of one-one-correspondence (such
as physical spatial relations). Such relations are what the Tractatus calls material. They
do not belong to the formal relations (all and only of which) are shown. Wittgenstein
held that the Cantorian theory thus belongs, not to mathematics, but to physics.
Principia, in stark contrast, accepted Cantor’s work as of revolutionary importance.
When, some years later, Russell would later write his 1931 review of Frank Ramsey’s
Foundations of Mathematics, we find him with the following remark (CP, vol., 10.,
p. 113).:

...Ramsey was profoundly influenced by Wittgenstein, but did not
like the “mystical” elements in Wittgenstein’s philosophy, or share
Wittgenstein’s heroic willingness to sacrifice vast intellectual edifices
in the pursuit of logical impeccability.

Likely he had Cantor’s work in mind.
Ramsey himself had conducted his own evaluation of Wittgenstein on number and

arithmetic. He reported that he studied the Tractarian operations intensely and found
them to be unworkable. He wrote (Cuter, 2005):

I have spent a lot of time developing such a theory and found that it
was faced with what seemed to me to be insuperable difficulties.

The Tractarian approach, he thought, must find a way to emulate the commonplace
applications of ordinary arithmetic. Ramsey gave the following example:

The square of the number of F ’s is greater by two than the cube of
the number of G’s.

Now at first blush, one might imagine Ramsey’s concern to have a ready solution.
Using numeric quantifiers, such as “(∃xn)ϕx” which says “exactly n-many entities are
ϕ,” one can offer this:

(∃xn)Fx ∧ (∃xm)Gx . ∧ . (P)((∃xn2
)Px ≡ (∃xm3+2

x)Px).

The general problem Ramsey raised, however, has no such easy remedy. One needs
to emulate quantification over numbers. Tractarian accounts, appear to make this
impossible. I shall call this “Ramsey’s problem.” It is very hard to believe that
Wittgenstein didn’t have something in mind as a reply.

If we start with the Tractarian logicist interpretation, we can then look for abductive
arguments that supports it in some of Wittgenstein’s later writing. Their existence and
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content are best explained as reflections on what had transpired earlier, or further
investigations of the viability of techniques formerly advanced. Of course, the later
writings of Wittgenstein (from his so called “middle period”) might reflect an entirely
new approach departing from any earlier stand he may have taken. But this does not
at all indict the perfectly legitimate methodology of advancing abductive arguments in
favor of the Tractarian logicist interpretation. There is no methodological flaw in using
abductive reasoning, and it would be a significant methodological flaw to presume that
any viable interpretation of later writings requires them to belong to a new perspective.

When Wittgenstein returned Cambridge and 1929 and wrote his Philosophische
Bemerkungen (PB), he included many remarks that corroborate the Tractarian logicist
interpretation. They corroborate it, because their existence and contents are expected—
i.e., best explained given the Tractarian logicist interpretation is correct. Consider, for
example, the following (PB , p. 25):

125 That, in the case of the logical concept (1, �, � + 1), the existence
of its objects is already given with the concept, of itself shows that it
determines them. What is fundamental is simply the repetition of an
operation. The operation +1 three times yields and is the number 3.

126 It looks now as if the quantifiers make no sense for numbers.

129 A proposition about all propositions, or all functions is
impossible. Generality in arithmetic is indicated by induction.

The focus of the above seems clearly to be Ramsey’s problem of emulating
quantification over numbers. (Indeed, as we shall see, Ramsey’s problem is rather
explicitly noted later in the remarks.) The above remarks fit very well with the
Tractarian logicism focus on operations. At 125 we have the general term mentioned—
i.e., the recipe for the “and so on” of the consecutive series for the natural numbers. The
best adbductive explanation of remarks 126 and 129 is that Wittgenstein was returning
to the exploration of the Tractarian logicist approach.

Our ultimate goal will be to better understand what Wittgenstein might have had in
mind when he hoped to build syntactically structured arithmetic forms that show the
proper results of using mathematical induction. As we shall see, Tractarian logicism
enables the N-operator account of existential and universal quantification to come
to the rescue since all operations are on a par. The N-operator emulates bounded
quantification. It is straightforward to extend the technique to emulate bounded
quantification over operations generally, and thereby to emulate quantification over the
operations of arithmetic in particular. (Interestingly, bounded existential and universal
quantifiers are all that one hopes or expects to capture with sum and product in the
general theory of recursive functions.) This will solve Ramsey’s problem of emulating
quantification over numbers. The new understanding provided will help us to unravel
one of the most perplexing features of the Tractatus—its treatment of number and
proof by mathematical induction.

§3. Operations and rules. Following Frascolla (1994, 1997), the Tractatus was
advocating a research program of a combinatorial logic and arithmetic based on
functions, some at least recursively defined. Admittedly, what Wittgenstein meant
by an “operation” remains a source of difficulty of interpretation. Must it be
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regarded as a new Tractarian idea tied to showing that has no historical precedent?
The Tractarian Logicist interpretation avoids the worry by maintaining that what
Wittgenstein meant by an operation is just the notion of a function, but requiring that
it be introduced by an explicit rule (or an “and so on” clause). This demystifies his
view of an operation. Wittgenstein’s operations (functions) for arithmetic are given
by recursive definitions involving numeral exponents. This is consistent with holding
that other “and so on” recipes may exist. Nowadays we understand the notion of a
function (and a recursively defined function) rather well. (See Mendelson (2010).) The
study of recursive characterizations of functions by Church in the 1930’s obviously
came well after the Tractatus, and later still came the wide acceptance of Church’s
Thesis according to which every careful definition of “computable” (e.g., Turing
machine, Markov algorithm, abacus, etc.) coincides with the notion of recursiveness.
Wittgenstein left such matters open. But it would not be unfair to say that Wittgenstein’s
work anticipated subsequent research.

There are many pieces of evidence that enable us to feel confident that an operation,
in Wittgenstein’s view, is a function characterized by an “and so on” clause which
renders the “general term.” We find:

TLP 5.2522 Accordingly, I use the sign “[a, x,O‘x]’ for the general
term of a series of forms a,O‘a,O‘O‘a, .... This bracketed expression
is a variable: the first term of the bracketed expression is the beginning
of the series of forms, the second is the form of a term x arbitrarily
selected from the series, and the third is the form of the term that
immediately follows x in the series.

TLP 5.2523 The concept of successive applications of an operation
is equivalent to the concept ‘and so on’.

This requirement of a recipe for how to go on—a recipe given by the structured
variable “[a, x,O‘x]”—is particularly clear as well in Wittgenstein’s Notebooks 1914-
1916. Consider the following passages (Wittgenstein 1979):

17 August 1916 An operation is the transition from one term to the
next one in a series of forms.

21 Nov. 1916 We now need a clarification of the concept of the
atomic function and the concept “and so on.” The concept “and
so on,” symbolized by “....” is one of the most important of all
and like the others infinitely fundamental. For it alone justifies us
in constructing logic and mathematics “so on” from the fundamental
laws and primitive signs. The concept “and so on” and the concept
of the operation are equivalent. [Cf. TLP 5.2523]

22 Nov. 1916 The concept of the operation is quite generally that
according to which signs can be constructed according to a rule.

23 Nov. 1916 What does the possibility of operation depend on? On
the general concept of structural similarity.

24 Nov. 1916 When the general form of operations is found we have
also found the general form of the occurrence of the concept “and so
on.” All operations are composed of the fundamental operations.
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Given all these passages (and many more) one can feel confident that Wittgenstein has
in mind the notion of a recipe for generating series, and in the case of arithmetic we
know from his explicit definitions in the Tractatus of arithmetic operations (TLP 6.02;
TLP 6.421) that such cases he has in mind are given by recursive recipes. By using
the word “recipe” I intend to be charitable in interpreting Wittgenstein’s use of � as a
means of characterizing the “and so on.” The notion might be simply mean “recursive
definition,” and as we know all recursive characterizations of functions are built up
from what are called the primitive recursive function (together with the mu-recursive
function). There is a strong intuition that there can only be denumerably many recursive
functions precisely because each has a recipe that has a finite expression.

Anscombe (1959) seems first to have noticed the Tractarian logicist idea that all
Tractarian operations are the same in kind. She took the Tractarian N-operator to
be same in kind as arithmetic operators Ωn� that are characterized with numeral
exponents. Indeed, she goes so far as to say that the N-operator can itself be given
numeral exponents. She holds that every N-operation is introduced by by a general term
that generates a consecutive series of truth-functions. She writes (Anscombe (1959),
p. 132):

It is now possible to explain the formula [p, �,N (�)] which
Wittgenstein gives as the “general term of truth functions”. ...The
formula is a particular example of the “general term of a formal
series,” ... hence, once we can use numbers, this formula can be
given as: [p,Nn(p), Nn+1(p)]... if the number of propositions were
finite, we could say exactly what, say, the hundred and third term
of the series of truth-functions (whose general term as this formula)
would be.

Consider, for example, the consecutive series 1, 2, 4, 16, 216, ... The dots are important
because they indicate that a recipe (the general term of the consecutive series) exists
which shows how to go on. There are various ways to render such a recipe. One
way is through a recursive characterization. For example, one can offer the piece-wise
recursive definition:

f(0) = 1

f(n + 1) = 2fn

Wittgenstein’ notion of a “general term of a consecutive series” must, of course,
be regarded as independent of the mathematical notion of the “general term of a
consecutive series” since the latter essentially depends on the consecutive natural
ordering of the natural numbers. Consider for example the general term x2 generating
(as it were) the consecutive series: 0, 1, 4, 9, 16, ... As Cantor sees it, the very notion
of there being a “general term” relies on the function term �2 providing a one-to-
one correlation from natural numbers 0, 1, 2, 3, 4, ... to the above, respectively. The
correlation relies on the consecutive ordering of the natural numbers. So the notion
of a general term that Wittgenstein has in mind must not depend on the existence of
relations (or functions) on natural numbers that establish such correlations. Anscombe
saw that point quite well enough. But she seems to have gone too far toward likening
Wittgenstein’s notion of a general term of a series to the mathematical notion of a
general term of a consecutive series. Successive order (linear order) is not the same as a
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consecutive order. To achieve a consecutive ordering of truth-functions, Anscombe has
to supply her own recipe. She thereby chooses bases for the N-operator. She assumes
that Wittgenstein himself intended this and expected readers to work out what it is.
She seems mistaken in thinking that any “general form” of a series must, according to
Wittgenstein, assume that the series is consecutively ordered. Nothing discernible in the
� that Wittgenstein used to characterize the general term of truth-functions requires
that its intended recipe secures consecutiveness in thexs ordering.

Of course, Whitehead and Russell rejected an ontology of functions and proceeded
instead with the ontology of relations in intention, some among which are many-one.
Russellian notion of a dyadic relation ϕ! being many-one is this:

(x, y, z)(ϕ! (x, y) ∧ ϕ! (x, z) . ⊃ . y = z).

The no relations-e theory uses the the letterR and writes xRy. So there is no chance
to conflate a variable ϕ! for a relation in intension with contextually defined variable R
for a relation-e (relation in extension). Frege’s function term “fx” is quite different. It

is a term referring to the y such that fx = y. Russell’s replaces this with “
�
R‘x” which

is not a term but is rather an incomplete expression contextually defined. Thus, for
example,

�
R‘x = y = df (�z)(z

�
Rx ) = y

i.e.
�
R‘x = y = df (∃z)(xRu ≡u u = z . ∧ . z = y).

Russell’s approach emulates the notion of the composition f(g�) of two functions f�
and g� by appeal to the relative product of two many-one relations-e R and S. That is,
∗12.11 together with the no-relations-e theory, we get:

(∃T )(xTy ≡x,y (∃z)(xRz ∧ zSy)).

Many interpreters have observed that in the Tractatus, Wittgenstein wrote:

TLP 5.25 ...Operations and functions must not be confused with one
another.

TLP 5.251 A function cannot be its own argument whereas an
operation can take one of its own results as its base.

Wittgenstein was certainly in earnest to assure that readers not confuse his notion of
an operation with Russell’s notion of a “propositional function.” But his point seems
to be that he rejected Principia’s approach and adopted an ontology of functions.
Wittgenstein’s notion of an operation departs from Frege’s notion of a function only
insofar as he makes the demand that it be given, not by impredicative comprehension,
but by an “and so on” recipe (rule, recursive characterization).

The notion of an “operation” in the Tractatus is rather obscure. Arithmetic operators
and the N-operator are only very thinly presented in the work. To understand them, one
has to uncover that there are rules of calculation embedded in Tractarian notion of an
operation. One has to be devoted to uncovering them. Not surprisingly, Wittgenstein
was loathe to explicitly state his rules of operation, asking readers of his oracular
Tractatus to work them out for themselves. There are many dangers along the way.
It should be clear, for example, that one ought not to enter into the confusion that
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f(g) indicates that a function g is to be put into the argument position of the function
sign f. Wittgenstein naturally follows Frege’s in this matter. Function signs must
stay in function positions. The notion of a function, of course, rules out “f(f)”
as meaningless, but obviously one can write “f(fx).” Wittgenstein accepts that an
operation can take one of its own results as its base and this is just what we expect of
functions. Moreover, one does not expect to find a recursive rule of commutation that
applies to operations generally. Marking the argument positions of the functions with
� and �, consider:

From ϕ{f(g�)} infer ϕ{g(f�)}.

Such a rule would yield incorrect results in certain cases. Consider the following:

(a × �)((b + �)) i.e., a × (b + �).

This is clearly not the same function as

(b + �)((a × �)) i.e., b + (a × �).

In uncovering the rules of operation, there is a grave risk that the alleged rules “found”
in working through examples are merely the invention of the interpreter. The argument
for Wittgenstein’s intending a given rule can only be abductive. The rules are uncovered
by their being required for working through cases. Oracular and elucidative as it is,
the Tractatus offers just enough clues as to what rules of operation Wittgenstein had
in mind.

In the case of the N-operator, two of the five discernible rules are rather explicitly
stated in the Tractatus. The existence of the others is abductively supported because
they are required for the N-operator notation to make good on its promise to render
a notation in which all and only logical equivalents have their truth-conditions shown
in one and the same way. That is, the N-operator, by design, was intended to extend to
quantification theory with identity (where admissible) the result achieved by the tf-
notation (formerly the ab-Notation), and truth-tabular notations—that all logically
equivalent quantifier-free wffs have the same notation.

The same abductive approach is useful in finding rules of the operations of arithmetic.
The existence of general rules of operation are required by the examples of calculation
with operations that the Tractatus gives. For instance, we shall see that there is the
following:

Rule I:
f(g(h�))

[f(g�)][h(�)]

This rule provides for Association. I have written it in this way to indicate (without
using an identity sign) that one can replace (substitute) the one operation with the
other wherever it occurs. Working through examples, we do find that these rules are
implicitly used and required. There is another bit of abductive reasoning we can use.
That Wittgenstein intended such rules offers the best explanation of some of the entries
in Philosophische Bemerkungen. For example, he writes (PB, p. 198):

165 The correct expression for the associative law is not a proposition,
but precisely its ‘proof’, which admittedly doesn’t state the law, but
shows it.

This is just what one should expect to find if the Tractatus adopted Rule I.
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It is worth pausing to briefly to note that Potter (2000) thinks it likely that
Wittgenstein thought all operations are (ultimately) defined (and reduced) to the
N-operation. Now we find:

TLP 5.2521 If an operation is applied repeatedly to its own results,
I speak of successive applications of it, (“a,O′a,O′O′a” is the result
of three successive applications of the operation ‘0′�’ to ‘a’.)

Nothing suggests that the operation O indicated here is built from (reduced to) the
N-operator. It is hard to imagine such a reduction, and Wittgenstein explicitly offers
recursive characterizations of operations Ωn for arithmetic in his Tractatus which seem
independent and indefinable by appeal to the N-operator. There are, however, entries
in the Tractatus and Notebooks 1914–1916 that suggest that all variables are construed
as propositional. Moreover, in the Tractatus, we find:

TLP 3.314 ... An expression has meaning only in a proposition. All
variables can be construed as propositional variables...

TLP 6 The general form of a truth-function is [p, �,N (�)]. This is
the general form of a proposition.

TLP 6.01
The general form of an operation Ω(�)] is [�,N (�)](�) (=
[�, �,N (�)]).

This is the most general form of transition from one proposition to
another...

These do suggest a “reduction” of operations—even arithmetic ones—to the N-
operator. But it is hard to feel very confident in the reductive thesis. In fact, TLP
6.01 might be a typo which should have been:

The general form of an operation N (�) is [�,N (�)]‘(�) (=
[�, �,N (�)]).

If so, the intent is not to say that all operations are N-operations. Happily, Tractarian
Logicism does not need to take a stand on this matter. Tractarian Logicism is an
interpretation that is not committed to a reduction of all operations to the N-operation.
It simply holds that the N-operator and any other operations are not different
in kind.

Why the N-operator? In Landini (2007), I argued that the N-operator was needed
because of the limitations of a truth-functional tabular notation, and the limits of
the tf -Notation. All such notations were designed to show the truth-conditions of all
logical equivalents in one and the same way. For example, fixing the rule of presentation
of the rows of the truth-table, one can capture both

p . ∨ . q ∧ r
p ∨ q . ∧ . p ∨ r

in one notation, namely:

(t, t, t, f, t, f, t, f)(p, q, r).
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Wittgenstein knew that this approach (as with the ab-Notation, and tf-Notations) of
representation cannot be extended to quantification with relations. It won’t do to use
a schematic truth-tabular notation

(... ... .2n )(p1, ... , pn).

A change in the size of the domain may well create changes in the positions of
the t’s and f ’s in a truth-tabular expression (except when only monadic predicates are
involved). The N-notation is adopted instead of a schematic truth-tabular n

¯
otation.

TLP5.502 So instead of ‘(—- T)(�,...)’ I write ‘ N (�).’ N (�) is the
negation of the values of the propositional variable �.

The use of this expression “instead” is important. The “instead” ofTLP 5.5-2 expresses
the idea that the N-notation is to replace the truth-tabular notation and that it,
nonetheless, recovers in a new way the distinctive feature of the truth-tabular notation—
namely, that all and only logical equivalents have the same N-notation.Wittgenstein
moved on from the Tractarian truth-tabular notion to the N-notation precisely to
extend his fundamental idea of showing to the logic of quantification theory with
identity. The approach distinguishes the treatment of generality from truth-functions.
His treatment of quantification and identity (where admissible) is built into his use of
free variables and the “and so on” clause introduced with N-notation.

On the interpretation I am giving, expressions in N-notation are quite literally
pictures of truth-conditions, not wffs. For example, the N-notation, “N (p, q),” is a
term that pictures/shows something, and it is not a wff that says something. In this
respect, the Tractarian N-operator is quite distinct from Sheffer’s “p ↓ q,” which is a wff
that says something and is obviously not a term that pictures. Wittgenstein was aware
of Sheffer’s result that if Principia’s primitive logical particles ∼ and ∨ are together
adequate to express all truth-functions then so is the dagger by itself (and its dual the
stroke). Sheffer has the following:

p ∨ q = df ∼ (p ↓ q)
p = df p ↓ p.

Translation from Sheffer notation into N-notation is made quite easy by employing
a very simple technique. Do not define ∼ in terms of dagger, but otherwise express
the wff in Sheffer’s notation of dagger and ∼. Then express p ↓ q in the form ↓ (p, q).
Lastly, replace every occurrence of ↓ and every occurrence of ∼ by an occurrence of
N. This technique, however, requires that the N-notation not be dyadic.6 Thus, e.g.,
Np, N (p, q) as well as N (p, q, r), etc., are all allowed without ado. As we shall see,
there are rules governing the calculation of sameness which are implicitly embedded in
Wittgenstein’s use of �. For instance, the order of the bases is indifferent so thatN (p, q)
is the same as N (q, p). This rule, which I call N1, was explicitly given by Wittgenstein
at TLP 5.501 (quoted below). But there is also the implicit rule N2 that repetitions of
the same base can vanish, so that e.g., N (p, p) is the same as Np. Moreover, the rule
N3 assures that embedded occurrence ofNN can vanish. In his Notebooks 1914–1916,
Wittgenstein wrote:

6 Alternatively, express the wff with Sheffer dagger with “p ↓ q” in the form “↓ (p, q)” and
then replace each “↓” with an occurrence of “N.”
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23 Jan 1915: Negation is an operation.

24 Jan 1915: Only operations can vanish.

29 August 1916: The question is whether the usual small number
of fundamental operations is adequate for the construction of all
possible operations. It looks as if it must be so.

In the Tractatus we find:

TLP: 5.2341 ...Negation, logical addition, logical multiplication, etc,
etc, are operations.

TLP5.254 An operation can vanish (e.g, negation in ∼∼ p:
∼∼ p = p).

Such passages help to corroborate the interpretation that operations are functions. For
example, NN , in N (NNp, q) can vanish to arrive at N (p, q).

The earliest origins of the N-operator remain unknown. But having tied the notion
of an operation to the requirement of an “and so on” recipe giving the general term
of a series, we can make some progress concerning finding its beginnings. That is, to
trace the origins of the N-operator, we can look again to Wittgenstein’s Notebooks
where his notion of an operation as a recipe is unfolding and see how it gets related to
quantification. We find the following:

13 October 1914: But let us remember that it is the variables and not
the sign of generality that are characteristic of logic.

20 January 1915: How is it that all is a logical concept?

These passages, and many others, suggest that Wittgenstein was trying to find a recipe
for the “and so on” operation that captures quantification. The breakthrough passage,
indicating Wittgenstein’s idea of the N-operator, is this:

22 May 1915 The mathematical notion for infinite series like “1 +
x
1! + x2

2! + ...” together with the dots is an example of that extended
generality. A law is given and the terms that are written down serve
as an illustration. In this way instead of (x)fx one might write “fx.
fy ...”

By using a schematic n, Wittgenstein hopes to capture the idea that the infinity of
the domain of interpretation (if you will) is shown to be (at least potentially) infinite.
Thus quantification that gets emulated in this way is finitely bounded, but the bound
is arbitrary. To find N-notations, one finds the Boolean expansions over an n-element
domain, where each free variable xi , where 1 ≤ i ≤ n, is exclusive (referring to a
distinct entity). This idea is rather straightforward and the aim is to represent all and
only logical equivalents of quantification theory with identity in one and the same way.
The key to Wittgenstein’s approach is that in N-notations, free variables x1, ... xn are
exclusive, where n is schematic. To illustrate,
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(x) ∼ Fx

N (Fx1, ... , Fxn)

All exclusive free variablesx1, ... , xn have the same widest scope. Compare the following
which, because it is logically equivalent, is regarded as having “the same” notation:

∼ (∃x)Fx

N (NN (Fx1, ... , Fxn))

i.e. N (Fx1, ... , Fxn) rule N3

Again, there is no confinement of scope needed at all.
The N-notation is designed to realize Wittgenstein’s quest for a logical notation in

which logical equivalents have the “same” N-notation. Let’s take another example:

(x)(Fx ∧ Gx)

(Fx1∧Gx1) . ∧ . , ... , . ∧ . (Fxn ∧ Gxn)

N (NN (NFx1, NGx1), ... , NN (NFxn,NGxn))

i.e.N (NFx1, NGx1, ... , NFxn,NGxn) rule N3

Compare the N-notation for the following logical equivalent:

(x)(Fx) ∧ (x)(Gx)

(Fx1 ∧, ... ,∧ Fxn) . ∧ . , ... , . ∧ . (Gx1 ∧, ... ,∧ Gxn)

N (NN (NFx1, ... , NFxn), ... , NN (NGx1, ... , NGxn)) rule N3

N (NFx1, ... , NFxn, ... , NGx1, ... , NGxn) rule N1

The ruleN1, as we saw, assures the sameness (if you will), since the order of appearance
of each of the p, q, etc., inN (... .p ... ..q ... .) is indifferent. The other step is conducted
by rule N3, according to which internal double NN can vanish.

Wittgenstein’s elimination of identity poses no problem for translation into
N-notation. The free variables are all independent of one another. To facilitate the
translation, Landini (2007) set out a useful notation that followed Wittgenstein in
excluding pseudo-statements such as (x)(x = x). The idea is to banish the identity
sign and write (∀xy)(ϕx) to say that every x other than y is such that ϕx. Similarly,
(∃xy)(ϕx) says that some x other than y is such that ϕx. This facilitates the needed
expansions for translations into N-notation. Thus, for example, consider the following

(∀x)(∃yx)(Rxy)

(Rx1x2 ∧ ... ∧ Rx1xn) . ∨ . (Rx2x1 Rx2x3 ∧ ... ∧ Rx2xn)

∨ ... ∨ (Rxnx1 ∧ ... ∧ Rxnxn–1)

i.e. NN (N (N (Rx1x2) ... N (Rx1xn)) ,

N (N (Rx2x1) , N (Rx2x3), ... , N (Rx2xn)) ∨ ...∨

N (N (Rxnx1) ... N (Rxnxn–1)).
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N-notation for relations and identity thereby preserves the feature that the very
statement that there are n-many’s entails that there are entities that are not.7

Interestingly, Geach (1981, 1982), Soames (1983, 2017) and Fogelin (1982, 1987),
each of whom have given their own accounts of the N-operator, have entirely missed
the feature that Wittgenstein has no indication whatsoever of scope confining brackets
for his N-notation. Landini (2007, 2018). argues that this feature is central to
Wittgenstein’s expressed goal of having all and only logical equivalents have one
and the “same” N-notation. Fogelin and the others each fabricate scope brackets
to confine variables in their hope of understanding the N-operator notion. Using
scope-confining hard brackets “[, ],” even Fogelin takes it that (x)Fx is represented
as N (Fx), while ∼ (∃x)Fx is represented as the quite different N [NN (Fx)] Fogelin,
however, recognized that Wittgenstein’s Tractarian demanded that all variables be
confined together. But oddly he tries to derive this from the requirement of “successive
operation,” which he reads as consecutive operation and makes part of his scope-
confining brackets. In contrast, Geach and Soames invented (variable binding) notions
so that one variable may be confined independently of the others. Geach went so far
as to alter the Tractarian notation by introducing a minimal class theory so that
he can confine variables one at a time using class notations. He fully acknowledged
that in doing so he abandons the Tractarian program which maintains at TLP 6.031
that classes are superfluous. In truth, all scope brackets are entirely absent from the
Tractatus!

Fogelin, Geach, and Soames never considered Wittgenstein’s concern that the N-
notation replaces truth-tabular notation and recovers the centrally important feature
of that notation—namely, that all and only logical equivalents one and the same
expression. None made this a desideratum for their efforts, though Fogelin noticed
that Wittgenstein held that there is a decision recipe for the determination of whether
or not a wff is a generalized tautology. In truth, their very efforts to “fix” what they
thought was an inadequacy of the Tractatus is the very thing that obliterated the
raison d’être of the N-notation—namely, to find a notation in which all and only
logical equivalents of quantification theory with identity have the same notation. In
N-notations no variables are confined at all. Generality is given wholly by exclusive
free variables. They all, as it were, have the same widest scope in N-notation because
they all have the same domain of size n, for schematic n. In this way, the Tractarian
N-notation is obviously expressively adequate- over any finite domain of n elements,
however large n may be. In N-notation, logical equivalents have (in Wittgenstein’s
conception of sameness) the same N-notation.

Calculation by operations involves expressing the sameness in a series of
substitutions. This applies to calculation by N-operation rules as well as calculation
by recursive operation rules generally. The same notation can be profitably adopted
for calculating in all cases. According to Tractarian logicist interpretation there is,
after all, no difference in kind between such calculations of sameness. For example,

7 Tractatus (TLP 5.535) dissolves what Wittgenstein saw as a serious problem in Principia—
namely, that it doesn’t secure an infinity of individuals (of lowest type). Rodgers & Wehmeier
(2012) and Wehmeier (2004) offer a different, ahistorical, approach that allows “(x)(x = x)”
to be well formed and permits finite and infinite domains for quantifiers.
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consider the following:

NN (p,NN (Nq,Nr))
NN (p,Nq,Nr) Rule N3

Wittgenstein allows this as indicative of showing sameness, not saying it. All steps
of calculation are produced by substitution of “identical” (as it were) operations.
The method of inference with N-equations and the equations of arithmetic is that of
substitution. (Speaking of arithmetic equations, TLP 6.24 says this explicitly.) Now
according to the Doctrine of Showing, logical and arithmetic properties are formal and
thus shown by structured variables (not said in pseudo-predicates such as identity,
number, class, etc). Wittgenstein was well aware that if ‘identity’ were a genuine
relation, then arithmetic equations would, after all, say—they would assert truths, and
arithmetic would thereby be a science (i.e., a body of truths). Wittgenstein’s objection
to identity as a relation entails that he also rejects the functional expressions involving
it such as fx = gx. Recalling again that the Tractatus eliminated the identity sign,
note that it does not reject what would ordinarily be called the substitution of identical
operations. We can write the rule of substitution in a way that avoids the identity sign
as follows:

Identity: From
f�

g�
infer

k(f�)
k(g�)

If f and g are the same operation, then one may substitute them with the context
of operation sign k. Here the � reminds us that we are dealing with operations,
and the notation is meant to indicate that the operations are the same. According
to the Tractarian logicist interpretation, Wittgenstein’s view is that tautologies and
arithmetic equations are both equational and both are shown as practices of calculation
of sameness—just as Waismann noted.

§4. Implicit Tractarian N-operator rules. Having set out the N-operator notions
for quantification and given some examples, it is time to collect together all the rules
for the recursive calculation of whether or not we have a tautology (or a generalized
tautology). Here are full set of rules;

N1 :
N (p1 ... pi ... pj ... pn)
N (p1 ... pj ... pi ... pn)

N2 :
N (p1 ... pi , q1 ... qm, pi , pj ... pn)
N (p1 ... pj, q1 ... qm, pi , ... pn)

N3 :
N (p1 ... pi , NN (q1 ... qm), pj ... pn)
N (p1 ... pi , q1 ... qm, pj ... pn)

N4 :
N (p1, ... , pi , N (... qk ... N (qk) ...), pj ... pn)

N (p1 ... pi , pj ... pn)

N5 :
N (... NN (p,N (q, r)) ...)

N (... N (N (p,Nq), N (p,Nr)) ...)

As we noted, setting out the rules of N-operation explicitly is something that
Wittgenstein was unwilling to do. We have to find them abductively—reasoning that
their existence offers the best explanation of what he says about his N-operation and
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his desire to find a notation in which all and only logical equivalents have the “same”
notation. In the Tractatus he does rather explicitly indicate N1 and N2 and N3 fairly
clearly. To find the other rules, one must work through examples—working, that is,
under the interpretation that Wittgenstein’s goal is a notation where logical equivalents
in N-notation are to be “the same.” Interpreters have often missed this, not recognizing
this as Wittgenstein goal (though it is clearly expressed as such for his ab-Notation
in the 1913 Notes on Logic and letters and the 1914 Notes Dictated to Moore and
worknotes). It is by such abductive considerations that the rules emerge. The rules
are each legitimated, according to Wittgenstein, by the fact that various “and so on”
recipe(s) are given with �. Consider the following:

TLP 5. 501 When a bracketed expression has propositions as its
terms—and the order of the terms inside the brackets is indifferent—
then I indicate it by a sign of the form ‘ �’. ‘�’ is a variable whose
values are terms of the bracketed expression and the bar over the
variable indicates that it is the representative of all its values in the
brackets. (E.g. if it has the three values p, q, r, then � = (p, q, r).)
What the values of the variable are is something that is stipulated. The
stipulation is a description of the propositions that have the variable as
their representative. How the description of the terms of the bracketed
expression is produced is not essential. We can distinguish three kinds
of description: 1. direct enumeration, in which case we can simply
substitute for the variable the constants that are its values; 2. Giving
a function fx whose values for all the values of x are propositions
to be described; 3. Giving a formal law that governs the construction
of the propositions, in which case the bracketed expression has as its
members all the terms of a series of forms.

Notice that rule N1 is explicit in this passage which says that the order is indifferent.
That the N-operator sign allows for what looks like multiple-places, is assured by the
idea that this can be regarded as a “list” in accordance with TLP 5.50. Thus, we find:

TLP 5.51 If has only one value, then N (�) = p (not p); if it has two
values then N (�) =∼ p· ∼ q (neither p nor q).

Accordingly, we can write “N (Np,Nq)” to picture the truth-conditions of “p ∧ q”.
And we can write “Np” equally well as “N (p, p)” to picture the truth conditions
of “∼ p.” Thus, Rule N2 is somewhat explicitly revealed in the above passage, for
as we have seen Sheffer’s dagger ∼ p is captured by p ↓ p, i.e., ↓ (p, p). The other
rules have to be extrapolated from examples, but they are all implicit in Wittgenstein’s
statement of the above ways in which the may be used with the N-operator. (See
Landini (2007) for details.) In N-notation, logical equivalents are “the same” (modulo
the N-operator rules of sameness). All and only tautologies of the same bases have
the same N-notation—namely NN (... Np ... p ...). The following example illustrates
the use of these rules so as to determine whether or not a wff is a tautology. We have
Peirce’s Law:

p ⊃ q . ⊃ . p :⊃: p

∼ (∼ p ↓ q . ↓ . p :↓: p)

∼↓ (↓ (↓ (∼ p, q), p), p)
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NN (N (N (Np, q), p), p)

N (N (p,NN (Np, q)), N (p,Np)) N5

N (N (p,NN (Np, q))) N4

NN (p,Np, q) N2

The last line of the calculation has the form NN (... Np ... p ...) of a tautology.
Unfortunately for Wittgenstein, (polyadic) predicate logic is not decidable. The rules

of N-notation cannot apply when schematic n is used. We can, of course, apply the
N-operator rules to finite subgroups within N (... ..), but there is no schematic way to
proceed globally, even though the bases are always finite in number. If there were a
way to apply the rules globally, quantification theory would be decidable by the recipe
of N –operator calculation. Since the viability of the rules of N-operator sameness
is precisely what Wittgenstein hoped to use to establish the result that quantification
theory is not a science, Wittgenstein’s plan fails.

§5. Implicit operator rules. Let us next investigate the rules (implicit and explicit)
for calculation with arithmetic operations recursively defined. Again, Wittgenstein
expected readers to work out the rules for themselves from his examples. The rules are
implicit, but clearly a natural feature of the Tractarian account where we find:

TLP 6.24. The method by which mathematics arrives at its equations
is the method of substitution. For equations express the substitutivity
of two expressions and, starting from a number of equations, we
advance to new equations by substituting different expressions in
accordance with the equations.

Using �, � and 	 as letters indicating the argument paces of a function, the following
three rules are natural and quite clearly implicit in the Tractatus:

Rule I:
f(g(h�))

[f(g�)][h(�)]

Rule II:
[f(g�)]a

fa(ga� )

Rule III:
(fa� )c

(fa� )c�

Wittgenstein introduced recursive characterizations of functions by appeal to
function (operation) expressions with numeral exponents (i.e., superscripts). The
Tractatus offers only the barest sketch of what arithmetic is to become. It should be
emphasized as well that the use of identity signs in the statement in the Tractatus of
recursive operations does not represent genuine identity (which is a pseudo-relation
for Wittgenstein) but rather, as with the Tractarian N-operation, they represent the
outcomes of the operation. Thus, what follows could all be rewritten using our line
notation:

6.02 
0
� = �


m+1
� = 
(
m�)

(Vienna) 
m+n
� = 
n(
m)
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6.241 Ωmn� = (
m)n�

Perhaps Wittgenstein hoped that his 6.02 could do double duty, introducing addition
at the same time. I have introduced (Vienna) form the typescript found originally by
von Wight in Vienna which is different from other typescripts of the Tractatus. (See
von Wright (1971).) Observe that “0”, “m” and “n,” here are not bindable variables
for numbers. They are numerals or counters that check off in use the recursive steps
down to the base case. Wittgenstein has:

1 = df 0 + 1

2 = df 1 + 1,

3 = df 1 + 1 + 1, and so on.

There are minor difficulties here, however. No provision has been made to assure that,
“2 + 3” and “2 × 3” etc., are numerals. We can rectify the situation by a simple
amendment of a formation rule: Where “m” and “n” are numerals”m + n” and “m ×
n” are numerals. We shall use distinct letters “m”, “n”, “a”, “b”, “c”, etc for distinct
numerals. The next thing to ponder in Wittgenstein’s 6.02 is that “1” has been used in
the definition of “1.” Likely, Wittgenstein meant to use a slash writing 1 = df 0 + /.

Observe that there is no expectation that operations (functions) always emulate
arithmetic “truths” such as that 0 = 1. Indeed, depending on the function in question
it may very well be that

f0
�

f1
�

Our expectations must be tailored to the operation in question that we are dealing
with. There is another point to be concerned about as well. A string such as 1+1+1...
is not well-formed. We have to know where the brackets go. Let us demand:

3 = df 1 + 2

i.e., 1 + (1 + 1)

4 = df 1 + 3

i.e., 1 + ((1 + (1 + 1))

This leads to the question as to why Wittgenstein left out the brackets. Observe that
we do find:

TLP 6.231 It is a property of ‘ 1 + 1 + 1 + 1’ that it can be construed
as ‘(1 + 1) + (1 + 1)’.

This has an important connection with 6.02 that must be deciphered. On the face of it,
Wittgenstein’s intent seems to be that the ordering doesn’t matter—that we can order
it any way we please. But it does matter to syntax and ignoring this would undermine
any hope of the Tractarian system being formally proper. It is here, therefore, that the
example reveals that Wittgenstein’sTLP 6.231 tacitly appealed to the general recursion
Rule I. The rule is precisely what allows regroupings of the same function. Accordingly,
we have the following case:

f(f(f(f�)))
[f(f�)][f(f�)]
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i.e..,
f4
�

f2
�(f

2
�)

In short, TLP 6.231 is justified by Rule I transitions. Von Wright said that he
remembered seeing a proof of 2+2 = 4 in a Vienna type-script entry at 6.241. Now
that the Vienna typescript has been rediscovered, we find:

So laudet der Beweis des Satzes

2 + 2 = 4

1 + 1 + 1 + 1 = 4

Def. 1 + 1 = 2

Def. 2 + 2 = 4

This example of a proof of 2+2 = 4 is clearly based on TLP 6.231. Thus it is illicit
since the ordering of brackets is a syntactic matter that cannot be slighted and a rule of
association + is needed. Happily, the situation is rectified by implicit recursion Rule I.
This permits rearranging the brackets. Interestingly, in the Engelmann typescript the
entire example at 6.2141 is removed and replaced with a demonstration of 2×2 =
4 together with the recursive definition of multiplication. The change suggests that
Wittgenstein felt that readers would understand Rule I and readily work out the case
of addition for themselves.

Now we can see that recursive definition (Vienna) of addition together with our
general recursive Rule I, generates the following derived rule of association (which we
state below with the argument place of the function omitted for convenience):

Association +:
fa+(b+c)

f(a+b)+c
Proof:

fa+(b+c)

fb+c (fa )
[fc (fb )](fa )

fc (fb (fa )) Rule I
fc (fa+b )

f(a+b)+c

Note that the modern recursive definition of addition follows from Vienna.

m + 0 = m
fa+0

f0(fa )
fa

m + n′ = (m + n)′
fa+(b+1)

fb+1(fa )
[f1(fb )](fa )

f1(fb (fa )) Rule I
f1(fa+b )

f(a+b)+1

Wittgenstein’s Vienna definition yields the needed equational proof by substitution.
In the proof, we again used implicit Rule I from which we obtained Association +.
The law of Association + is, therefore, built directly into the definition of the recursive
operation + when coupled with recursive Rule I. With this success, let us go on to
investigate the case of the Tractarian characterization of multiplication.

As we noted, the Tractatus does offer a definition of multiplication. Now 
ab� is
to mean (
a�)

b
� . This is a relationship of two operations (functions), namely 
a� and

the higher-level function �b� . Contrast the situation of 
ba� whose meaning is (
b�)
a
� .
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This is a relationship of two operations (functions), namely 
b� and the higher-level
function �a� . There is an important difference therefore that must be accommodated
by recognition of implicit rules governing the interface of such functions of different
levels. We have:

Rule IV:
(
)a� (f

b
� )

(fb� )a�

Rule V:
[
a� (Θb�)](f)

fa� (fb�)

In Rule IV we have a case multiplication. In Rule V we have a case like addition but
not permitting regrouping and thus it is quite different from Rule I which permits
regrouping. Note that [�b�]

a
� (f) is a case of 
a� [�

b
�(f)], but it is not a case of

[
a� (�
b
�)](f).

With multiplication recursively characterized, it is easy to see that we can arrive at
Association × without appeal to proof by induction. We have:

Association × :
f(ca)b

fc(ab)
Proof

f(ca)b

(fca )b

((fc )a )b

(fc )ab

fc(ab)

Let us next consider the more interesting case of Distribution.

Distribution 1:
fa(b+c)

f(ab)+(ac)
Proof

fa(b+c)

(fa )b+c

(fa )c ((fa )b )
fac (fab )

f(ab)+(ac)

With rule Rule II in place, we arrive at the following:

Distribution 2:
f(b+c)a

f(ba)+(ca)
Proof

f(b+c)a

(fb+c )a

((fc (fb )a

(fc )a ((fb )a ) Rule II
fca (fba )

f(ba)+(ca)

Implicit Rule III enables the parallel of the usual recursive definition of
multiplication:

a0 = 0
fa0

(fa )0

(fa� )0
�

�

f0
�

ab′ = (ab) + a
fa(b+1)

(fa )b+1

(fa )1((fa )b

fa1(fab )

(fa )0+/(fab )
[fa (fa )0](fab )

[fa (�)](fab )
fa (fab ) Rule I

f(ab)+a

)
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These results were carried out without recourse to any emulation of proof by
mathematical induction.

When it comes to a proof of Commutation + and Commutation ×, however, an
emulation of mathematical induction seems inescapable. I shall take that up in the
next section. For the present we have enough to see that Wittgenstein has, after all, a
means for solving Ramsey’s problem of how to emulate quantification over numbers.
It is done by simply invoking the N-operator treatment of quantification. Ramsey’s
problem boils down to the question of whether the Tractatus can emulate the following

(∃k)(Num(k) ∧ k + 2 = m)

(∃k)(Num(k) ∧ k × 2 = m).

The only way forward is by means of Tractarian Logicism. That is, one can use the
N-operator to emulate quantification over the operations used in arithmetic. The
application of the N-operator notation readily yields the following:

(∃ f)ϕf (f)ϕf

ϕf1 ∨ ... ∨ ϕfn ϕf1 ∧ ... ∧ ϕfn
NN (ϕf1, ... , ϕfn) N (N (ϕf1), ... , N (ϕfn))

As we see, this emulates finitely bounded quantification over operations generally, and
this includes those operations for arithmetic characterized recursively by expressions
with numeral exponents. It is bounded quantification—though the finite bound (given
by using schematic n) can be of any finite size.

An important feature emerges. Obviously, there are no numbers at all in the
“domain” (as it were) of Wittgenstein’s emulation of quantification over natural
numbers. The domain contains operations alone. At first, one may worry that some
among the operations are not arithmetic operations. (Let us call those Fregean
functions that behave arithmetically, “uniform.’) To illustrate, notice that there are
operations f such that, where “m” and “n” are distinct numerals, we get the following:

fm�

fn�

In arithmetic, of course we get uniformity, so that 0 = 1, 0 = 2, 1 = 2, and so forth.
But this is not to be expected in general for any operation whatsoever. For a given
operation, it may well be that m-many applications of it to a base take us to the same
outcome as n-many applications of it to that same base. All we have a right to expect
is that we get the following rule of inference:

From
fm(fc� )

fn(fc� )
infer

fm�

fn�
.

(It will be convenient, as before, to sometimes drop the argument place of the function
sign.) From this rule it is easy to arrive at the result:

From
f1

f2 infer
fm

fn
.

That is, from two repetitions yielding the same outcome as one repetition, infer
that m repetitions yield the same outcome as n repetitions. Consider the following
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inference:

From
k(f2)
f6 and

f6

f4(f2)
infer

k

f4 .

Applying k to f2 we get f6, which of course is f4(f2) but we cannot infer that k is the
same as f4 unless uniformity is involved. If k and f are uniform, the reasoning would
be acceptable, since

k(f1)
f5 ,

k(f2)
f6 ,

k(f3)
f7 , ... etc.

What then assures the uniformity? The answer lies the N-operator emulation of
quantification. It readily solves the problem that not all operations k will behave the way
arithmetic operations behave. That is because, in any given application of N-operation,
one requires a recipe determining its use, and thereby Wittgenstein can simply rely on
some such recipe to exclude problematic cases. According to the Tractatus, one cannot
introduce a predicate “Num(k)” to assure that the quantification concerns arithmetic
operations k. This is a pseudo-predicate. The uniformity of the operations intended
has to be shown. It is shown by the � clause of N-operator used for the emulation. It
allows a recipe for selection, and it seems that one can thereby select as bases, in any
given case, just the uniform operations. Thus, we can proceed without introducing any
special new signs. The uniformity of the operations selected is shown and not said by
any pseudo-predicate “Num(k).”

With uniformity understood, we can emulate quantification over numbers, solving
Ramsey’s problem. Consider the following cases:

(∃k)(Num(k) ∧ 2 + k = m)

(∃k)
(
k(f2)
fm

)

NN

(
k1(f2)
fm

, ... ,
kn(f2)
fm

)

The commuted form offers nothing new:

(∃k)(Num(k) ∧ k + 2 = m)

(∃k)
(
f2(k)
fm

)

NN

(
f2(k1)
fm

, ... ,
f2(kn)
fm

)
.

The quantifier has an arbitrary large finite bound. In this cases, recall that the hidden
selection recipe � of application of N-operation is suppose to handle showing, without
further premise, that the operations k and f are uniform. In the case of multiplication
we have the following:

(∃k)(Num(k) ∧ k × 2 = m)

(∃k)

(
Ω2
�(k)

fm�

)
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NN

(
Ω2
�(k1)

fm�
, ... ,

Ω2
�(kn)

fm�

)
.

Alternatively:

(∃k)

(
k2
�

fm�

)

NN

(
(k1)2

�

fm�
, ... ,

(kn)2
�

fm�

)
.

Recall that (Ω2
�)(k) tells us that k is to go into the argument position to form k2

� . Here
we are emulating with the N-operator quantifying over a first-level uniform function
k in k × 2. A special issue arises, however. In expressing the “commuted” form 2 × k
care must be taken since we shall be quantifying over a higher-level function. But all is
well. We have:

(∃k)(Num(k) ∧ 2 × k = m)

(∃Ω)

(
(Ω)�(f2

	)
fm�

)

NN

(
(Ω1)�(f2

	)
fm�

, ... ,
(Ωn)(f2

�)

fm�

)
.

Here the N-operator is emulate quantifying over a higher-level function. (Note that
“2” is not itself a function sign and we can’t make the function sign “k” into sign that
can occupy the position of a numeral.) We can go on to emulate the following as well:

(∃k, p)(Num(k) ∧ Num(p) . ∧ . k × p = m)

(∃Ω)(∃ f)(
(Ω)�(f	)
fm�

).

This works because the “higher-level” functions (Ω)� are, e.g., ((k)n)� . This finally
addresses Ramsey’s concern that the Tractatus is not viable unless it can emulate
quantification over numbers. It can—as long as we can accept the Tractarian logicist
interface of the arithmetic operations with the N-operation.

§6. Tract-Induct and showing. The Tractarian logicist interpretation says that the
N-operator emulates only bounded quantification. This is abductively corroborated
from the writings of Wittgenstein’s Philosophische Bemerkungen. Consider the
following:

127 What is the meaning of such a mathematical proposition as (n)(
4+n = 7)? It might be a disjunction ‘4+0 = 7. ∨. 4+1 = 7. ∨. 4+2 =
7. ∨. etc. ad inf.’ But what does that mean? (Marginal note: NO, since
a disjunction wouldn’t have the sign ‘etc., ad inf ’ at the end but a term
of the form 4+x). I can understand a proposition with a beginning
and an end. But can one also understand a proposition with no end?
... I also find it intelligible that one can give an infinite rule by means
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of which you may form infinitely many finite propositions. But what
does an endless proposition mean? (PB , p. 148.)

128 But then I can’t say of an equation ‘I know it doesn’t hold for
some substitution—I’ve forgotten now which; but whether it doesn’t
hold in general, I don’t know?’ Doesn’t that make good sense, and
isn’t it compatible with the generality of the inequality? Is the reply:
‘If you know that the inequality holds for some substitution, that
can never mean ‘for some (arbitrary) member of the infinite number
series’, but I also know too that this number lies between 1 and 10,
or within some such limits’. Can I know that a number satisfies the
equation with a finite section of the infinite series being marked out
as one within which it occurs? NO. (PB , p. 149.)

173 But then what would a correct, as opposed to amorphous
explanation of [Principia’s ancestral] R� be like? Here I do need
‘(n)...’. In this case, this expression seems to be admissible. But, to be
sure, ‘ (∃x)ϕx’ can’t be taken to presuppose the totality of numbers.
Ramsey’s explanation of infinity also is nonsense for the same reason, ‘
(n)((∃nx)ϕx)’ would presuppose that we were given the actual infinite
and not merely the unlimited possibility of going on. But how would
we put the proposition ‘ ϕ is satisfied by same number of objects as
�’? One would suppose ‘ (n)((∃nx)ϕx ∧ (∃nx)ϕx)’. (PB , p. 209.)

But is it inconceivable that I should know someone to be my ancestor
without having any idea at what remove, so that no limits would be
set to the number of people in between. (Marginal note: Strangely
enough the general concept of the ancestral relation also seems to
be nonsense now. It seems to me that the variable n must always be
confined as lying within limits.) (PB , p. 210.)

The best explanation of some important features of these passages is that they
reflect Tractarian logicist positions. On the emulation of quantification by the N-
operator, the quantifiers involved in the definition of the ancestral would, according
to the Tractarin logicist interpretation, be finitely bounded—though any bound is
allowed. The argument I’m offering is abductive. Admittedly, Wittgenstein does not
explicitly mention his N-operator. Nevertheless, that feature is precisely what we
find Wittgenstein observing when he rejects the intelligibility of “(n)((∃nx)ϕx)” and
observes that a proper emulation of quantification would be bounded. We see the
trajectory Wittgenstein was exploring. (It should be noted that more abductive evidence
may be found in Moore (2016).)

The problem of finding a Tractarian emulation of proof by Mathematical Induction
remains. To this end, note well that it is of no help toward achieving showing to adopt
the following as a primitive inference rule:

From � ϕ0 ∧ (m)(ϕm ⊃ ϕ(m + 1)) infer � (n)ϕn.

Of course, in a first order elementary arithmetic, one typically adopts a schema of
mathematical induction. Its viability relies on the assumption that the intended model
of the first-order arithmetic is the domain of natural numbers as abstract particulars.
Wittgenstein does not accept an ontology of natural numbers. He cannot, therefore, rely
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upon such a model theoretic approach.Wittgenstein knew that showing requires more
then a technique of evading “Num(x)” by simply adopting a convention of using special
“numeric” variables, “m” and “n.” Tractarian showing respects the requirements of
“honest toil,” to borrow a colorful phrase from Russell.We have seen, however, that the
N-operator emulation of quantification can emulate the quantification over operations
that emulate numbers. This offers a way of using “m” and “n” so that they show the
structural features of a system of natural numbers. So the central problem before us
concerns the inductive clause

(m)(ϕm ⊃ ϕ(m + 1))

Unfortunately, Wittgenstein N-operator emulation of quantification has to live with
finitely bounded quantifiers. That gets in the way of successfully emulating proof by
Mathematical Induction.

It is useful to rehearse the usual inductive proof of Commutation + to show its
dependence on universal quantification over numbers in its Inductive Step. The usual
proof runs as follows:

� (n)(m)(m + n = n +m)

Base : (m)(m + 0 = 0 +m)

We prove this base case by a subordinate induction:

Base1 : 0 + 0 = 0 + 0

Induct1 : Assume m + 0 = 0 +m Show m′ + 0 = 0 +m′

m′ + 0 = (m + 0)′ = (0 +m)′ = 0 +m′.

Next we go on with the main induction:

Induct : Assume (m)(m + n = n +m) Show (m)(m + n′ = n′ +m)

We prove this by a subordinate induction:

Base2 : 0 + n′ = n′ + 0

Induct2 : Assume m + n′ = n′ +m Show m′ + n′ = n′ +m′

By assumption for Induct, instantiating (m)(m + n = n +m) we get

m′ + n = n +m′.

This can only happen if the quantifier ranges over all the numbers. Wittgenstein’s
bounded schema emulating quantification will not suffice. But with this in place,
we get:

m′ + n′ = (m′ + n)′ = (n +m′)′ = (n +m)′′

By assumption for Induct2 and our assumption for Induct, we get:

(n +m)′′ = (m + n)′′ = (m + n′)′ = (n′ +m)′ = n′ +m′

As we can see, the proof depends essentially on the universal quantifier having within
its scope all the natural numbers.

All the same, there are cases where the unboundness is avoided, and this I surmise
is why Wittgenstein failed to realize that his arbitrarily bounded quantification is not
enough. To see this, consider the following proof of Commutation + using what I
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call “Tract-Induct.” The approach only works when one can employ stable schematic
letters—i.e., when we can fix all the values of the schematic use of n together. We have:

+1 Lemma:
fa+1

f1+a

(Base)
f0+1

f1+0 Proof
f0+1

f1(f0)
f0+/(f0)
f(f0)
f

f(f0)

f0+/

f1

f0(f1)
f1+0

(Induction) Assume:
fa+1

f1+a Show:
f(a+1)+1

f1+(a+1)

Proof:
f(a+1)+1

f1(fa+1)
f1(f1+a ) assumption

f1(fa (f1))
[f1(fa )](f1) Rule I

fa+1(f1)

f1+(a+1)

With this Lemma in place we can offer a Tract-Induct proof of the following:

Commutation +
fa+b

fb+a

(Base)
f0+1

f1+0

(Induction) Assume:
fa+b

fb+a
Show

f(a+1)+b

fb+(a+1)

Proof:
f(a+1)+b

fb (fa+1)
fb (f1(fa ))

[fb (f1)](fa ) Rule I
[f1(fb )](fa ) Lemma
f1(fb (fa )) Rule I

f1(fa (fb )) assumption
[f1(fa )](fb ) Rule I

fa+1(fb )

fb+(a+1)

This Tract-Induct proof does not depend on having to emulate an unbounded universal
quantifier over numbers. (Compare the discussion of Goodstein’s interpretation in
Marion & Mitsuhiro (2018).)

Similarly, a proof by Tract-Induct of the commutation of multiplication is also
forthcoming. But to facilitate ease of the proofs, let us first prove two lemmas that will
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make the main proof easy.

Lemma 1:
fa1

f1a Proof
fa1

(fa )1

(fa )0+/

fa (f0)
fa

(f�)a

[f(f0)]a

(f0+/)a

(f1)a

f1a

Lemma 2:
fa0

f0a Proof:
f(a+1)0

(fa+1)0

�

(f0)a+1

With this in place we can proceed to a proof of commutation of multiplication:

Commutation ×: f
ab

fba

(Base): f
a0

f0a by Lemma 2

(Induction Step) Assume: f
ab

fba
Show f(a+1)b

fb(a+1)

Proof: f(a+1)b

(fa+1)b

[(f1(fa )]b

f1b (fab ) Rule II
fb1(fab ) Lemma 1
fb1(fba ) Induct

(fb )a+1

fb(a+1)

In this way, proof by Tract-Induct is made possible by Wittgenstein’ s approach to
arithmetic in terms of functions (operations) recursively defined with the help of
numeral exponents. The lesson is that when proof by mathematical induction takes the
form of Tract-Induct, where the numerals are stable throughout the proof then it is
allowable.

There is abductive evidence for this in Philosophische Bemerkungen. Wittgenstein
wrote (PB , p. 197):

If one regards the [inductive] proof as being of the same sort
as the derivation of (x + y)2 = x2 + 2xy + y2, then it proves the
proposition A(c+1)’ on the hypothesis of A(c)’ ... It also as a
generality, but not the one we desire. This generality does not lie
in the letters, but just as much in the particular numbers and consists
in the fact that we can repeat the proof.

The letters used in Tract-Induct are stable for any particular numeral assignment and
thus the entire Tract-Induct proof acts like a proof-schema which can be repeated for
any assignment. The situation is quite unlike the traditional mathematical inductive
proof illustrated above which requires the an unbounded quantifier over all numbers.
The lesson to be distilled from these examples, therefore, is that in these simple cases
the inductive clause

(x)(Num(x) . ⊃ . ϕx ⊃ ϕ(x + 1))
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of the usual mathematical induction schema can be successfully reinterpreted as schema
expressing “sameness” of outcomes of two recursive functions (operations). That is
viable only when there is a stability of form involved with all the schematic letters. What
the inductive clause endeavors to establish is not that given functions in question are
recursive (since we are given that) but that the two recursive functions are “the same”
(i.e., they wherever they operate, they walk down to the same base. In his Philosophische
Bemerkungen Wittgenstein’s writings suggest that he knew this. It thereby provides
abductive evidence that the Tractarian logicist interpretation is correct. The context of
his writing is his criticism of Skolem’s proof of association + by appeal to the traditional
principle of Mathematical Induction. Wittgenstein offers the following remarks about
what he takes to be the nature of a proper proof of the result (PB , p. 197):

... But how can it prove this proposition? It obviously points along
the series of proofs

a+[b+(  +d)] [a+(b+  )]+d [(a+b)+  ]+d (a+b)+[  +d]= = =

a+[b+{( +d)+d}] [a+{b+(  +d)}] +d [(a+b)+(  +d)] +d (a+b)+[(  +d)+d]= = =

That is a stretch of the spiral taken out of the middle. is a stop-gap
for what only emerges in the course of the development. If I look at
this series, it may strike me that it is akin to the definition A(1); that
if I substitute ‘1’ for ‘c’ and ‘1’ for ‘d’, the two systems are the same.

In the proof, at any rate, what is to be proved is not the end of the
chain of equations.

The proof shows the spiral form of the law. But not in such a way that
it comes out as the conclusion of the chain of inferences.

Though the passage is difficult,8 it seems clear enough that Wittgenstein is suggesting
that, instead of appeal to the traditional proof by mathematical induction (as found
in Skolem), we can appeal to our “seeing the spiral pattern.” Wittgenstein’s reference
to “definition A(1)” is just to indicate that the definition is that of a recursive function
of arithmetic association. Notice again that Wittgenstein writes:

If I look at this series, it may strike me that it is akin to the definition
A(1); that if I substitute ‘1’ for ‘c’ and ‘1’ for ‘d’, the two systems are
the same.

The point he is after is that any finite segment of the recursive walk down in such
an inductive proof is itself tantamount to a repetition of the very definition of the

8 The original had the typo a + (b + ((� + d ))) at the left-most entry in the second line. I
have fixed the typo to read: a + (b + ((� + d )) + d ). Somehow this was never corrected in
editions of the book.
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recursive function involved. It is by this, he suggests, that one sees the spiral. He writes
(p. 199):

To know that you can prove something is to have proved it.

A

7 + (8+9) = (7+8) + 9. How do I know that this is so, without having
to give a particular proof of it? And do I know just as well as if I had
given a complete derivation of it? Yes—Then that means it really is
proved. What’s more, in that case it cannot have a still better proof;
say, by my carrying out the derivation as far as this proposition itself.
So it must be possible for me to say after running through one turn
of the spiral ‘Stop! I don’t need any more, I can already see how it
goes on’. And then every higher step must be purely superfluous and
doesn’t make the matter clearer. If I draw all the whorls of the spiral
as far as my point, I cannot see that the spiral leads to it any better
than if I draw one. It is only that each shows the same thing in a
different form.

That seems precisely the idea behind our Tract-Induct. Having been given operations
(functions) that we know to be recursive, we may be able see a spiral form emerge
from the calculation of these recursive functions in an equation involving them. This,
in Wittgenstein’s view, evades the unbounded quantifiers used in the inductive clause
of the traditional proof by mathematical induction.

All is well, but for the fact that Tract-Induct (seeing the spiral, understanding the
“and so on”) requires that we can reason from a stable and fixed (albeit schematic and
arbitrary) use of numerals a, b, etc. This has serious limitations on inductive proofs
since it is far from clear that such a stable and fixed use of numerals would suffice.
Thus, in spite of Wittgenstein’s having an approach that addresses Ramsey problem
of quantification, and in spite of its capturing Tract-Induct, the use of unbounded
quantification is still essential. Mathematical Induction in its traditional form is lost,
and Wittgenstein seems quite willing to live without it.

It will not suffice to replace the inductive clause with the weaker notion that from any
numerical position (arbitrarily bounded) we can recursively get down to the base. To
see the spiral at some finite segment of the inductive walk down to the base cannot itself
assure that the recursive functions involved do not depart from the spiral elsewhere
in the walk down. The problem, in a nutshell, lies in that one cannot transition from
any to every even though the walk down of a recursive function to its base is always
finite. Recursive combinatorial logic and arithmetic rests with the concept of any, i.e.,
bounded quantification. Although the bound can be of any finite height, and though

https://doi.org/10.1017/S1755020320000350 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000350


TRACTARIAN LOGICISM: OPERATIONS, NUMBERS, INDUCTION 1007

one can invent recursive functions to readjust the height, this can never capture the
notion of all needed for proof by mathematical induction.

§7. Appendix: Wittgenstein versus Fitch. In his book Elements of Combinatory
Logic (1974), Frederick Fitch offers important insights in his attempt to construct
a recursively defined combinatorial logic and arithmetic. He doesn’t mention
Wittgenstein’s Tractatus. But it is very useful to compare their efforts. Fitch’s
combinatorial approach is oriented to functions in Frege’s sense, and it endeavors to
emulate quantification over natural numbers by quantifying over functions generally.
Fitch numbers, as I shall call them, are defined as functions of a special sort. He offers
the following definitions:

•
0fgh(k1, ... , kn) = df CKfghk1, ... , kn
•
1fgh(k1, ... , kn) = df Ifghk1, ... , kn
•
2fgh(k1, ... , kn) = df(I + I )fghk1, ... , kn
•
3fgh(k1, ... , kn) = df(

•
2 + I )fghk1, ... , kn

•
4fgh(k1, ... , kn) = df(

•
3 + I )fghk1, ... , kn etc.

I have used a dot to distinguish Fitch’s numbers as functions from Wittgenstein’s
numeral superscripts.9 Fitch’s functions enable one to define addition and
multiplication with bindable function variables appearing as exponents. Fitch
introduces the following definition:

(hf)(k1, ... , kn) = df(fh)k1 ... kn.

Thus, Fitch’s definitions allow:

f
•
a×

•
b = (

•
a ×

•
b)f

Fitch defines “addition” and “multiplication” with respect to functions in general:

fghk1 ... kn = df f(g(h(k1(... kn))))

[f × g]hk1, ... , kn = df g(fh)k1 ... kn

[f + g]hk1, ... , kn = df (hf)(hg)k1 ... kn.

Fitch’s notations in many ways parallel results that Wittgenstein obtained by employing
numeral exponents. That is, they yield the same outcomes of calculation. We arrive at
the following, where we put Wittgenstein numbers on the left and Fitch numbers on
the right:

f0ghk1, ... , kn =
•
0fghk1, ... , kn = f

•
0ghk1, ... , kn

9 Fitch has the following:
I [f g h k1, ... , kn] = fghk1, ... , kn
C [f g h k1, ... , kn] = fhgk1, ... , kn
K [f g h k1, ... , kn] = fhk1, ... , kn
B[f g h k1, ... , kn] = f(gh)k1, ... , kn
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f1ghk1, ... , kn =
•
1fghk1, ... , kn = f

•
1ghk1, ... , kn

f2ghk1, ... , kn =
•
2fghk1, ... , kn = f

•
2ghk1, ... , kn etc.

To illustrate, Fitch embraces the following transformations:

fp×
•
0ghk1, ... , kn = [p ×

•
0]fghk1, ... , kn

•
0(pf)ghk1, ... , kn = ghk1, ... , kn
•
0fghk1, ... , kn = f

•
0ghk1, ... , kn

This serves as a demonstration that

fp×
•
0ghk1, ... , kn = f

•
0ghk1, ... , kn,

where p is any function whatever, natural number or otherwise. Hence, in particular
Fitch has:

f(
•
3 ×

•
0)ghk1, ... , kn = f

•
0ghk1, ... , kn

i.e., f
•
3×

•
0 = (

•
3 ×

•
0)f =

•
0f

As we can see, Fitch’s techniques are similar in important ways to the Tractarian
numbers as they are construed them in Tractarian Logicism. The presumed benefit of
Fitch’s approach, however, is that it embraces numbers as themselves functions while
Wittgenstein’s Tractatus rejects entities that are numbers altogether. Fitch’s approach
embraces normal quantification over natural numbers directly by quantifying over
those functions that are Fitch numbers. But with this benefit comes a deficit. Fitch’s
approach requires one to introduce an expression “Num(f)” which is used to single
out which among functions are Fitch’s numerical functions. This is important since,
for example, Fitch does not arrive at:

f
•
0×pghk1, ... , kn = f

•
0ghk1, ... , kn

Instead, what Fitch derives is the following:

Num(p) . ⊃ . f
•
0×pghk1, ... , kn = f

•
0ghk1, ... , kn.

Thus in particular,

f
•
0×

•
3 = (

•
0 ×

•
3)f =

•
0f.

Happily, this deficit does not show up with the emulation of quantification over
numbers in Tractarian logicism. That is because we were able to implement showing
so that the arithmetic functions (“uniform functions” as I called them) were singled
out. Of course, neither Fitch’s nor Tractarian Logicism can define the expression
“Num(f).” Indeed, this is a pseudo-predicate according to Tractarian logicism. The
problem of defining “Num(f)” is, as we have already seen, that neither system embraces
the impredicative comprehension axiom found both in Frege’s work and in Whitehead
and Russell’s Principia Mathematica. Without impredicative comprehension one
cannot capture the ‘ancestral’ relation that is central to the notion of ‘natural number’.
Wittgenstein’s view is that the expression “Num(f)” is an unsinning pseudo-predicate
just as is “Num(x).” Be this as it may, the Tractarian approach emulates quantification
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over numbers, addressing Ramsey’s concern. Wittgenstein’s Tractarian approach need
only distinguish those functions that are uniform from those that are not, and thereby
it entirely avoids the situation that arises in Fitch’s system of having to introduce
the expression “Num(f)” as a consequence of the fact that Fitch’s natural numbers
are only some among functions. Moreover, we found that Ramsey’s concern can be
addressed without resorting to Fitch’s combinatorial techniques. We were able to
emulate quantification over natural numbers in such a way that does not introduce
natural numbers as entities. This is a very important difference between the Tractarian
logicist approach to arithmetic and Fitch’s approach to a combinatorial logic of
arithmetic. The Tractarian logicist approach has no numbers at all. It embraces
operations (i.e., Fregean functions given by an “and so on” clause among which are
recursive functions defined with the help of numeral exponents). In stark contrast with
Fitch’s approach, it avoids having to take “Num(f)” as a primitive expression of the
system. There is yet another important feature of comparison that arises with Fitch’s
combinatorial approach. Like the Tractarian logicist approach, Fitch has difficulty in
recovering mathematical induction. But Fitch cannot accommodate even Tract-Induct
because he cannot eliminate “Num(f).” Having introduced “Num(f)” as a primitive,
Fitch adopts an infinitary inference rule for it and thereby hopes to emulate proof
by mathematical induction. An infinitary inference rule stated for “Num(f)” would
certainly not be acceptable to Wittgenstein. Fitch’s approach is incompatible with
showing. Fitch’s infinitary inference rule appeals both to unbounded quantification
over functions and the pseudo-predicate “Num(f)”.
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