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This paper describes an algorithm for evaluation of magnetic compass deviation based

on the least squares method. An automatic system was built, coupled with a magnetic

compass recording device, for fine estimation of the deviation curve on the basis of an

incomplete compass swing circulation.

1. THE HEART OF THE PROBLEM. Present-day classical magnetic

compasses have the ability to transmit their readings. Therefore, it is possible to

incorporate the magnetic compass as one of the sensors of an integrated navigation

system. That raises the problem of taking into account compass deviation during

computation in the system. For this purpose, it is convenient to use the well-known

formula:
δ¯AB sinKMC cosKMD sin 2KME cos 2KM, (1)

where KM is the magnetic course, and A, B, C, D, E are the coefficients of deviation.

The formula, in fact, is a particular case of a Fourier series of the second degree,

called the Archibald Smith formula in navigation handbooks (Hobs, 1990; Piecaev et

al., 1969). It was the author’s aim to create an application software for automatic

evaluation of the coefficients A, B, C, D and E for a system consisting of a computer

coupled with an inductive probe for reading the position of the compass rose. As a

result, computer software was created that can be a part of an integrated system.

Moreover, the application software was used for execution of a simple deviation

monitor comprising: a magnetic probe mounted during measurement on the

magnetic compass, and a laptop computer. Immediately after carrying out a compass

swing, a table or a graph of the deviation can be printed out together with the

parameters describing the curve. Experiments showed that, for evaluation of the

coefficients of deviation, there is no need to perform the full compass swing

circulation of 360°. Satisfactory results were obtained after completing a turn of

about 100°.
2. DEVIATION EVALUATION WITH THE LEAST SQUARES

METHOD. The most popular method for evaluating deviation is the execution of

a complete compass swing circulation and a comparison between compass and

magnetic courses, or compass and magnetic bearings, on many courses. Usually,

this is done by readings on 36 courses, with steps of 10°. Another popular method is

deviation evaluation on eight courses, being the multiple of the angle of 45° (Heine,

1990; Maloney, 1985; and Piecaev et al., 1969). Then, applying the formulae given in

every navigation handbook, the coefficients of formula (1) are calculated. Finally,

knowing these coefficients, a smooth deviation curve can be estimated from (1).
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Both methods are significant simplifications, for they do not take into account the

errors of each measurement taken on the circulation, particularly in the case of

comparing the measurements with the gyrocompass readings, where differences can

be of 1°. For values of the deviations that may occur in practice, these errors can

deform the results significantly. During circulation, it is possible to take more

readings than the minimum required for the evaluation of the five coefficients in (1).

Therefore, the idea of using one of the estimation methods can be suggested.

The assumption was made that, during circulation, it is possible to take discreet

measurements of compass course KK and to record them at a determined frequency.

It will be assumed that the values of magnetic courses KM are known at these

moments. The course, in the program, is calculated using the assumption that the

circulation is steady; that means the turn speed is constant, and the initial and the

final courses are known. For that purpose, the author uses the DGPS receiver and

evaluates current bearings on two chosen points coded in the receiver as WayPoints.

In Gdansk Bay, it is convenient to choose the lighthouses of Nowy Port and Hel

(Figure 1). It is also convenient to start manoeuvring from the Southerly course and

Figure 1. The diagram of manoeuvring.

turn to the left. The moment of crossing the vessel head on the first direction is a

suitable time for starting the measurement, and the moment of crossing the direction

on the lighthouse of Hel – finishing them. Since an error of the DGPS system in

Gdansk Bay is below 2 metres (Reference Station Rozewie), and the distance to the

lighthouse about 10 nautical miles, the error of computed direction can be assessed

as a fraction of one degree.
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The deviation is recorded every 10° as the difference between the recorded compass

course and the magnetic course obtained from interpolation of the angle between the

initial and final courses on both lighthouses. The deviation on individual courses is

calculated from (2).

∆
i
¯KM

i
®KK

i
, i ` 1, n, (2)

The condition of correct deviation evaluation is to cross the reference directions

twice by the vessel diameter. The directions do not need to be identical, that means,

there is no need to carry out the full circulation, but only a part of it. From the

assumption of a steady turn, the change of the course should be made evenly, so

during interpolation the computer’s internal clock can be used to collect the following

compass and magnetic (reference) courses. By this means, the vectors of the

measurements of magnetic courses KM
i
and compass courses KK

i
, where i¯ 1 to n,

can be created. Using (2), the difference of these values for each i gives the vector of

the measured deviations.

Each of the vector’s values is described by the same equation, with constant

coefficients A, B, C, D and E. However, because of the errors of the measurement

process these values differ from the real ones.

∆
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To improve the estimates is a classical task of middle measurements levelling.

Interesting is the case when the function (4) is a minimum. That means, an attempt

is being made to determine such values of A, B, C, D and E where the square root of

the differences between the values of the deviation obtained from (1) and the

measurements is the least.

J(A,B,C,D,E)¯ ’ 0 3
n

i=<

(AB sinKM
i
C cosKM

i
D sin2KM

i
E cos2KM

i
®∆

i
)=1.
(4)

It is convenient to write (3) in the matrix form:

Z¯GK, (5)

where G has the following form:
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The measurements vector:

ZT ¯ [∆
<
∆
=
,…,∆

n
], (7)

and the result vector:

KT ¯ [A,B,C,D,E ]. (8)

From the assumption on validity of the theory of vessel magnetism, it can be

assumed that the coefficients K do not change significantly over months; this means

that the influence of time on their value during measurements can be ignored.
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Table 1. The true values δ and approximated values ∆ of the deviation

KM 0 10 20 30 40 50 60 70 80

δ ®0±50 0±24 1±01 1±76 2±43 2±97 3±36 3±57 3±60

∆ ®0±5 0±0 1±0 1±5 2±5 3±0 3±0 3±5 3±5

KM 90 100 110 120 130 140 150 160 170

δ 3±49 3±26 2±94 2±59 2±55 1±96 1±73 1±59 1±52

∆ 3±5 3±0 3±0 2±5 2±5 2±0 1±5 1±5 1±5

KM 180 190 200 210 220 230 240 250 260

δ 1±50 1±51 1±51 1±47 1±36 1±15 0±84 0±43 ®0±05

∆ 1±5 1±5 1±5 1±5 1±5 1±0 1±0 0±5 0±0

KM 270 280 290 300 310 320 330 340 350

δ ®0±57 ®1±09 ®1±54 ®1±89 ®2±09 ®2±11 ®1±94 ®1±57 ®1±04

∆ ®0±5 ®1±0 ®1±5 ®2±0 ®2±0 ®2±0 ®2±0 ®1±5 ®1±0

Figure 2. The diagram of the measured deviation.

Here we can use the well-known theorem:

If Z is a n-dimensional vector and G is a n by m matrix of linear independent

columns, there is exactly one m-dimensional vector K that will minimize the norm

rZ®GKr for all K (taken in the n-dimensional Euclid space).

Moreover,

K# ¯ (GTG)−<GT Z. (9)

Therefore, the problem of finding the optimal coefficients A, B, C, D and E that

minimize the function (4), results in the solution of (9).

3. COMPUTATIONAL EXAMPLE. To illustrate the effectiveness of

the method, the computation results of the deviation obtained on the basis of the

simulated deviation given in the Table 1 and Figure 2 are used. Let us assume that

the coefficients of the deviation curve are as follows:

A¯ 1, B¯ 2, C¯®1, D¯ 1, E¯®0±5.

Therefore, the deviation curve has the values as in Table 1. Enclosed are also the

approximated values of ∆ that are used in computation discussed in the next section.
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From these measured deviations, as examples, two ten-element vectors comprising

different measurement sectors (changes of the course) can be formed. One vector with

the measurements of the sector from 0° to 90° (measurements taken every 10°) :

ZT ¯ [®0±5, 0, 1±0, 1±5, 2±5, 3±0, 3±5, 3±5, 3±5],

and the other from 0° to 360° (measurements every 40°) :

ZT ¯ [®0±5, 2±5, 3±5, 2±5, 1±5, 1±5, 1, ®1, ®2, ®0±5].

On the basis of these vectors, using (9), the respective vectors K were evaluated, and

using these, the deviation curves were plotted and are shown at Figures 3 and 4. The

Figure 3. The deviation curve for A, B, C, D and E parameters computed from measurements

in the sector of 90°. A¯ 0±83, B¯ 2±31, C¯®1±1, D¯ 0±91 and E¯®0±32.

Figure 4. The deviation curve for A, B, C, D and E parameters computed from measurements

in the sector of 360°. A¯ 0±99, B¯ 1±92, C¯®0±95, D¯ 1±04 and E¯®0±5.

measurements are plotted using the dashed line, and the calculated deviation using

the solid line. The results from the evaluation of the coefficients of (1), and the curves

computed from them, show that obtained results are identical.

4. DISCUSSION. The method presented can be perceived as a modification

of the well-known technique for the deviation curve evaluation on the basis of the

measurements taken on eight courses. However, the method is not suitable for

manual calculations ; it requires an appropriate computing device, supported with
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the inductive probe for transmission of the course readings. The method allows

levelling of some part of the errors arising during reading of the magnetic course,

and allows saving of the time devoted to taking measurements.
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