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Abstract

Background: Over the past several years, the concept of prodromal Parkinson disease (PD) has been increasingly
recognized. This term refers to individuals who do not fulfill motor diagnostic criteria for PD, but who have clinical,
genetic, or biomarker characteristics suggesting risk of developing PD in the future. Clinical diagnosis of prodromal PD
has low specificity, prompting the need for objective biomarkers with higher specificity. In this qualitative review, we
discuss objectively defined putative biomarkers for PD and prodromal PD. Methods: We searched Pubmed and Embase
for articles pertaining to objective biomarkers for PD and their application in prodromal cohorts. Articles were selected
based on relevance and methodology. Key Findings: Objective biomarkers of demonstrated utility in prodromal PD
include ligand-based imaging and transcranial sonography. Development of serum, cerebrospinal fluid, and tissue-based
biomarkers is underway, but their application in prodromal PD has yet to meaningfully occur. Combining objective
biomarkers with clinical or genetic prodromal features increases the sensitivity and specificity for identifying
prodromal PD. Conclusions: Several objective biomarkers for prodromal PD show promise but require further study,
including their application to and validation in prodromal cohorts followed longitudinally. Accurate identification of
prodromal PD will likely require a multimodal approach. (JINS, 2016, 22, 956–967)
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder
that has traditionally been defined clinically, based on
the presence of specific motor deficits. However, motor
symptoms develop at a stage of advanced neuronal loss, when
there is approximately 60–80% striatal dopaminergic dener-
vation (Bernheimer, Birkmayer, Hornykiewicz, Jellinger, &
Seitelberger, 1973; Fearnley& Lees, 1991). Based on the latter
finding, combined with clinical and biomarker data, it is
evident that PD pathology begins long before onset of the
motor symptoms that constitute the diagnostic criteria for
PD (Hughes, Daniel, Kilford, & Lees, 1992).
In 2003, Braak and colleagues proposed a pathologic

staging system for PD based on observations that Lewy body
pathology appears to progress in a caudal to rostral direction
(Braak et al., 2003). This hypothesis accounts for the
well-documented non-motor symptoms that appear years
before motor symptoms. These observations, along with

identification of genetic mutations with varying degrees of
penetrance that may cause or increase risk of PD, have led to
the emergence of the concept of prodromal PD. The term
prodromal PD encompasses individuals who do not fulfill
motor diagnostic criteria for PD (Hughes et al., 1992), but
who have characteristics suggesting that they are at risk of
developing PD in the future. The goals of identifying such
individuals are to inform counseling, and so that therapies to
halt or slow neurodegeneration can be instituted early on,
when they become available.
Since the inception of the idea of prodromal PD almost

a decade ago (Siderowf & Stern, 2008; Stephenson,
Siderowf, & Stern, 2009), significant progress has been made
in defining this concept. Intensive work has focused on
non-motor symptoms seen in the prodromal state (Table 1).
These have been reviewed elsewhere in detail (Berg et al.,
2015; Chahine et al., 2015; Postuma et al., 2012), and include
hyposmia (Gaenslen et al., 2014; Liepelt et al., 2011; Noyce
et al., 2014; Ponsen, Stoffers, Twisk, Wolters, & Berendse,
2009; Ponsen, Stoffers, Wolters, Booij, & Berendse, 2010;
Ross, Abbott, Petrovitch, Tanner, & White, 2012), con-
stipation (Gaenslen, Swid, Liepelt-Scarfone, Godau, &
Berg, 2011; Postuma, Gagnon, Pelletier, & Montplaisir, 2013;
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Ross et al., 2012), rapid eye movement sleep behavior disorder
(RBD) (Boeve et al., 2013; Gaenslen et al., 2011, 2014; Iranzo
et al., 2014; Noyce et al., 2014; Postuma et al., 2009; Schenck,
Boeve, &Mahowald, 2013), excessive daytime sleepiness (EDS)
(Ross et al., 2012), autonomic symptoms (Gaenslen et al., 2011;
Postuma et al., 2013), and depression (Gaenslen et al., 2011,
2014).
Non-motor signs and symptoms constitute a key part of the

first formal criteria proposed by the Movement Disorders
Society task force for definition of prodromal PD (Berg et al.,
2015). These criteria also incorporate environmental and
genetic factors that are known to contribute to PD risk
(Siderowf & Lang, 2012; Siderowf & Stern, 2008; Stern &
Siderowf, 2010). While these aspects of prodromal PD are
of great importance, two major limitations for their use in
isolation for the detection of prodromal PD are recognized.
First, clinical findings and environmental exposures lack
specificity when applied in isolation to identify prodromal
PD. For example, constipation and hyposmia are ubiquitous,
particularly among older adults, and in only a subset of
individuals do they portend PD. Second, while there are
well-validated measures of PD motor and non-motor
manifestations that are applicable to the prodromal PD state,
many of these are subjective and/or operator-dependent. For
example, assigning numeric values on a scale to physical
examination findings via direct observation by the examiner
entails a substantial subjective component that can be reduced
but not eliminated with proper training on scale administration.
Therein lies the need for more specific and objective biomarkers
that, when combined with clinical findings, genotype, and
environmental exposures, maximize accurate detection of
individuals with prodromal PD.
While the concept of prodromal PD is in its infancy,

several promising objective biomarkers for prodromal PD
have emerged. The majority of these were first identified
and have been most extensively studied in the clinically
diagnosed PD population. Data on their utility in prodromal
PD is emerging from their application in longitudinal
observational studies of prodromal cohorts. In light of recent
developments, the aim of this review is to discuss the
objectively defined components of the MDS criteria for
prodromal PD (Berg et al., 2015), namely imaging and
biospecimen biomarkers. We also illustrate the utility of such
biomarkers in the context of clinically and/or genetically
defined prodromal traits (Table 2).

METHODS

Articles pertaining to two main areas were identified:
(i) objective components of the prodromal PD criteria
(imaging and biospecimens), and (ii) application of objective
PD biomarkers to clinically or genetically defined prodromal
PD cohorts. Articles for this qualitative review were identified
from two main sources: (i) keyword-based searches of Pubmed
and Embase databases, with selection of articles based on
relevance, and (ii) key citations includedwithin relevant articles
were also selected and reviewed. Key words used included
several different combinations of the terms “Parkinson”,
“prodromal”, “biomarker”, and “premotor”.
Studies investigating objective (e.g., imaging or biospeci-

mens) markers for potential PD or prodromal PD diagnosis
in humans were included. Studies investigating clinical symp-
toms or exam findings were excluded in light of the working
definition of an objective marker as applied in this review.
Other exclusion criteria were non-English language publica-
tions and studies strictly reporting on non-human data. Where
available, we included results of meta-analyses examining the
utility of the biomarkers in question, particularly meta-analyses
that shed light on potential biomarkers that have yielded
conflicting results in different studies, given the ability of
well-done meta-analyses to synthesize data from conflicting
reports to inform broader conclusions on existing evidence.

RESULTS

Imaging

Radionucleotide imaging

Loss of dopaminergic cells in the substantia nigra, with
resulting dopaminergic denervation of the striatum, is the
hallmark of PD and is known to occur early in the pathologic
process (Bernheimer et al., 1973; Hughes et al., 1992).
Imaging to capture the integrity of the striatal dopamine
system thus has strong potential and biological plausibility in
identifying prodromal PD. Various radionucleotide ligands
have been applied. One of the most widely studied and
available is an iodinated ligand of the dopamine transporter
(DAT), a presynaptic membrane protein. DAT binding is
decreased in PD due to degeneration of the presynaptic
dopaminergic projections from the substantia nigra
compacta (SNc) to the striatum.
Using single-photon emission computerized tomography

(SPECT) imaging, radionucleotide ligand binding to DAT in
PD patients was found to be decreased and correlated
with severity of motor impairment (Huang et al., 2001;
Seibyl et al., 1995, 1998). Cognitive impairment and
behavioral symptoms (psychosis and depression) also
correlated with decreased DAT SPECT binding in PD
patients (Ravina et al., 2012). The sensitivity of DAT
SPECT for PD diagnosis in a group of subjects with
a parkinsonian syndrome is estimated to be 92% in compar-
ison to a gold standard of movement disorder expert

Table 1. Non-motor symptoms in prodromal PD

Non-motor symptoms in prodromal PD

Hyposmia
Constipation
REM sleep behavior disorder
Excessive daytime sleepiness
Autonomic symptoms
Depression

Note. Reviewed in Berg et al., 2015; Chahine et al., 2015; Postuma et al., 2012.
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Table 2. Putative prodromal PD biomarkers

Biomarker

Tested in
prodromal
cohort? (yes/no) Type of prodromal cohort tested (reference): PD cohort (references)

Imaging
DAT SPECT Y RBD (Iranzo et al., 2010); hyposmic (Ponsen et al. 2009); PARS

(Jennings et al., 2014).
(Huang et al., 2001; Jennings et al., 2004; Seibyl et al.; 1995, Seibyl et al.,
1998)

FDOPA-PET Y RBD with depression (Wing et al., 2015), parkin carriers (Walter
et al., 2004), PINK1 carriers (Khan et al., 2002)

(Wing et al., 2015)

DBTZ-PET Y RBD (Albin et al., 2000)
FDG-PET Y RBD (Wu et al., 2014), SNCA carriers (Nishioka et al., 2004) (Eidelberg et al., 1994; Wu et al., 2014)
MRI - neuromelanin sequence N (Ohtsuka et al., 2013; Sasaki et al., 2006)
MRI - DTI Y RBD (Scherfler et al., 2011) (Cochrane and Ebmeier, 2013)
MRI - DKI N (Wang et al., 2011)
Transcranial sonography Y RBD (Iranzo et al., 2010), hyposmia (Berg et al., 2013; Tunc

et al., 2015), G2019S LRRK2 carriers (Bruggemann et al.,
(2011)), parkin carriers (Walter et al., 2004)

(Berg et al., 1999; Berg et al., 2001; Berg et al., 2013; Tunc et al., 2015)

Cardiac scintography Y RBD (Kashihara et al., 2010; Miyamoto et al., 2006) (Orimo et al., 2005; Quattrone et al., 2008; Sawada et al., 2009)

Blood
Alpha-synuclein N (El-Agnaf et al., 2006; Foulds et al., 2011; Malek et al., 2014; Wang et al.,

2015)
DJ-1 N (Lin et al., 2012; Shi et al., 2010; Waragai et al., 2007)
Serum uric acid Y G2019S LRRK2 carriers (Johansen et al., 2009) (Asherio et al., 2009; Davis et al., 1996; de Lau et al., 2005; Moccia et al., 2014;

Moccia et al., 2015; Schwarzschild et al., 2008; Weisskopf et al., 2007)
Serum APOE A1 Y PARS (Qiang et al., 2013) (Qiang et al., 2013)
Inflammatory markers N (Brodacki et al., 2008; Chahine et al., 2013; Chen et al., 2008; Dursun et al.,

2015)
Metabolomics N (Ahmed et al., 2009; Bogdanov et al., 2008)
gene expression patterns Y G2019S LRRK2 (Chikina et al., 2015) (Chikina et al., 2015; Scherzer et al., 2007)

CSF
Alpha-synuclein N (Gao et al., 2015; Mollenhauer et al., 2015; Zhou et al., 2015)
DJ-1 N (Herbert et al., 2014; Hong et al., 2010)
tau (total and phosphorylated) N (Jimenez-Jimenez et al., 2014; Kang et al., 2013)
NFL N (Constantinescu et al., 2010; Hall et al., 2012; Sako et al., 2015)
ccf-mtDNA N (Pyle et al., 2015)
Nrf2 N (Loeffler et al., 2015)
dopamine and serotonin
metabolites

N (Jimenez-Jimenez et al., 2014)

NMR metabolomics N (Ohman et al., 2015)

Tissue
Intestinal alpha-synuclein Y RBD (Sprenger et al., 2015) (Braak et al., 2006; Gold et al., 2013; Lebouvier et al., 2008; Pouclet et al.,

2012; Shannon et al., 2012; Visanji et al., 2014; Visanji et al., 2015)
Skin alpha-synuclein N (Donadio et al., 2014; Rodriguez-Leyva et al., 2014)
Salivary gland alpha-synuclein N (Beach et al., 2013; Folgoas et al., 2013; Tredici et al., 2010)
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diagnosis at 6-month follow-up (Jennings et al., 2004).
However, while decreased DAT SPECT binding is highly
specific for a neurodegenerative parkinsonian disorder, it
does not reliably distinguish between the various neurode-
generative parkinsonian disorders [e.g., PD, multiple system
atrophy (MSA), progressive supranuclear palsy (PSP), and
dementia with Lewy bodies (DLB)].
Decreased DAT binding on imaging has been demon-

strated in several clinically defined prodromal cohorts and
longitudinal studies, suggesting that it indicates a high
likelihood of developing PD motor symptoms. For example,
in a cohort of RBD patients without a diagnosable neurode-
generative parkinsonian disorder at baseline, 40% (17 of 43)
showed decreased striatal DAT binding (Iranzo et al., 2010).
After an average follow-up of 21 months, 8 of 43 RBD
patients developed a parkinsonian neurodegenerative
disorder (PD or DLB), with 6 of these 8 having had decreased
DAT binding at baseline testing (Iranzo et al., 2010). In
another study, first-degree asymptomatic relatives of PD
patients underwent smell testing and DAT SPECT imaging.
Decreased DAT binding was demonstrated in a greater
number of hyposmic versus normosmic individuals
(Ponsen et al., 2010). Among the 40 hyposmic individuals,
5 developed PD on 5-year follow-up; all 5 had decreased
DAT binding on baseline imaging (Ponsen et al., 2010).
In another cohort of individuals with hyposmia and first-

degree relatives with PD, the PARS cohort, 11% of hyposmic
individuals showed decreased DAT binding in comparison to
1% of normosmic individuals (Jennings et al., 2014). When
additional clinical features, namely male sex and constipa-
tion, accompanied hyposmia in this cohort, 43% of this group
showed a DAT deficit (Jennings et al., 2014). These studies
highlight the utility of DAT imaging in identifying prodromal
PD, particularly in combination with clinical data such as
RBD or hyposmia.
PD-related changes in cerebral metabolism due to

striatonigral denervation can also be imaged with fluorodopa
(18F-DOPA) positron emission tomography (PET). Similar to
studies performed with SPECT, 18F-DOPA PET imaging
identifies decreased 18F-DOPA uptake in the caudate and
putamen of PD patients. This has also been demonstrated in
individuals with features of prodromal PD, namely RBD and
depression, in comparison to healthy controls (Wing et al.,
2015). Similarly, using the ligand [11C]dihydrotetrabenazine,
which binds to vesicular monoamine transporter 2, PET
showed decreased striatal binding in a group of subjects with
RBD in comparison to healthy controls (Albin et al., 2000).
Preliminary studies of PET imaging in genetically defined

prodromal individuals suggests this imaging modality may be
of utility in this group as well. For example, in a study of seven
asymptomatic parkin mutation carriers and seven PD patients
with parkin mutation, 18F-DOPA PET was abnormal in three
of the asymptomatic parkin carriers (compared to all of
the manifesting parkin PD patients) (Walter et al., 2004).
Similarly, asymptomatic carriers of PINK1 mutations show
decreased uptake of 18F-DOPA PET in comparison to controls
(Khan et al., 2002). Longitudinal follow-up is needed to clarify

the predictive value of baseline PET imaging, alone or in
combination with other prodromal markers, in individuals
genetically predisposed to PD, particularly among those with
mutations that have incomplete penetrance.

18F-fluorodeoxyglucose (18FDG) PET imaging can be
used to identify metabolic network patterns. In PD,
18FDG PET shows increased lentiform nucleus and thalamic
metabolic activity, with decreased lateral frontal, paracentral,
inferior parietal, and parieto-occipital activity. This pattern
discriminates early stage symptomatic PD patients from
healthy controls (Eidelberg et al., 1994). In a study compar-
ing individuals with RBD, PD, and healthy controls, the
PD-associated metabolic network activity was increased in
the RBD patients in comparison to the controls (Wu et al.,
2014). In contrast, in a study of asymptomatic carriers of
SNCA duplication (an established genetic cause of PD with
incomplete penetrance) (Nishioka et al., 2006), no abnorm-
alities in smell or changes in occipital lobe metabolism on
18FDG PET were found (Nishioka et al., 2009), illustrating
the importance of considering the reduced penetrance and
phenotypic heterogeneity of mutations associated with PD,
particularly in the prodromal phase.

Magnetic resonance imaging

While conventional clinical magnetic resonance imaging
(MRI) sequences are not of utility in detecting prodromal
PD, several more advanced MRI techniques show promise
in this regard. A neuromelanin-sensitive MRI sequence on
3.0 Tesla MRI was designed to visualize neuromelanin-
containing nuclei with greater detail. In PD, this imaging
technique shows attenuation in the lateral SNc and locus
coeruleus (LC) (Ohtsuka et al., 2013; Sasaki et al., 2006).
This attenuation discriminated early (median duration 1.5
years, Hoehn & Yahr stage 2) and late PD (median duration
12 years, Hoehn & Yahr stage 4) from healthy controls,
but did not differ between the early and late PD groups
(Ohtsuka et al., 2013). The sensitivity and specificity for
discriminating early PD from healthy controls was 73%
and 87% in the lateral SNc, and 82% and 90% in the LC
(Ohtsuka et al., 2013). The higher sensitivity and specificity
of attenuation in the LC compared to the SNc fits with
Braak’s PD staging, in which LC involvement defines Braak
stage 2, and SNc involvement defines Braak stage 3 (Braak
et al., 2003). This modality has yet to be studied in prodromal
PD, to our knowledge.
Another MRI modality, diffusion tensor imaging (DTI)

has shown some potential in differentiating healthy controls
from PD, with lower fractional anisotropy in the substantia
nigra being the most consistent finding according to a recent
meta-analysis (Cochrane & Ebmeier, 2013). In regards to
application in prodromal cohorts, DTI in individuals with
RBD in comparison to healthy controls shows changes in
brainstem areas relevant to REM sleep, but not the substantia
nigra, in a cross-sectional analysis (Scherfler et al., 2011).
MRI with diffusion kurtosis imaging (DKI) can discriminate
subjects with PD from healthy controls with higher
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sensitivity and specificity than DTI (Wang et al., 2011).
While promising, the utility of MRI in prodromal PD remains
to be defined.

Ultrasound

Transcranial sonography (TCS) at the temporal bone
windows allows for assessment of abnormal intracranial iron
deposition. This is of relevance in PD as increased iron
deposition is seen in the substantia nigra in PD compared to
HC (Sofic et al., 1988), and is involved in PD patho-
physiology (Faucheux et al., 2003). Hyperechogenicity in
the substantia nigra correlates with higher iron levels on
postmortem studies (Berg et al., 2002). The prevalence of
substantia nigra hyperechogenicity in PD patients is
approximately 90% (Berg, Siefker, & Becker, 2001),
compared to 9–19% (Berg et al., 1999, 2013) in community-
dwelling older adults without PD.
TCS has been applied in both genetic and clinical prodromal

cohorts and shows great promise as an imaging biomarker for
the prodromal PD state. In a study of TCS in subjects with PD
and healthy controls, the subset of controls with substantia
nigra hyperechogenicity were also found to have decreased
dopamine binding on 8F-DOPA PET, suggesting they have
increased risk of developing PD symptoms in the future (Berg
et al., 1999). Substantia nigra hyperechogenicity on TCS in a
community sample of older adults without PD has been found
to have a sensitivity and specificity of 80% and 81% for
development of PD over 3 years (Berg et al., 2013). In this
same cohort, if both hyposmia and a family history of PD
are present, sensitivity and specificity of substantia nigra
hyperechogenicity for development of PD over 3 years
increases to 80% and 91% (Berg et al., 2013).
In a study of RBD patients without parkinsonism,

substantia nigra hyperechogenicity was found in 36%
(14 of 30) of individuals with RBD, compared to 11%
(16/149) of healthy controls (Iranzo et al., 2010). Five of the
14 individuals with RBD and substantia nigra hyper-
echogenicity went on to develop parkinsonism at 21 months
follow-up (Iranzo et al., 2010). This study found combining
substantia nigra hyperechogenicity on TCS and decreased
DAT SPECT binding yielded a combined sensitivity of
100% and specificity 55% in identifying individuals with
RBD who later developed parkinsonism (Iranzo et al., 2010).
The utility of combining easily obtained, low cost

biomarkers with more specific and yet more logistically
demanding ones was demonstrated in a population-based
study that incorporated TCS. Four groups were identified:
(i) idiopathic PD, (ii) presence of parkinsonian signs possibly
due to a neurodegenerative parkinsonism, (iii) presence
of non-specific motor abnormalities presumed to be due to
non-neurologic etiologies (e.g., arthritis), and (iv) healthy
controls (Tunc et al., 2015). Hyperechogenicity in the
substantia nigra on TCS had a sensitivity of 76.6% and
a specificity of 86.5% for PD diagnosis (Tunc et al., 2015).
In comparison, hyposmia had a sensitivity of 68.1% and
a specificity of 74.9% for PD diagnosis (Tunc et al., 2015).

The combination of both hyperechogenicity in the substantia
nigra and hyposmia yielded an excellent specificity of 97.7%,
but sensitivity was reduced to 51.1% (Tunc et al., 2015).
With regard to application in cohorts with incompletely

penetrant genetic mutations that cause PD, substantia nigra
hyperechogenicity is not different between idiopathic PD and
G2019S LRRK2 PD patients; asymptomatic LRRK2 carriers
have less substantia nigra hyperechogenicity compared to PD
patients, but more substantia nigra hyperechogenicity than
controls (Brüggemann et al., 2011). Similarly, in a study of
seven asymptomatic parkin mutation carriers and seven
PD patients with parkin mutation, substantia nigra hyper-
echogenicity was found in all PD patients with parkin
mutation and five parkin carriers (Walter et al., 2004).

Cardiac scintography

Cardiac 123I-metaiodobenzylguanidine (MIBG) scintigram is
a nuclear imaging technique used to assess postganglionic
sympathetic cardiac innervation. In PD, cardiac denervation
due to vagal nerve nucleus involvement is expected to occur
early, at Braak’s stage 1 (Braak et al., 2003). The primary
assessment of a cardiac scintigram is the ratio of heart-to
mediastinum (H/M) MIBG accumulation at early (20min)
and late (4 hr) intervals. In PD, the sensitivity and specificity
for early MIBG scintigram ratios is 81% and 85%; for late
ratios it is 84% and 90% (Sawada et al., 2009). In early PD,
defined in this study as disease duration less than 3 years,
sensitivity decreases to 76% and 74%, respectively, for early
and late H/M accumulation (Sawada et al., 2009).
The utility of cardiac MIBG scintography in prodromal PD

is not fully defined. MIBG uptake was reduced in a group of
individuals with RBD compared to controls (Kashihara,
Imamura, & Shinya, 2010; Miyamoto et al., 2006).
Application of MIBG in other prodromal groups has not been
reported, to our knowledge. Of note, in patients with PD due
to known genetic causes (parkin, DJ-1, PINK1, and G2019S
LRRK2 gene mutation), cardiac MIBG scintigram often
shows preserved MIBG accumulation ratios (Orimo et al.,
2005; Quattrone et al., 2008). If similar results are seen
in asymptomatic carriers of these mutations, this would
suggest that cardiac MIBG scintigram may not be useful in
genetically defined prodromal PD.

Biospecimens

Blood

Given that abnormal alpha-synuclein accumulation is
a primary component of PD pathology, body fluid
alpha-synuclein has long been sought after as a potential
biomarker candidate. In the blood, the ratio of red blood cell
(RBC) oligomeric/total alpha-synuclein is higher in PD
patients than controls with a sensitivity of 79% and specifi-
city of 65% (Wang, Yu, Li, & Feng, 2015). Elevated plasma
alpha-synuclein oligomer levels have been found in PD
patients compared to controls with a sensitivity of 53% and
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specificity 86% (El-Agnaf et al., 2006). However, the same
group was later unable to replicate these results for total
or oligomeric alpha-synuclein, normal or phosphorylated
(Foulds et al., 2011). It is apparent from their work and
others that the strain of alpha-synuclein measured and the
techniques used largely influence the results of such studies
(Malek et al., 2014).
DJ-1 is a protein related to oxidative stress and was

initially linked to PD after familial cases of PD were found to
be caused by a mutation in the gene encoding DJ-1. A study
of PD and DLB patients showed elevated DJ-1 plasma levels
compared to healthy controls (Waragai et al., 2007). This was
contradicted in a subsequent study by a different group who
looked at DJ-1 levels in platelet-free plasma, comparing PD
patients to a group of healthy and Alzheimer’s disease (AD)
controls (Shi et al., 2010). Yet, a later study by the same
group looked at DJ-1 isoforms in whole blood samples and
found differences between these groups, with some of the
differences only demonstrable in late-stage PD (Lin et al.,
2012). Thus, similar to alpha-synuclein, serum DJ-1 is a
potential biomarker of the prodromal PD state, but much
remains to be learned before it can be applied.
Serum uric acid, an antioxidant, has consistently been

found to be lower in PD patients compared to controls, and is
inversely correlated with both PD risk and PD disease
progression (Ascherio et al., 2009; Davis et al., 1996; de Lau,
Koudstaal, Hofman, & Breteler, 2005; Schwarzschild et al.,
2008; Weisskopf, O’Reilly, Chen, Schwarzschild, &
Ascherio, 2007). Uric acid levels are also inversely correlated
with the likelihood of non-motor symptoms in PD (Moccia
et al., 2014, 2015). This has been one of the most consistent
and replicated findings in regard to potential PD biomarkers.
Preliminary studies show this may extend to the prodromal
PD state. A metabolomics profiling study of asymptomatic
carriers of the G2019S LRRK2 mutation showed that they
had significantly lower uric acid levels compared to controls
(Johansen et al., 2009).
Apolipoprotein A1, a serum protein, is a major component

of high-density lipoprotein (HDL) and functions in lipid
metabolism. Decreased plasma apolipoprotein A1 levels cor-
relate with increased PD risk and decreased age of PD onset, a
finding that was subsequently replicated in an independent
cohort (Qiang et al., 2013). Importantly, in a cohort of
asymptomatic people at high-risk of PD (the PARS cohort),
a group enriched for hyposmia, low plasma apolipoprotein
A1 was associated with decreased binding on DAT SPECT
(Qiang et al., 2013). This makes apolipoprotein A1 a prime
candidate for a serum biomarker in prodromal PD.
Several inflammatory markers have been proposed as

biomarkers for PD. A few studies have found higher levels of
interleukin-6 (IL-6) in PD patients compared to controls
(Brodacki et al., 2008; Chen, O’Reilly, Schwarzschild, &
Ascherio, 2008), although one study found lower IL-6 levels
(Dursun et al., 2015). In a study of PD patients with
GBA mutations, IL-8 was found to be elevated in a discovery
and replication cohort, but not elevated in idiopathic
PD patients without GBA mutation (Chahine et al., 2013).

In addition, metabolomics have been applied to identify
potential serum PD biomarkers. A metabolomics study of
43 drug-naïve PD patients and 37 healthy controls showed
increased plasma pyruvate (Ahmed, Santosh, Kumar, &
Christlet, 2009). A different metabolomics study showed
uric acid is decreased and glutathione is increased in a sample
of 66 PD patients compared to 25 controls (Bogdanov et al.,
2008).
Finally, differential gene expression patterns in PD have

been pursued as a biomarker. Using a microarray on whole
blood samples to look for a transcriptional mRNA PD
signature, one group found a panel of expression of eight genes
was associated with PD in comparison to a control group of
healthy, AD, and PSP patients (Scherzer et al., 2007). This
gene expression pattern was validated in a second PD sample;
its positivity confers an odds of PDF of 5.1 (Scherzer et al.,
2007). In a cross-sectional study of mRNA expression profiles
in an Ashkenazi Jewish cohort of asymptomatic individuals
and PD patients, mRNA expression pattern distinguished both
PD disease state and LRRK2 genotype (Chikina et al., 2015).
Inflammatory markers, metabolomics, and gene expres-

sion studies have not yet been applied widely to prodromal
cohorts. As serum biomarkers for PD are identified, their
validation and replication in independent cohorts will be
essential, as will be studies of their utility in prodromal
PD.

Cerebrospinal fluid

As in the case of the search for potential PD biomarkers in
the blood, the most studied biomarker candidate in the
cerebrospinal fluid (CSF) is alpha-synuclein. Studies of CSF
alpha-synuclein and alpha-synuclein oligomers have shown
mixed results, possibly due to heterogeneity in collection and
testing techniques, as well as the potential for contamination
with blood, which can falsely elevate measured CSF alpha-
synuclein levels (Malek et al., 2014). Biological factors may
also play a role in the variability of the results, which were
reviewed in depth by Mollenhauer et al. (2015). A recent
meta-analysis of 12 studies found CSF alpha-synuclein
levels significantly differed between PD, MSA, and con-
trols, with no difference between PD and DLB or PSP (Zhou,
Wen, Yu, Zhang, & Jiao, 2015). A different meta-analysis, of
17 studies, found no difference in CSF alpha-synuclein levels
between PD, DLB, and MSA patients, yielding an estimated
sensitivity and specificity of 88% and 40% (Gao et al., 2015).
Given the role of alpha-synuclein in PD pathophysiology and
the goal of targeting this protein to prevent PD, further CSF
studies of alpha-synuclein are eagerly awaited.
As in the blood, DJ-1 protein is also present in CSF.

A study comparing a group of PD patients to a control group
of healthy individuals and AD patients found a sensitivity
and specificity of DJ-1 in the CSF of 90% and 70%, respec-
tively, for PD (Hong et al., 2010). In a study of PD, MSA, and
healthy controls, DJ-1 levels were found to be highest in
MSA, followed by PD, and then controls, discriminating
MSA from PD with a sensitivity of 78% and specificity of
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78%; and discriminating PD from controls with a sensitivity
of 81% and specificity of 52% (Herbert et al., 2014).
Studies on the utility of AD biomarkers in PD have

yielded mixed results (Jiménez-Jiménez, Alonso-Navarro,
García-Martín, & Agúndez, 2014). Attempts have been made
to use CSF proteins in combination to improve diagnostic
accuracy. For example, in a study comparing healthy controls
to early PD patients (0.4 year median disease duration), only
lower beta-amyloid 1–42 and phosphorylated tau levels were
associated with PD diagnosis on multivariate regression,
although all tested CSF biomarkers, including total tau, alpha-
synuclein, and total tau/beta-amyloid 1–42 ratio, were slightly
lower in PD patients compared to controls (Kang et al., 2013).
Studies of these putative CSF biomarkers in prodromal PD
cohorts have not been published to our knowledge.
Several other CSF biomarkers have been investigated as PD

biomarkers and show promise. However, much remains to be
learned about them and their specificity for PD versus their
utility more as non-specific markers of neurodegeneration. For
example, neurofilament light chain (NFL) levels are elevated in
the CSF in some neurodegenerative diseases, but not in PD in
comparison to healthy controls (Constantinescu, Rosengren,
Johnels, Zetterberg, & Holmberg, 2010; Hall et al., 2012).
A meta-analysis of 4 studies showed elevated NFL levels in
MSA and PSP compared to PD (Sako, Murakami, Izumi, &
Kaji, 2015). Similarly, cell-free circulating mitochondrial DNA
(ccf-mtDNA) is reduced in CSF of PD patients compared to
controls, but it is also decreased in AD (Pyle et al., 2015).
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a CSF

protein, did not discriminate between PD and controls, but
Nrf2 concentrations did correlate with motor scores in 1
study of LRRK2 positive PD subjects (Loeffler, Smith,
Coffey, Aasly, & LeWitt, 2015).
There are inconsistent findings on the utility of dopamine

and serotonin metabolites in discriminating PD from healthy
controls, and for their potential for correlation with PD
features (Jiménez-Jiménez et al., 2014). To our knowledge,
these have not been studied in prodromal PD cohorts.
As with serum metabolomic studies, CSF metabolomics

is a promising area as well. Nuclear magnetic resonance
metabolomics uses spectroscopy to quantify metabolites in
biofluids. A study in 10 PD patients and 10 healthy controls
found lower CSF alanine, creatinine, and mannose levels in
the PD patients sufficient to discriminate between the groups
(Öhman & Forsgren, 2015). Further validation and replica-
tion in PD and prodromal PD is required.

Skin, colon, salivary glands

Multiple studies have found alpha-synuclein in several types
of peripheral tissues (Malek et al., 2014). In 2006, Braak,
de Vos, and Del Tredici reported alpha-synuclein in the
enteric nervous system in post mortem examination of PD
patients, which they proposed could reflect the entry point of
the pathology to the vagus nerve, stage 1 of the Braak PD
pathology staging system (Braak et al., 2003). Multiple
studies have since reported increased colonic alpha-synuclein

expression in PD and pre-motor PD in comparison to controls
(Gold, Turkalp, & Munoz, 2013; Lebouvier et al., 2008;
Pouclet et al., 2012; Shannon, Keshavarzian, Dodiya,
Jakate, & Kordower, 2012).
In one study, colonic biopsies sampled from patients

2–5 years before the development of PD motor symptoms
were found to exhibit alpha-synuclein pathology (Shannon
et al., 2012). However, the possibility that colonic
alpha-synuclein can discriminate PD and prodromal PD from
controls came into question when a study of 22 PD patients
and 11 controls found alpha-synuclein in the colon of all
patients and controls (Visanji et al., 2015). The differing
results from studies of colonic alpha-synuclein may be par-
tially due to differences in collection techniques and staining
(Visanji, Marras, Hazrati, Liu, & Lang, 2014), as demon-
strated in a study comparing colonic alpha-synuclein levels in
RBD, PD, and controls. It ultimately failed to show any
significant differences between the groups, and provided
further evidence that differences in biopsy depth, location,
and staining technique affect results (Sprenger et al., 2015).
Further studies of colonic alpha-synuclein with refinement
and standardization of techniques should continue as it could
hold great potential as a prodromal PD biomarker.
In the skin, alpha-synuclein has been found in idiopathic

PD patients, but not in patients with other types of
parkinsonism or controls (Donadio et al., 2014; Rodríguez-
Leyva et al., 2014). In addition, salivary gland alpha-synuclein
has been found to have high specificity for PD in most studies
(Beach et al., 2013; Tredici, Hawkes, Ghebremedhin, & Braak,
2010), but not all (Folgoas et al., 2013).
Alpha-synuclein testing in peripheral tissues holds great

promise for potential PD biomarkers. Once sampling and
testing procedures have been refined, application to
prodromal PD cohorts will be of great interest.

DISCUSSION

In the search for prodromal PD biomarkers, the length of
longitudinal follow-up is one of themost important study design
considerations. For example, in one of the first studies to report
on longitudinal follow-up of prodromal PD (Ponsen et al., 2010,
discusssed above), while some participants exhibited motor
symptoms as early as 9 months, others first showed motor
symptoms 52 months from baseline (Ponsen et al., 2010). A
total of 12.5% of the cohort developed PD over 5 years (Ponsen
et al., 2010), but it is likely additional members of the cohort
would have phenoconverted on additional follow-up. The
quest for prodromal markers that accurately capture at-risk
individuals will thus require validation studies with follow-up
of sufficient duration to identify those who will go on to
develop motor symptoms consistent with PD diagnosis.
Imaging markers are attractive given their potential to

measure brain structure and/or function in vivo in
a non-invasive manner. The majority of imaging modalities
currently in use relies on degeneration of the SNc and its
connections to the striatum. By Braak’s PD staging criteria,
pathology in the SNc starts in stage 3, and is severe in stage 4,

962 C.A. Cooper and L.M. Chahine

https://doi.org/10.1017/S1355617716000503 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617716000503


affecting additional midbrain and basal forebrain nuclei
(Braak et al., 2003). PD motor symptoms and diagnosis
typically occurs in stage 4 (Braak et al., 2003). Many of the
currently available imaging techniques rely on detecting
abnormalities in structures involved at Braak’s PD
stages 3 and 4. It is important to keep this in mind as we look
for potential prodromal biomarkers which correspond more
closely to earlier Braak stages, 1 and 2. As alpha-synuclein
is the protein that abnormally accumulates in PD, there is
significant focus in the nuclear imaging field to develop new
ligands to identify this protein in vivo. If an alpha-synuclein
ligand is successfully developed, this has potential for
diagnosing prodromal PD earlier than striatal DAT binding
allows.
The majority of imaging studies show similar results

between sporadic and genetic forms of PD, presumably due
to the similar end effects, despite differences in etiology.
Cardiac MIBG scintigram is an exception, as it has failed to
consistently discriminate between healthy controls and
genetic forms of PD (Orimo et al., 2005; Quattrone et al.,
2008). This finding highlights the importance of considering
which clinical or genetic features are used to define a given
prodromal cohort. This is true in both genetically defined
prodromal cohorts due to the reduced penetrance of several
monogenic PD forms, and in clinical prodromal cohorts due
to the lack of specificity of prodromal symptoms, such as
constipation and hyposmia. In light of this, there is a recog-
nized need to combine various biomarker modalities to
improve detection of prodromal PD, but a balance needs to be
found between the rigor of multimodal biomarker panels and
their sensitivity (Tunc et al., 2015).
Limitations of imaging biomarkers often include at least

one of the following: high cost, lengthy time commitment, or
the need for experts trained in specialty imaging collection
and analysis. Thus, biofluid and/or tissue biomarkers are
of interest as well. Currently there are no routinely used
biospecimen biomarkers for PD and there are fewer potential
biomarker candidates that have been tested in prodromal PD.
Differences in sampling and processing techniques are a
limitation of past biospecimen studies, which has likely
contributed to the conflicting results. Of the biospecimen
studies discussed, serum uric acid has the most evidence
for its potential as a PD/prodromal PD biomarker. Apolipo-
protein A1 is overall less studied, but also has strong potential
to be a PD/prodromal PD biomarker. The results of alpha-
synuclein in all biospecimens are inconclusive at this time,
but likely holds promise as well if technical aspects are
refined.
Many of the candidate PD biomarkers are products of

neuronal degeneration and inflammation. These would pre-
sumably be less elevated in prodromal states. Therefore, it is
possible that proteins that could serve as a PD biomarker will
not identify the prodromal state. Regardless, it is hoped that
efforts aimed at identifying a biospecimen biomarker for PD
will be successful as such biomarkers have the potential to be
less costly and more time-efficient than current imaging
biomarkers for PD.

CONCLUSIONS

Results of decades of clinical trials in neurodegenerative
disorders suggest that any success at altering disease course
in PD needs to occur at the earliest stages of the disease
process. Significant advances have been made in describing
several clinical signs/symptoms and genetic mutations that
constitute the prodromal PD state. These, however, lack
specificity and exhibit incomplete penetrance, respectively.
This adds great complexity to the identification of the
prodromal PD state, and necessitates the identification of
objective, robust biomarkers of prodromal PD that exhibit a
long lag time (time between positive biomarker and time to
manifestation of motor symptoms of PD). Several modalities
hold promise, but require extensive additional study,
including imaging, serum/CSF, and tissue biomarkers.
Studies investigating putative clinical, imaging, and biospe-
cimen PD biomarkers in prodromal PD cohorts are eagerly
awaited (Berg et al., 2013; Berg, Marek, Ross, & Poewe,
2012; Gaenslen et al., 2014; Jennings et al., 2014; Liepelt
et al., 2011; Marek et al., 2011).
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