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The effect of a low-viscosity near-wall film on
bypass transition in boundary layers
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Bypass transition in a two-fluid boundary layer is examined using direct numerical
simulations (DNSs). A less-viscous wall film is considered and the impact on
transition location is evaluated at two different viscosity ratios and free-stream
turbulence intensities. The less-viscous wall film absorbs the mean shear from
the outer stream, weakens the lift-up mechanism, and alters the disturbance field
inside the boundary layer. These effects all favour a delay in the onset of bypass
transition. However, the viscosity and mean-shear discontinuities across the two-fluid
interface introduce a new mechanism for the generation of wall-normal vorticity in
the boundary layer, and can therefore promote transition to turbulence. Conditionally
averaged statistics and streak tracking techniques are adopted in order to examine the
impact of the wall film on the bypass transition process. It is shown that the weaker
amplification of the streaks in the outer fluid can delay breakdown to turbulence,
despite the additional disturbance generation at the two-fluid interface. The efficacy
of the wall film in delaying transition is demonstrated at moderate level of free-stream
turbulence intensity, but is reduced as the turbulence intensity is increased.

Key words: boundary layer stability, thin films, transition to turbulence

1. Introduction
The paths to boundary-layer turbulence are diverse and have inspired a great deal

of research. Even in canonical flow configurations such as a zero-pressure-gradient
boundary layer, breakdown to turbulence can follow various routes: when the
background perturbation levels are inappreciable, transition is governed by the
evolution of discrete instability waves (Kleiser & Zang 1991). However, with a slight
increase in the level of environmental disturbances, a shorter path termed ‘bypass
transition’ leads to boundary-layer turbulence at lower Reynolds numbers (for a recent
review, see Zaki 2013). The current work considers the influence of introducing a
wall film of different viscosity on bypass transition. The addition of a different fluid
can introduce new instability mechanisms, and alter the bypass transition process.
However, appropriate choice of the film properties can have a favourable effect
in terms of overall flow stability and transition delay. The current state of our
understanding of bypass transition beneath free-stream turbulence is summarized and,
where possible, the discussion addresses the influence of introducing a wall film of
different viscosity.

† Present address: Department of Mechanical Engineering, Johns Hopkins University,
Baltimore, MD 21218, USA. Email address for correspondence: t.zaki@jhu.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

21
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:t.zaki@jhu.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.214&domain=pdf
https://doi.org/10.1017/jfm.2015.214


The effect of a wall film on bypass transition 331

1.1. Free-stream perturbations
The initial stage of bypass transition concerns the interaction of free-stream vortical
disturbances with the boundary layer. In the inviscid limit, free-stream disturbances
decay exponentially at the boundary-layer edge due to the influence of the mean
shear, and this phenomenon is now known as shear sheltering (Hunt & Durbin
1999). At finite Reynolds number, however, the sheltering mechanism is less effective,
and low-frequency disturbances from the free stream can cause a finite distortion
within the boundary layer (Jacobs & Durbin 1998). Following a similar approach to
Charru & Hinch (2000), Zaki & Saha (2009) provided a physical interpretation. They
compared the diffusive and convective timescales of vortical waves at the edge of
the boundary layer. Three regimes were identified based on the ratio of these two
timescales, kxU′δ/νk2

y , where kx and ky are the streamwise and wall-normal disturbance
wavenumbers, U′ is the mean shear, δ is the boundary-layer 99 % thickness and ν is
the fluid viscosity. For high values of this ratio, the inviscid shear-sheltering behaviour
is recovered. For small values, low-frequency vortical disturbances can penetrate the
boundary layer. In the intermediate regime, where this parameter is on the order of
unity, the influence of the vortical waves decays with distance into the shear.

The same problem was also examined in the context of two-fluid boundary layers
(Charru & Hinch 2000; Zaki & Saha 2009). Since the filtering of disturbances by the
shear is an inviscid phenomenon, it is intuitive to expect that a lower-viscosity wall
film would enhance stability. However, the analysis showed that a lower-viscosity film
initially enhances the signature of outer vortical disturbances inside the near-wall film
(Zaki & Saha 2009). Only after the ratio of the film to the free-stream viscosities
is reduced beyond a critical value does shear sheltering become effective. In light of
this result, and the additional risk of introducing new two-fluid interfacial instabilities
(Yih 1967; Hooper & Boyd 1987; Ó Náraigh et al. 2011a; Ó Náraigh, Spelt & Zaki
2011b), it should be cautioned that naively inserting a lower-viscosity wall film does
not guarantee enhanced stability of the boundary layer.

1.2. The primary boundary-layer disturbance
Forcing due to low-frequency perturbations generates an energetic response within the
boundary layer in the form of streamwise-elongated streaks, or Klebanoff distortions.
The amplification of streaks is due to an inviscid lift-up mechanism whereby quasi-
streamwise vortices lift low-velocity fluid away from the wall and sweep high-velocity
fluid towards the wall. The energy of the streaks is proportional to the distance from
the leading edge (Westin et al. 1994). In the absence of high-frequency background
disturbances, the streaks do not break down to turbulence (Zaki & Durbin 2005, 2006).
Instead they decay due to viscosity. The transient growth of boundary-layer streaks is
now well characterized in the context of single-fluid flows (e.g. Butler & Farrell 1992;
Luchini 2000). In comparison, the literature on the amplification of streaks in two-fluid
boundary layers is scarce. Furthermore, the presence of the interface in a two-fluid
boundary layer can introduce a different primary instability. Yih (1967) showed the
existence of a long-wavelength interfacial instability due to the viscosity mismatch at
the interface. A short-wavelength instability emerges at high Reynolds number when
the viscosity of the lower fluid is less than that of the upper fluid (Hooper & Boyd
1987). The present study exploits the thin layer effect which stabilizes the interfacial
mode when the film viscosity is lower than the outer stream (Renardy 1987; Charru
& Hinch 2000). The stabilization of the interfacial mode, however, addresses the long-
time asymptotic behaviour of the system. In the transient response of the flow, even
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a stable interfacial mode can contribute to short-time energy amplification. Examples
which demonstrate this phenomenon include the work by Yecko & Zaleski (2005) in
two-fluid mixing layers, and by Malik & Hooper (2007) in two-layer Poiseuille flow.
These studies support the view that transient disturbance growth can play an important
role in two-fluid shear flows, including boundary layers.

1.3. Breakdown to turbulence
Once the primary boundary-layer instability reaches a high amplitude, it becomes
vulnerable to secondary instability and breakdown to turbulence. In the context
of bypass transition, these are instabilities of the streaky base flow. For example,
Matsubara & Alfredsson (2001) provided a detailed time-series that support this
view. Using direct numerical simulation (DNS), Jacobs & Durbin (2001) showed
that breakdown occurs when the lifted low-speed streaks are buffeted by the
high-frequency small scales of turbulence in the free stream. Their observations
were confirmed experimentally, for example by Hernon, Walsh & McEligot (2007)
and Mandal, Venkatakrishnan & Dey (2010), and complemented by a number of
computational studies (e.g. Schlatter et al. 2008). In addition to the streak breakdown
scenario which occurs near the edge of the boundary layer, Nagarajan, Lele &
Ferziger (2007) identified another mechanism that originates near the wall and is
initiated by the amplification of an instability wavepacket.

In order to explain the numerical and experimental observations of breakdown, a
number of studies evaluated the secondary instability of the streaky boundary-layer
flow. Andersson et al. (2001) performed an inviscid instability analysis of the linearly
optimal streaks, and could only predict the instability near the edge of the boundary
layer. Vaughan & Zaki (2011) applied Floquet theory to examine the secondary
instability of unsteady streaks. Their analysis predicted two types of instability
modes: an outer mode which resides near the edge of the boundary layer and an
inner instability near the wall. These two studies focused on idealized base states
where the streaks form a repeated pattern in the span. More recently, Hack &
Zaki (2014) established a connection between linear stability theory and localized
breakdown of realistic streaks in bypass transition beneath free-stream turbulence.
They performed direct stability analyses of streaky boundary-layer profiles extracted
from DNS and demonstrated that linear theory can accurately predict the localized
streak instabilities that precede the inception of turbulence spots. Since the two-fluid
configuration has not been studied before, it is not possible to anticipate the mode
of secondary instability and breakdown to turbulence. However, the earlier work on
the single-fluid flow provides a background against which the simulations performed
herein can be analysed.

1.4. Objectives and outline
Significant advancement in the study of bypass transition in single-fluid boundary
layers has been possible due to recent experimental, numerical and theoretical efforts.
In comparison, relatively little is known regarding bypass transition in two-fluid
boundary layers or, equivalently, the influence of a wall film on bypass breakdown.
In the current study, DNSs are performed to examine transition in two-fluid boundary
layers beneath free-stream turbulence.

A schematic of the simulation set-up is shown in figure 1. The simulations are
performed for two moderate levels of free-stream turbulence intensity, Tu = 2.5 %
and 3.5 %. This choice is motivated by the literature, where the location of bypass
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FIGURE 1. Schematic of bypass transition in a two-fluid boundary layer.

transition is known to become progressively less sensitive to the free-stream condition
at higher Tu. The two fluids are immiscible and, while they share the same density,
they have different viscosities with the wall film being less viscous. The film thickness
and viscosity are important parameters that influence the stability of the flow. The
main considerations in their selection are to reduce the amplification of streaks
and to avoid the generation of new instabilities. The former objective favours a thick
low-viscosity film while the latter requires a thin film with smaller viscosity mismatch.
Three viscosity ratios are considered, µBT (≡ µB/µT) = 1.0, 0.5 and 0.2, where
subscripts T and B denote the top (outer) and bottom (wall film) fluids, respectively.
The height of the wall film at the inlet is 10 % of the reference boundary-layer
thickness, δ0, which is the 99 % thickness in the matched viscosity flow. These
properties are selected based on precursor linear analyses (Zaki & Saha 2009; Saha,
Jung & Zaki 2010), and their impact on transition will be discussed in detail.

This paper is organized as follows. A description of the numerical method and the
inflow condition is provided in § 2. Reynolds-averaged statistics are provided in § 3,
followed by analysis of instantaneous and conditionally sampled fields in § 4. Finally,
a brief discussion of the higher inlet turbulence intensity is presented in § 5.

2. Numerical method
2.1. Governing equations and simulation parameters

The continuity and Navier–Stokes equations for incompressible flow of two immiscible
fluids with matching densities but different viscosities are

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
=− ∂p

∂xi
+ 1

Reδ0

∂

∂xj

[
µ

(
∂ui

∂xj
+ ∂uj

∂xi

)]
. (2.2)

Terms in the above equations are non-dimensionalized using the free-stream velocity
U∞ and the single-fluid boundary-layer thickness at the inlet δ0. The viscosity, µ,
is normalized by its value in the top fluid. The ratio of the bottom to the top
fluid viscosity is denoted µBT . The Reynolds number in the equations is defined as
Reδ0(≡ρU∞δ0/µT)= 800. The velocity components in the streamwise (x), wall-normal
(y) and spanwise (z) directions are u, v and w, respectively, and the pressure is p.
Hereafter, uppercase symbols refer to mean quantities, and primed symbols, such as
u′, are reserved for fluctuations.
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The Navier–Stokes equations were solved on a staggered grid with a local-
volume-flux formulation (Rosenfeld, Kwak & Vinokur 1991). The viscous terms
were integrated in time implicitly using Crank–Nicolson method and the convective
terms were treated explicitly using Adams–Bashforth scheme. The overall accuracy
of the present numerical method is second order in space and time. By applying the
fractional step algorithm to the continuity and Navier–Stokes equations, a three-step
time-advancement scheme is obtained,

ûi − ui
n

1t
= −1

2
(3Ni

n −Ni
n−1)+ 1

2
1

Reδ0

∂

∂xj

[
µ
∂

∂xj

(
ûi + ui

n
)]− ∂Φn

∂xi
, (2.3)

∂21Φ

∂xj∂xj
= 1
1t
∂ ûj

∂xj
, (2.4)

ui
n+1 − ûi

1t
=−∂1Φ

∂xi
, (2.5)

where N is the discrete form of the advection term, and 1t is the computational
time step. Here, Φ and 1Φ are the pseudo-pressure and its time difference
(Φn+1 − Φn), respectively. By adopting the 1Φ form of the discrete Navier–Stokes
equations, we enforce the appropriate boundary conditions on the velocity field
directly without the need to incorporate the pressure gradient term (Kim & Moin
1985).

In general, the solution to the pressure equation is computationally expensive due
to the elliptic nature of the problem, and this issue is exacerbated in the case of
variable fluid properties (van der Vorst 2003). For example, in the general two-fluid
case where the density varies across the interface, we solve the Poisson equation
using biconjugate gradient stabilized (BiCGStab) method (van der Vorst 1992) with a
three-dimensional multigrid preconditioner. The Krylov-based method is advantageous
for fast convergence of the solution in the presence of the jump in shear across the
two-fluid interface. In the matched density case which we consider here, a significant
computational advantage is achieved by applying a Fourier transform in the span and
converting the pressure Poisson equation into a Helmholtz equation.

The convective outflow condition ∂u/∂t + c∂u/∂x = 0 was applied at the outlet
where c is the local bulk velocity. The no-slip condition was imposed at the bottom
wall. The top boundary conditions were ∂u/∂y = ∂w/∂y = 0 and v = −∫ ∂u/∂x dy.
Periodic boundary conditions were applied in the spanwise direction.

Two free-stream turbulence intensities were simulated, Tu = 2.5 % and 3.5 %.
The sizes of the computational domains and the number of grid points are
provided in table 1. The computational domain is a rectangular box with a
sufficiently large spanwise extent in order to avoid spurious correlations. For the
lower turbulence intensity case, the length of computational domain is longer,
2.6× 104<Rex(≡ρU∞x/µT)< 9.9× 105, in order to capture the full transition process.
The grid is clustered in the wall-normal direction, and is uniformly distributed in the
streamwise and spanwise directions. Table 1 also reports the grid resolution and the
computational time step in wall units scaled using the maximum friction velocity,
maxx uτ (x), from the single-fluid computation which provides a conservative estimate.
The computational time step was 0.01 δ0/U∞. Beyond the initial transient, the total
averaging time was 2400 δ0/U∞ time units. Simulations of the two-fluid boundary
layers are particularly challenging due the computational requirements associated with
tracking the interface as discussed below.
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Tu (%) Lx × Ly × Lz No. of grid points 1x+ 1y+min 1z+ 1t+

2.5 1200× 40× 30 4097× 193× 193 10.48 0.36 5.59 0.016
3.5 600× 40× 30 2049× 193× 193 10.99 0.38 5.86 0.018

TABLE 1. Summary of simulation parameters, and the spatial and temporal resolutions.

2.2. Level set method
The level set method introduced by Osher & Sethian (1988) has been widely used in
simulations of multiphase flows. This method is based on an implicit representation
of the interface for which the equation of motion is

∂φ

∂t
+ ∂ujφ

∂xj
= 0, (2.6)

where φ is the level set function. In the conventional level set technique, a signed
distance function depicting the interface as φ = 0 is used. Advantages of the level
set method include automatic handling of topological changes, efficient parallelization
as well as simplicity of evaluating geometric quantities. However, one of the main
limitations of this method is poor mass conservation. In order to overcome this
difficulty, we adopted the conservative level set method proposed by Desjardins,
Moureau & Pitsch (2008). This method ensures accurate and robust interface transport
by using a hyperbolic tangent function,

ψ = 1
2

(
tanh

(
φ

2ε

)
+ 1
)
, (2.7)

where ε≡0.5 min(1x,1y,1z) is a parameter which sets the thickness of the interface.
The interface location is now portrayed by the iso-surface ψ = 0.5. The transport
equation for ψ corresponding to the advection of the interface is

∂ψ

∂t
+ ∂ujψ

∂xj
= 0. (2.8)

Due to the sharp change in ψ across the interface, the above equation accurately
approximates the material derivative of fluid properties, such as Dµ/Dt= 0.

In the presence of sharp gradients of velocity and pressure across the interface,
it is computationally very challenging to maintain ψ as a non-oscillatory function.
Distorted ψ incurs unphysical oscillations. The difficulty is attributed to the nature
of the Hamilton–Jacobi-type equation (2.8) (Sethian & Smereka 2003). In order to
maintain the smoothness of ψ , we introduced the re-initialization equation,

∂ψ

∂τ
+∇ · (ψ(1−ψ)n)=∇ · (ε(∇ψ · n)n), (2.9)

where τ and n≡∇ψ/|∇ψ | are the pseudo-time step and the interface normal vector,
respectively. The above equation is composed of a compression term on the left-hand
side which sharpens the interface, and a diffusion term on the right-hand side which
maintains numerical stability. Solution of (2.9) is repeated until the steady state is
reached. Typically, three or four iterations were required for the convergence of the
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solution by setting 1τ = ε. The physical properties of the two fluids are computed
from

µ=µBT + (1−µBT)ψ. (2.10)

The third-order total variation diminishing (TVD) Runge–Kutta scheme (Shu &
Osher 1988) was used for time integration of (2.8) and (2.9). To accurately resolve
the sharp interface profile, a fifth-order upstream central scheme (Nourgaliev &
Theofanous 2007) was employed for the convective term of (2.8). The compression
and diffusion terms in (2.9) were spatially discretized by second-order central
differencing.

The computations of (2.8) and (2.9) for the entire domain are inefficient owing to
the interface movement within a confined region. In order to reduce the computational
effort, an adaptive narrow-band approach was exploited (Peng et al. 1999). In this
method, a narrow band formed by a few grid cells around the interface is introduced
using a mask function. The mask function identifies the grid points within the narrow
band and then the level-set and re-initialization equations are solved at these points. In
addition, a multilevel mesh refinement (MMR) for the level-set function was utilized
to improve the spatial resolution of the interface transport. In this approach, the flow
field is solved at the coarsest mesh and the level-set function is evaluated at the finest
grid. The multigrid hierarchy with three levels was selected in the x and z directions.
There was no additional multilevel grid refinement in the y direction.

The present level-set algorithm has been validated extensively by comparison
to linear and nonlinear stability results (see Cheung & Zaki 2011). In addition,
two canonical interface tracking problems were also examined: the transport of
Zalesak’s disk (Zalesak 1979) and the rise of an air bubble in quiescent water
(Gueyffier et al. 1999; Yang & Stern 2009). In the case of the Zalesak’s disk, the
size of the computational domain was (Lx, Ly) = (100, 100) and the number of grid
points was (Nx, Ny) = (257, 257). Solid-body rotation, u = (π/314)(50 − y) and
v = (π/314)(x − 50), was prescribed to the disk for 10 revolutions and the error in
the interface location was evaluated using the L1-norm,

ε≡ 1
L

∫
|H(ψexact)−H(ψcomputed)| dx dy, (2.11)

where L is the perimeter of the expected interface and the indicator function H={0,1}
distinguishes the inner and outer regions of the disk. After 1, 2, 5 and 10 full rotations,
the errors were ε= 0.028, 0.032, 0.042 and 0.062, respectively. For the rising bubble,
the size of the computational domain was (Lx, Ly, Lz)= (12, 24, 12)R where R is the
radius of the initially spherical bubble. The number of grid points in each direction
was (Nx,Ny,Nz)= (129,257,129). The viscosity and density ratios of air to water were
prescribed, µa/µw= 0.085 and ρa/ρw= 0.0011, and the terminal velocity was chosen
as the reference scale. The Reynolds, Froude and Weber numbers were Re= 9.8, Fr=
0.8718 and We = 7.6. The bubble was released at an initial position (x/R, y/R) =
(6.0, 1.5). As the bubble rose, its deformation, vertical displacement and rising speed
agreed with the results by Gueyffier et al. (1999) and Yang & Stern (2009).

2.3. Inflow generation
The base flow at the inlet to the computational domain is a two-fluid boundary layer
U=[Uj(y),Vj(y),0] with density ρ and dynamic viscosities µj. The subscript j={T,B}
denotes the top and bottom fluids, respectively. The base flow is obtained by solving
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the following equation in boundary-layer coordinates (Nelson, Alving & Joseph 1995),

F
∂2F
∂ζ 2
+ νj

∂3F
∂ζ 3
− χ

(
∂F
∂ζ

∂

∂χ

(
∂F
∂ζ

)
− ∂

2F
∂ζ 2

∂F
∂χ

)
= 0 (2.12)

where νj = µj/ρ, χ ≡ √U∞x/(2νT), ζ ≡ y
√

U∞/(2νTx) and F ≡ Ψ/√2νTU∞x. Here,
Ψ and x are the streamfunction and the downstream location from the leading edge,
respectively. The interface height ζ ∗ is governed by the kinematic condition:

∂ζ ∗

∂χ
= 1
χ

(
V∗

U∗
− ζ ∗

)
(2.13)

where U∗ and V∗ are the mean streamwise and wall-normal velocities at the interface.
The wall (y= 0) and free-stream (y→∞) boundary conditions on F are

FB(0)= 0; dFB

dζ
(0)= 0; dFT

dζ
(y→∞)= 1. (2.14a−c)

In addition, at the interface location, ζ = ζ ∗, the following velocity and stress
continuity conditions must be satisfied,

FB = FT; dFB

dζ
= dFT

dζ
; µB

d2FB

dζ 2
=µT

d2FT

dζ 2
. (2.15a−c)

Equations (2.12)–(2.15) do not admit a similarity solution. Therefore, obtaining a
mean-velocity profile to apply as an inflow condition in the DNS requires marching
the above equations from an upstream location up to the DNS inflow plane, x0. Two
additional requirements are imposed: (i) all of the two-fluid DNSs must start at the
same distance x0 from the leading edge; and (ii) the film thickness must be 10 % at
that location. Since both the boundary layer and the film spread at different rates, an
iterative procedure is required to satisfy these requirements. Equations (2.12)–(2.15)
are solved starting upstream of x0 with a guess of the film thickness at that location
(the guess is larger than 10 % relative to the local boundary-layer thickness since
the film spreading rate is slower than the outer flow). The solution is marched
downstream up to the inlet of the DNS domain, and the film thickness is verified at
x0. This procedure is iterated to convergence, and ensures that the inflow profiles for
the single- and two-fluid DNSs are solutions to the boundary-layer equations, start at
the same distance to the leading edge, and have the desired film thickness.

In order to prescribe realistic free-stream vortical disturbances, isotropic turbulence
was synthesized at the inlet. Following the work by Jacobs & Durbin (2001), the
disturbances are expressed in terms of Fourier modes in the spanwise dimension and
in time, and a superposition of Orr–Sommerfeld (OS) and Squire eigenfunctions in the
wall-normal direction. The eigenfunctions are solutions to the homogeneous OS and
Squire equations for the two-fluid boundary layer. The free-stream turbulence satisfies
the von Kármán spectrum

E(κ)= Tu2 L5κ4

C[1+ (κL)2]17/6
, (2.16)

where C = 0.688, and κ ≡
√
ω2 + k2

y + k2
z and L are the wavenumber and turbulence

length scale, respectively. Here, the wall-normal and spanwise wavenumbers are
denoted ky and kz, respectively, and ω is the frequency of the perturbation. Note that
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Tu

0 200 400 600 800 1000 1200

0.01

0.02

0.03
1.65 3.30 4.95 6.60 8.25 9.90

FIGURE 2. (Colour online) Streamwise decay of the free-stream turbulence intensity. At
the inlet, Tu= 2.5 %.

L ≡ (55C/9π)L11 and L11 =
∫∞

0 u′(x)u′(x+ r) dr/Tu2. The turbulence intensity, Tu, is
given by

Tu=
√

2
3

∫ ∞
0

E(κ) dκ. (2.17)

Two turbulence intensities (Tu= 2.5 % and 3.5 %) were examined in the present study.
In the case with Tu= 2.5 %, the initial turbulence intensity decays to 0.2 % near the
exit of the simulation domain as shown in figure 2. The decay rate of the turbulence
intensity has the form, Tu ∝ (x − xg)

−n where xg is the virtual origin of the grid
turbulence and n' 0.8. This exponent is consistent with the experimental results by
Kurian & Fransson (2009), where Tu2 is shown to decay according to an exponential
rate in the range, −1.6< 2n<−1.2.

3. Reynolds-averaged statistics
In this section, various statistical measures related to bypass transition in two-fluid

boundary layers are presented, and the discussion is focused on the lower turbulence
intensity simulations (Tu= 2.5 %). The mechanism underlying the observed trends is
further analysed in § 4 by examining instantaneous and conditionally sampled flow
fields. Finally, § 5 reports on the efficacy of the wall film in the case of higher Tu.

In order to provide clear evidence of transition delay in the two-fluid configuration,
the skin-friction coefficient, Cf , is reported in figure 3. Transition to turbulence causes
a substantial increase in Cf , and it is evident from figure 3 that a less-viscous wall-
film suppresses the onset of transition. The skin friction curve departs significantly
from the Blasius value (Cf = 0.664/

√
Rex) starting at x − x0 ≈ 400, 500 and 750

when µBT = 1.0, 0.5 and 0.2, respectively. The completion of transition is herein
defined as the point where Cf attains its maximum near the turbulent correlation (Cf =
0.455/[ln(0.06Rex)]2). Transition is complete at x− x0≈ 1100 and 1000 for µBT = 1.0
and 0.5, respectively. In the case of µBT = 0.2, the fully turbulent state is not reached
within the computational domain.

A slightly more detailed view of the changes to Cf in the case of transition delay
is sought. A modification of the identity by Fukagata, Iwamoto & Kasagi (2002),
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FIGURE 3. Downstream evolution of the skin friction coefficient for Tu= 2.5 %.

referred to hereafter as FIK, is adopted. The FIK identity is computed from the
triple integration of the Reynolds-averaged Navier–Stokes (RANS) equations for the
streamwise momentum in the wall normal direction, and it can provide a detailed
view of the various contributions to Cf . For the present flow, the FIK identity is
modified to take into account the viscosity distribution,

Cf ,FIK = 4
δ2

99Reδ0

∫ δ99

0
νU dy︸ ︷︷ ︸

FIKlam

− 4
δ2

99

∫ δ99

0
(δ99 − y)u′v′ dy︸ ︷︷ ︸
FIKu′v′

+ 4
δ2

99Reδ0

∫ δ99

0
(δ99 − y)

(
−U

∂ν

∂y
+ ν ′ ∂u′

∂y

)
dy︸ ︷︷ ︸

FIKvis

− 4
δ2

99

∫ δ99

0
(δ99 − y)UV dy

− 2
δ2

99

∫ δ99

0
(δ99 − y)2

[
∂

∂x
(UU)+ ∂

∂x
(u′u′)

]
dy

+ 2
δ2

99Reδ0

∫ δ99

0
(δ99 − y)2

[
∂

∂x

(
ν
∂U
∂x

)
+ ∂

∂x

(
ν ′
∂u′

∂x

)]
dy

+ 2
δ2

99

∫ δ99

0
(δ99 − y)2

(
−∂P
∂x

)
dy. (3.1)

Here, FIK lam, FIKu′v′ , FIKvis denote the contributions of the laminar base flow,
Reynolds shear stress and viscosity variation in the y direction, respectively. Note
that the overbar represents time-averaged quantities. In (3.1), Cf is decomposed into
the effects of mean and fluctuating motion as well as the variable local viscosity. In
general, skin friction is related to the near-wall turbulence structures (Kravchenko,
Choi & Moin 1993; Choi, Moin & Kim 1994). This formulation demonstrates the
higher impact of near-wall turbulence motions as dictated by the moments in the
integrals.

Figure 4 displays contributions of the first three terms of (3.1) to the skin-friction
coefficient for µBT = 1.0 and 0.2. The sum of the remaining terms is also included
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FIGURE 4. Contributions to the Skin friction coefficients for (a) µBT = 1.0 and
(b) µBT = 0.2.

and is denoted FIKother. The skin-friction coefficient obtained from the FIK identity
(Cf ,FIK) is in good agreement with the time-averaged Cf evaluated during the DNS.

In the pretransitional boundary layer, the total Cf shadows the laminar curve, with
an offset due to the energetic streak distortions. While the streaks have a significant
u′u′ contribution, they do not have an appreciable associated Reynolds shear stress.
The term FIKu′v′ is therefore relatively small in the pretransitional regime. With the
onset of transition to turbulence, energy is redistributed from u′u′ to u′v′ and the
increase in FIKu′v′ is mirrored in the total Cf curve. Relative to the single-fluid flow,
the abrupt increase of FIKu′v′ is delayed downstream in the presence of the wall film.

The large contribution of FIK lam seen in figure 4(b) near the inlet (x− x0<100) is
due to the fuller profile of the streamwise mean velocity. The change of viscosity in
the wall-normal direction leads to the decrease in Cf as demonstrated by the figure.
This is mainly due to the large positive gradient of mean viscosity. Note that, unlike
the instantaneous viscosity profile which is sharp, the average viscosity has a smoother
profile due to the time dependence of the interface location. Nonetheless ν(y) retains
a sufficiently large ∂ν/∂y up to x− x0 ≈ 200.

The downstream growth of boundary-layer 99 % and momentum thicknesses are
shown in figure 5(a,c). Initially δ99 and θ increase gradually following the Blasius
solution in the laminar region, but subsequently increase at a higher rate in the
transition zone. The rise in the momentum thickness reflects the sharp increase in
skin friction across the transition region, and is delayed further downstream in the
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FIGURE 5. (Colour online) Profiles of (a) boundary-layer 99 % thicknesses (δ99/δ0), (b)
film thicknesses (d/δ0 black lines; d/δ99 light lines) and (c) momentum thicknesses (θ/δ0).

presence of the wall film. The downstream spreading of the wall film is shown in
figure 5(b). Its growth rate is slower than that of δ99 and, as a result, the local
ratio of the film-to-boundary-layer thickness, d/δ99, decreases downstream. The
film thicknesses for µBT = 0.5 and 0.2 are only reported up to x − x0 ≈ 450 and
600, respectively. In the transition zone, the wall film is detached due to vigorous
buffeting by the turbulence spots.

The influence of the viscosity ratio on the mean velocity at several x locations
is shown in figure 6. Here, the y-axis is normalized by the local boundary-layer
thickness δ99. The purpose of introducing the wall film is achieved as the mean shear
in the pretransitional regime is increasingly contained within the film at lower film
viscosities. Upstream of transition, the fuller mean profile within the less-viscous film
flow explains the large contribution of FIK lam to Cf shown in figure 4(b). After the
onset of transition, the mean velocity in the single-fluid boundary layer increases near
the wall. However, the mean velocity for µBT = 0.2 retains the laminar profile up to
x− x0= 800 due to transition delay. With weaker outer shear in the two-fluid flow, it
is anticipated that the lift-up mechanism in the bulk fluid will be weakened, although
the change in the disturbance field within the film is more difficult to anticipate.

The root-mean-square (r.m.s.) of the streamwise velocity fluctuations is plotted in
figure 7 for different x-locations. The streamwise velocity fluctuations for µBT = 1.0
amplify with downstream distance. The distribution of u′rms shows a maximum
approximately in the middle of the laminar boundary layer (y/δ99≈ 0.4 corresponding
to y/δ∗ ≈ 1.2), which is in agreement with previous results from experiments and
numerical simulations (Matsubara & Alfredsson 2001; Brandt, Schlatter & Henningson
2004). The laminar u′rms profiles of µBT = 1.0 (x − x0< 300) have the appearance of
Klebanoff modes. After the onset of transition, the peak of the velocity fluctuation
shifts towards the wall.

The general trend of u′rms described above is also observed in the two-fluid flows,
although with two important changes. First, the amplitude of fluctuations becomes
weaker with decreasing film viscosity. This is consistent with the linear prediction that
lower-viscosity wall films attenuate the energy amplification inside the boundary layer
(Saha et al. 2010). Second, a new peak in u′rms emerges near the interface (y/δ99 ≈
0.05) in the laminar region in the case of µBT = 0.2. This peak persists up to the
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FIGURE 6. Mean velocity profiles at various downstream locations. On the x-axis, the
distance between major tick marks denotes Ux = 1.0U∞.
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FIGURE 7. Profiles of the r.m.s. streamwise velocity fluctuations at various downstream
locations. On the x-axis, the distance between major tick marks denotes u′rms = 0.17U∞.

pretransitional regime. Both observations will be quantified, and will be explained with
the aid of linear theory.

The maximum value of u′rms is extracted at every downstream location and is
plotted in figure 8. Here, the outer peak refers to the maximum located in the middle
of boundary layer and the inner peak denotes the one closer to the wall. In the
single-fluid boundary layer, only one peak exists and is reproduced in both figures
for reference. The amplification of the outer peak in the laminar region (x− x0< 200)
is reduced with decreasing film viscosity. This suggests that the streak amplification
is weakened in two-fluid boundary layers. After transition onset, the outer peaks
of µBT = 1.0 and 0.5 grow rapidly (x − x0 = 400 and 500) and attain maxima at
x − x0 = 640 and 800, respectively. It is seen in figure 8(b) that the inner peak of
µBT = 0.5 is only discernible in the region of x− x0< 400.

The outer peak is weakest for µBT = 0.2. In contrast to higher viscosity ratios, the
inner peak has a comparable amplitude to the outer streaks when µBT = 0.2. Beyond
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FIGURE 8. (Colour online) Maximum u′rms versus downstream distance for (a) outer peak
and (b) inner peak. For µBT = 0.2, the two peaks become indistinguishable in the region
x− x0 > 800 (light line).

1.65 3.30 4.95 6.60 8.25 9.901.65 3.30 4.95 6.60 8.25 9.90
0.5
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(a) (b)

FIGURE 9. (Colour online) Wall-normal location of maximum u′rms versus downstream
distance for (a) outer peak and (b) inner peak. For µBT = 0.2, the outer peak
moves towards the wall quickly in the transition zone, and the two peaks become
indistinguishable downstream (light line).

x − x0 > 800, the outer and inner peaks in u′rms are indistinguishable. They increase
sharply and reach a peak value at x− x0 = 1080.

In figure 9, the wall-normal locations of the maximum u′rms are displayed. The
laminar outer peaks lie between 0.38< y/δ99< 0.5 as shown in figure 7. It is clear
that the outer peaks move rapidly towards the wall in the transition regime. In
the fully turbulent regime, when µBT = 1.0 or 0.5, the outer peak is located at
y/δ99 ≈ 0.025. This y location corresponds to y+ ≈ 14.5 which is similar to the value
from previous experiments (e.g. Matsubara & Alfredsson 2001). The inner peak for
two-fluid boundary layers is placed between 0.03< y/δ99< 0.1.

The Reynolds-averaged streamwise velocity fluctuations reveal that the laminar
streaks are weakened in two-fluid boundary layers. The origin of this trend can be
explained with the aid of linear theory. The linear perturbation equations for the
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wall-normal velocity and vorticity are

∂

∂t

∇2v′j
f ′
η′j

=


d2Uj

dy2

∂

∂x
+ νj∇4 −Uj

∂

∂x
∇2 0 0

δ(y− d) −U(d)
∂

∂x
0

dUj

dy
∂

∂z
0 νj∇2η−Uj

∂

∂x


v′jf ′
η′j

 (3.2)

where δ(y− d) is the delta function at the interface location and f ′ is the interfacial
displacement. These equations have appeared previously in the literature on linear
stability of two-fluid flows, albeit they are often reported in Fourier space (e.g. Yih
1967; Yecko & Zaleski 2005; Malik & Hooper 2007; Cheung & Zaki 2010). No-
slip and no-penetration boundary conditions are applied at the wall. Homogeneous
boundary conditions are imposed on v′, ∂v′/∂y and η′ in the free stream:

v′B(0)= 0; ∂yv
′
B(0)= 0; η′B(0)= 0 (3.3a−c)

v′T(y→∞)= 0; ∂yv
′
T(y→∞)= 0; η′T(y→∞)= 0. (3.4a−c)

In addition, the perturbation field must satisfy continuity of velocity and stresses
linearized to the mean interface location, which can be expressed in terms of
v and η,

[v′] = 0; (3.5a)[
∂v′

∂y

]
=
[

dU
dy

]
∂f ′

∂x
; (3.5b)[

µ

(
∂2v′

∂y2
−∇2

xzv
′
)]
=
[
µ

d2U
dy2

]
∂f ′

∂x
; (3.5c)[

ρ

(
∂

∂t
∂v′

∂y
+U

∂2v′

∂x∂y
− dU

dy
∂v′

∂x

)
−µ∂

3v′

∂y3
− 3µ∇2

xz
∂v′

∂y

]
= σ∇4

xzf
′; (3.5d)

[η′] =−
[

dU
dy

]
∂f ′

∂z
; (3.5e)[

µ
∂η′

∂y

]
=−

[
µ

d2U
dy2

]
∂f ′

∂z
(3.5f )

where ∇2
xz is the Laplacian operator in the x–z plane, [·] denotes the change across

the interface, (·)T − (·)B, and σ is the surface tension.
As seen in (3.2), wall-normal vorticity can be generated by tilting of the mean

spanwise vorticity. In the limit of streamwise-elongated disturbances, the amplification
of η′ is representative of the behaviour of u′, or the streaks, since η′= ∂u′/∂z− ∂w′/∂x.
Figure 10 shows the quantity v′rms dU/dy, which is closely related to the forcing term
of η′ in (3.2), at four different x positions. In general, this term decays downstream in
the laminar-flow regime due to the decay of v′rms. However, the profiles show a clear
variability with viscosity ratio. In the single-fluid case, the profile has only one peak,
while the two-fluid cases have two peaks: an outer one which is located at y/δ99≈0.55
and an inner one at y/δ99 = 0.1. The magnitude of the outer peak diminishes with
decreasing µBT since the wall film absorbs the mean shear which becomes weaker in
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FIGURE 10. Profiles of v′rms dU/dy for (a) x− x0 = 50, (b) x− x0 = 100, (c) x− x0 = 150
and (d) x− x0 = 200.

the outer fluid (see figure 6). This weakening of the vorticity tilting term in the top
fluid explains the weaker Klebanoff streaks in figure 7. On the other hand, the inner
peak is intensified with the reduction in viscosity ratio (see figure 10a). This can lead
to stronger η′, and therefore streaks, near the interface. At the interface itself, this
effect is captured by the matching condition (3.5e), where the jump in mean shear
can become a source of η′ if the interface is deformed. The response is the inner
peak in u′rms reported in figure 8(b), which is enhanced as µBT is reduced.

Linear theory provides a viable starting point to explain the changes in the
u-perturbation field in the nonlinear simulations. In the context of the DNS, the
relevant term is u′v′(∂U/∂y), or production due to the Reynolds’ shear stress. This
term is analysed in detail below. It is also important to note that weaker u′rms does not
guarantee stability. Nolan & Zaki (2013) showed that rare high-amplitude streaks are
the key sites for transition onset. Therefore, a closer examination of the population of
streaks is required in order to determine whether the extreme values of the distribution
of streak amplitudes are also diminished due to the wall film.

4. Conditionally averaged fields and instantaneous flow structures
A comparison of instantaneous u′ contours between single- and two-fluid boundary

layers is provided in figures 11 and 12. The spanwise dimension is magnified with
an aspect ratio of 5:1. The dark contours mark u′< 0, or low-speed streaks, and the
broader bright zones are occupied by high-speed streaks with u′> 0. In figure 11(a), a
patch of turbulence is observed near x− x0=400; its inception location is situated on a
low-speed streak. As the turbulent spot travels downstream, it spreads in the horizontal
plane. The front of the patch propagates more rapidly than the rear, and it merges
with the fully turbulent flow downstream. The amalgamation of these spots sustains
the fully turbulent region of the flow within the computational domain. This process
is also described in the work by Jacobs & Durbin (2001).
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FIGURE 11. Instantaneous u′ contours (−0.15U∞< u′< 0.15U∞) in the (x, z)-plane for
µBT =1.0 at (a) T0, (b) T0+1T , (c) T0+21T and (d) T0+31T . Here, T0 is the reference
time and 1T = 96δ0/U∞.
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FIGURE 12. Instantaneous u′ contours (−0.15U∞< u′< 0.15U∞) in the (x, z)-plane for
µBT =0.2 at (a) T0, (b) T0+1T , (c) T0+21T and (d) T0+31T . Here, T0 is the reference
time and 1T = 96δ0/U∞.

The formation of the turbulent spot takes place further downstream when µBT = 0.2.
The irregular edge of turbulent motion is seen at x − x0 = 650 in figure 12(a). The
convective speed of the spot is similar to that in the single-fluid flow. The delay of
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FIGURE 13. Instantaneous v′ contours (−0.05U∞<v′< 0.05U∞) in the (x, y)-plane for
µBT = 1.0. Time sequence showing the evolution of the spot precursor via vectors:
(a) T0; (b) T0 + 1T; (c) T0 + 21T; (d) T0 + 31T . Black line denotes the location of
the boundary-layer edge. The viewing window moves at 0.83U∞. Here, 1T = 24δ0/U∞.

turbulent spot formation provides clear evidence that transition is delayed by the wall
film. Based on previous studies, spot inception is correlated with streak amplitude
(Nolan & Zaki 2013). Therefore, the lowered streak amplitudes in the pretransitional
two-fluid boundary layer can be directly responsible for the delayed breakdown.

The top views of the perturbation fields are complemented by side views of
the instantaneous flow in figures 13 and 14. The light and dark contours denote
the positive and negative wall-normal velocity fluctuations, respectively. The
v-perturbations are displayed in conjunction with the vectors. Note that the time
interval, 1T , between consecutive frames in the side views (figures 13 and 14) is
shorter than in the top views (figures 11 and 12) in order to capture the evolution
of the secondary instability. In the single-fluid case, irregular velocity patterns are
clearly visible near the edge of the boundary layer (13c,d). These are due to the outer
secondary instability of lifted low-speed streaks which precedes the inception of the
turbulent spot shown in figure 11. In the case where µBT = 0.2, the outer and inner
peaks in the u′rms profile became indistinguishable in the transition zone. Therefore, it
is not clear whether breakdown to turbulence was caused by a secondary instability
mechanism that affects the outer streaks or the two-fluid interface. Figure 14 captures
the secondary instability which causes transition, and which starts farther downstream
than in the single-fluid boundary layer. The instability is atop the lifted outer streaks,
which have a weaker amplitude in figure 14 relative to the single-fluid case. Therefore,
the transition mechanism is not changed but rather delayed by the introduction of the
wall film.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

21
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.214


348 S. Y. Jung and T. A. Zaki

500 520 540 560

520 540 560 580

540 560 580 600

560 580 600 620

8

0

8

0

8

0

8

0

(a)

(b)

(c)

(d)

FIGURE 14. Instantaneous v′ contours (−0.05U∞<v′< 0.05U∞) in the (x, y)-plane for
µBT = 0.2. Time sequence showing the evolution of the spot precursor via vectors: (a) T0;
(b) T0 + 1T; (c) T0 + 21T; (d) T0 + 31T . Black and white lines denote the locations
of the boundary-layer edge and the interface, respectively. The viewing window moves at
0.83U∞. Here, 1T = 24δ0/U∞.

The lift-up mechanism which leads to the amplification of streaks is related to the
ejection/sweep motions which contribute to the positive production of turbulence. In
order to investigate the changes to the ejection/sweep events due to the wall film,
a quadrant analysis for the Reynolds shear stress is performed. The analysis of the
Reynolds shear stress provides detailed information on the contributions of various
events occurring in the flow to the total turbulence production (Willmarth & Lu 1972;
Brodkey, Wallace & Eckelmann 1974). The analysis divides the Reynolds shear stress
into four categories according to the signs of u′ and v′. The first quadrant Q1 (u′> 0
and v′ > 0) contains outward motion of high-speed fluid; the second quadrant Q2
(u′< 0 and v′ > 0) contains outward motion of low-speed fluid, or ‘ejections’; the
third quadrant Q3 (u′< 0 and v′< 0) represents inward motion of low-speed fluid; and
the fourth quadrant Q4 (u′ > 0 and v′< 0) represents in-rush of high-speed fluid, or
‘sweeps’. Here, Q1 and Q3 events contribute to the positive Reynolds shear stress
(negative production), and Q2 and Q4 events contribute to the negative Reynolds shear
stress (positive production).

Figure 15(a) shows the contributions to the Reynolds shear stress from each
quadrant in the pretransitional regime. It is evident that the magnitudes of Q2
and Q4 events are decreased in the two-fluid boundary layers, consistent with the
weaker production of Klebanoff streaks. This trend becomes more pronounced at
the downstream location x − x0 = 400. In figure 15(b), the peak of the Q4 events
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FIGURE 15. Contributions to the Reynolds shear stress (u′v′) from each quadrant at
(a) x− x0 = 200 and (b) x− x0 = 400. Each profile is normalized by U2

∞.

is closer to the wall in the single-fluid flow than in the two-fluid boundary layer.
This change is due to the single-fluid flow reaching the starting point of transition to
turbulence. The enhanced Q2 and Q4 have also been credited to increases in the skin
friction as pointed out in the discussion of figure 4. These trends in the single-fluid
boundary layer do not affect the two-fluid flow since its transition location is farther
downstream.

In order to evaluate the contributions of strong ejections to the upwelling of the
lifted negative streaks, conditionally averaged flow fields are examined in figures 16
and 17. The conditional average of flow fields is estimated surrounding a Q2 event at
y/δ99 = 0.5 over the 2D window 1δ99 × 2δ99 in the cross-flow plane. The conditions
for the strong Q2 event are −u′v′ >Hu′rmsv

′
rms, u′< 0 and v′ > 0. The threshold H= 2

is selected, consistent with previous studies (Littell & Eaton 1994; Kang, Choi & Yoo
1998; Le, Coleman & Kim 2000). The central peak in each plot, depicting a strong
ejection, is flanked by two secondary peaks generated by the opposite event. Kang
et al. (1998) postulated that these peaks are the signature of the pair of streamwise
vortices that generate the strong Reynolds-stress-producing event. The central peak in
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FIGURE 16. Conditional averages of flow fields for strong ejection (−u′v′ > 2u′rmsv
′
rms,

u′< 0 and v′ > 0) at x− x0 = 200 and y/δ99 = 0.5: (a) µBT = 1.0 and (b) µBT = 0.2. Here,
white line shows the location of interface.
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0–0.10–0.15 –0.05 0.05 0.10 0.15

FIGURE 17. Conditional averages of flow fields for strong ejection (−u′v′ > 2u′rmsv
′
rms,

u′< 0 and v′ > 0) at x− x0 = 400 and y/δ99 = 0.5: (a) µBT = 1.0 and (b) µBT = 0.2. Here,
white line shows the location of interface.

each plot represents the combined effect of both vortices, while the secondary peaks
each correspond to the effect of an individual vortex.

The central peak of the two-fluid boundary layer is much weaker than that of the
single-fluid flow. This is consistent with the findings in figure 15. From the quadrant
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FIGURE 18. Spanwise correlations of streamwise velocity fluctuations at y/δ99 = 0.5 for
(a) µBT = 1.0 and (b) µBT = 0.2.

analyses, suppression of the lift-up mechanism by the wall film is plausible. The
strength of the secondary peaks is also reduced when µBT = 0.2.

In the conditionally averaged fields, the spacing between secondary peaks becomes
narrower downstream when scaled by the local boundary-layer thickness. This can
be confirmed by the spanwise two-point correlation of the streamwise velocity
fluctuations, u′(z+1z)u′(z)/u′2, at y/δ99 = 0.5 as shown in figure 18. The averaged
streak spacing is defined as twice the distance to the minimum of the correlation.
In local scaling, the spanwise spacing decreases slightly with downstream distance,
which is consistent with the results by Brandt et al. (2004).

The traditional statistical description of the streaky perturbation field provides u′rms
and its maximum value (see figure 8). This approach masks the rich population of
streak amplitudes which can deviate significantly from estimates based on u′rms. It is
therefore inadequate in predicting the impact of changes to the perturbation field on
transition since breakdown is related to rare high-amplitude streaks. In order to more
accurately characterize the pretransitional boundary layer, individual streaks must be
identified in both space and time and appropriate statistical properties evaluated.

Here, we apply a recently introduced algorithm to isolate individual streaks in
the DNS velocity fields (Nolan & Zaki 2013), and report statistics of the streak
population. The first step is to perform laminar–turbulence discrimination in order
to isolate the pretransitional flow. The discrimination algorithm is based on the
techniques presented by Hedley & Keffer (1974). The detector function adopted
here is D ≡ |v′| + |w′|, which is a positive signal. The detector function is then
low-pass filtered using a local standard-deviation filter, Ď = G ? D where G is the
filtering Kernel. This step effectively homogenizes the laminar and turbulent regions
to prepare the signal for effective laminar–turbulence discrimination. It is important
to recognize that the laminar and turbulent fields are two distinct dynamical systems
that we wish to separate. Using a threshold Ďth, we define the indicator function,
Γ = 1 for Ď > Ďth, and Γ = 0 otherwise. Otsu’s method provides an effective
approach to select the threshold (Otsu 1979). It was originally introduced for image
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FIGURE 19. Snapshots of u′ contours with positive (red) and negative (blue) streaks for
(a) µBT = 1.0 and (b) µBT = 0.2. Here, the black and white lines denote the laminar–
turbulent edge detection and mean boundary-layer thickness, respectively.

processing, and is intended to separate the foreground and background of an image
with bimodal distributions (e.g. range of light greys in the background and dark greys
in the foreground). The method provides the optimal threshold which minimizes
the total variance of the signal. The resulting logical indicator function, Γ = {0, 1},
distinguishes the laminar and turbulent regions of the flow. Within the laminar region,
individual streaks are identified in cross-stream planes by detecting the local peaks of
the u′ velocity. Maxima/minima located in the free stream or in the turbulent region
of the boundary layer are discarded. Neighbouring maxima/minima in successive
cross-stream planes are linked and identified as unique objects.

The laminar streaks extracted by the present detection algorithm are visualized in
figure 19. The wall-normal and spanwise planes also show contours of streamwise
velocity perturbations, u′. The black line demarcates the interface between the laminar
and turbulent regions of the flow. Red and blue lines indicate the spatial coordinates of
the detected positive and negative streaks, respectively. The negative streaks are lifted
towards the boundary-layer edge, while positive streaks remain close to the wall. The
turbulent spot enclosed by the black line appears further downstream when µBT = 0.2,
which demonstrates the significant delay of bypass transition in the two-fluid boundary
layer.

In order to assess the effect of introducing a wall-film on the amplitude of the
laminar streaks, we track the streaks in time by cross-correlating their amplitudes in
successive snapshots. For each streak, s, its coordinates xs(t) describes its evolution
in time, and its amplitude is defined as

A s
u (x

s, t)≡ u′(x= xs, t). (4.1)
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FIGURE 20. Streamwise variations of the distribution of As
u for (a) µBT = 1.0, (b) µBT =

0.2 and (c) distributions of As
u at x− x0 = 400 for µBT = 1.0 (solid) and µBT = 0.2 (dash-

dot). In (a,b), contour lines are logarithmically distributed between decades 10−0.05 to 10
in steps of 100.12.

The maximum of A s
u is extracted at every streamwise location,

As
u(x)=

max
t,y,z

(A s
u (x

s, t)), for A s
u > 0

min
t,y,z
(A s

u (x
s, t)), for A s

u< 0.
(4.2)

This expression identifies the maximum amplitude a particular streak, s, adopts during
its entire time history as it passes an observation point, x. The associated wall-normal
location is

ys(x)= y(As
u(x)). (4.3)

Figure 20(a,b) show the streamwise development of the distributions of As
u in

the single- and two-fluid boundary layers, respectively. In the case with µBT = 1.0,
the amplitude of both positive and negative streaks grows quickly initially. Streak
amplitudes attain a maximum value as high as 45 % of the local free-stream velocity.
The streamwise growth of the distribution is significantly inhibited in the case with
µBT = 0.2 and the maximum amplitude is reduced by 30 %. The difference between
the two cases at a fixed streamwise position upstream of transition is compared in
figure 20(c). The majority of the streaks in the µBT = 1.0 case have an amplitude
between 10 % and 15 %. On the other hand, when µBT = 0.2, the amplitude of most
streaks is confined to within 10 %. High-amplitude streaks Au > 20 %, which are
the common sites for breakdown to turbulence, are more frequent in the single-fluid
boundary layer.

Figure 21 compares the instantaneous perturbation streaks and also the three-
dimensional vortical structures within the single- and two-fluid boundary layers.
The streaks are visualized using isosurfaces of u-perturbations, and the vortices are
reduced using the Q criterion (Hunt, Wray & Moin 1988). Here, Q is defined as
Q≡−0.5(S2

ij −Ω2
ij), where Sij and Ωij are the symmetric and antisymmetric velocity

gradient tensors, respectively. Abundant hairpin-like structures atop the low-speed
streaks are clearly seen in the transitional region. The occurrence of turbulent spots
takes place farther downstream in the two-fluid boundary layer, as explained by the
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FIGURE 21. Snapshots of three-dimensional vortical structure by Q criterion (white, Q=
0.001|Q|max) with isosurfaces of low-speed (blue, u′<− 0.1U∞) and high-speed (red, u′>
0.1U∞) streaks: (a) µBT = 1.0 and (b) µBT = 0.2. Yellow contour for µBT = 0.2 denotes
the location of interface. The wall-normal and spanwise extents are scaled by a factor of
eight.

weaker population of streaks in the pretransitional regime. The depletion of the wall
film after x − x0 = 800 in figure 21(b) is due to the strong velocity fluctuations in
the transitional and the turbulent regions. In the former, the top–down turbulent spots
impinge onto the wall and deplete the film. As a result, the computational cost of
tracking the resulting droplets becomes prohibitive. The obliteration of the wall film
is, however, downstream of transition and does not affect the underlying mechanism
of transition delay in two-fluid boundary layers.

Transition length mainly depends on the rates of turbulent spot formation and
spreading. A qualitative view of spot spreading in the single- and two-fluid boundary
layers is captured by the time sequences in figures 22(a) and 22(b), respectively.
It is clear in figure 22(a) that the onset of the turbulent spot is closely linked to
the strong negative streaks. As the turbulent patch convects downstream, it spreads
longitudinally and laterally. Contrary to the single-fluid boundary layer, the spreading
rate of the turbulent spots is much slower in the presence of the wall film as seen
in figure 22(b). This recalls the retarded development of the skin friction in figure 3,
akin to a favourable-pressure-gradient boundary layer. The instantaneous flow fields
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FIGURE 22. Time sequence of 3D vortical structure for (a) µBT = 1.0 and (b) µBT = 0.2.
Here, 1T = 120δ0/U∞ and the viewing window is translated at 0.83U∞.

presented so far provide convincing evidence of the impeded transition in the two-fluid
boundary layer.

5. Effect of higher turbulence intensity (Tu= 3.5 %)

In order to explore the effects of turbulence intensity on transition in two-fluid
boundary layers, auxiliary simulations were performed Tu = 3.5 %. As shown in
table 1, the streamwise domain size is shortened due to earlier transition at the
higher turbulence intensity.

The skin-friction coefficients for three viscosity ratios are plotted in figure 23.
It is possible to compare the single-fluid results to published data at this value
of Tu ' 3.5 % since it has been widely studied in the literature. In particular, the
skin-friction coefficient from the experiments by Roach & Brierley (1990) is included
in figure 23 for comparison. Near the inlet, the two-fluid boundary layers have smaller
Cf values than the Blasius solution. Delay of transition is observed with decreasing
viscosity of the wall film. The location of transition onset is x− x0 ≈ {160, 200, 240}
for µBT = {1.0, 0.5, 0.2}. Transition delay is inappreciable compared to the case of
lower turbulence intensity (Tu = 2.5 %). The transition processes are complete by
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FIGURE 23. Downstream evolution of the skin friction coefficient for Tu= 3.5 %.

x − x0 ≈ 500 for µBT = 1.0 and 0.5. However, the lowest viscosity ratio case still
shows juxtaposed regions of laminar and turbulent flows at the outlet.

The boundary-layer response to the high free-stream turbulence intensity is
examined by evaluating the r.m.s. streamwise velocity fluctuations at several
x-locations in figure 24. The impaired amplification of the velocity fluctuations
is clear with reduced viscosity ratio as in the Tu = 2.5 % case. Note that the inner
peak of µBT = 0.2 in the laminar region protrudes due to the large jump in mean
shear across the interface. The maximum value of u′rms for each viscosity ratio is
shown in figure 25. It should be noted in figure 25(a) that the outer peak in the
laminar region (x − x0<150) grows gently with decreasing film viscosity, which
reflects the weakened streak amplification by the wall film. The outer peak reaches
the maximum value at x− x0 = 290, 350 and 450 in case of µBT = 1.0, 0.5 and 0.2,
respectively. In figure 25(b), the inner peaks of two-fluid boundary layers only appear
near the inlet region, x− x0<150. Note also that the amplitude of the inner peak for
µBT = 0.2 is larger than that of µBT = 0.5, consistent with earlier observations for
Tu= 2.5 %. In contrast to that case, however, the inner peak is overwhelmed by the
outer perturbation field which amplifies quickly and causes breakdown to turbulence.
The statistical measures from the higher level of free-stream turbulence demonstrate
the delay of transition in the presence of the wall film. However, the effectiveness of
the film in delaying transition is appreciably reduced. This reduction in the propensity
of the film to delay transition is due to the stronger streak perturbation field in the
outer flow, which is responsible for the onset of breakdown. A parallel can be drawn
to the progressively weaker ability of favourable pressure gradient to delay bypass
transition at higher Tu.

6. Summary
DNS of two-fluid boundary layers beneath free-stream turbulence were performed

in order to examine the influence of the wall film on bypass transition. Two moderate
levels of free-stream turbulence intensities were considered, Tu = 2.5 % and 3.5 %,
with particular focus on the lower level. The thickness of the wall film at the inlet to
the computational domain was d= 10 % of the single-fluid boundary-layer thickness at
that location. Two wall-film-to-free-stream viscosity ratios were investigated, µBT =0.5
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FIGURE 24. Profiles of the r.m.s. streamwise velocity fluctuations at various downstream
locations. On the x-axis, the distance between major tick marks denotes u′rms = 0.17U∞.
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FIGURE 25. Maximum u′rms versus downstream distance for (a) outer peak and
(b) inner peak.

and 0.2, in addition to a reference single-fluid case. While this choice of viscosity
ratios is motivated by previous linear studies, it should be noted that a lower-viscosity
film is not always guaranteed to delay transition: for example, the film can alter the
receptivity of the boundary layer to free-stream disturbances (Zaki & Saha 2009); the
viscosity mismatch at the two-fluid interface can lead to new instability mechanisms
(Yih 1967); and predictions based on linear theory become inaccurate when finite
interface displacements are taken into consideration (Cheung & Zaki 2010). Therefore,
only DNSs can provide a complete account of the influence of a wall film on the full
transition process.

In the present simulations, the wall film was effective at delaying laminar-to-
turbulence transition. In particular, the increase in the skin-friction coefficient
associated with the onset of turbulence was shifted downstream appreciably in the
presence of the less-viscous wall film. The cause for transition delay was examined
using Reynolds-averaged statistics and analysis of instantaneous flow fields. The
r.m.s. streamwise velocity fluctuations were significantly weakened in the two-fluid
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boundary layer relative to the single-fluid configuration. The lower values of u′rms
pointed to weaker Klebanoff streaks in the pre-transitional boundary layer. This effect
was explained by appealing to the linear perturbation equations: the less-viscous wall
film reduces the mean shear in the outer fluid, which weakens the lift-up, or vorticity
tilting, mechanism that generates the streaks. The equations also predict the presence
of a second disturbance amplification mechanism at the two-fluid interface due to the
viscosity mismatch, and which was observed in the numerical simulation.

The weakening of the streaks in the outer flow was also observed in the
instantaneous flow fields. By identifying particular streaks in space and tracking them
in time, probability distribution functions of the streak amplitudes were evaluated for
each flow configuration. In the two-fluid case, the result showed a clear reduction
in the amplitudes of the streaks within the population, and a lower frequency of
occurrence of high-amplitude events which are the sites for secondary instability and
the inception of turbulence spots. As a result, the secondary instabilities were less
likely and the subsequent breakdown to turbulence occurred farther downstream.

The effectiveness of the wall film in delaying transition depends on the disturbance
environment. When the turbulence intensity was increased to Tu = 3.5 %, transition
was still delayed in the two-fluid configuration. However, the extent of transition delay
was less pronounced than at Tu = 2.5 %. In addition, changes in the film properties
can be anticipated to alter its performance. The present work considered a two-fluid
boundary layer with a less-viscous wall film: a configuration that can be emulated by
heating of liquid flows at high Prandtl number (Lee et al. 2013). Future work can also
examine the influence of density variation on the bypass transition process.
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