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RANDOM AFFINE SIMPLEXES
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Abstract
For a fixed ke {l,...,d}, consider arbitrary random vectors Xo, ..., Xy € R? such
that the (k + 1)-tuples (UXp, . .., UXy) have the same distribution for any rotation U.

Let A be any nonsingular d x d matrix. We show that the k-dimensional volume of the
convex hull of affinely transformed X; satisfies | conv (AXp, ..., AXp)| 2 (P& /kp) |
conv (X, ..., Xx)|, where £:={xeR?: xT(ATA)"'x <1} is an ellipsoid, P¢ denotes
the orthogonal projection to a uniformly chosen random k-dimensional linear
subspace & independent of Xy, ..., Xk, and kj is the volume of the unit k-dimensional
ball. As an application, we derive the following integral geometry formula for
ellipsoids:  cxa,p fA“ |ENEPTF g 1 (dE) = |EFH de.k |PLEPvy(dL), where
Chdp = (/c:;“//c;jﬂ)(Kk(d+p)+k//<k(d+p)+d). Here p> —1 and Ay and Gy are the
affine and the linear Grassmannians equipped with their respective Haar measures.
The p =0 case reduces to an affine version of the integral formula of Furstenberg and
Tzkoni (1971).

Keywords: Blaschke—Petkantschin formula; convex hull; ellipsoid; expected volume;
Furstenberg—Tzkoni formula; Gaussian matrix; intrinsic volume; random section; ran-
dom simplex
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1. Main results

1.1. Basic notation

First we introduce some basic notion of integral geometry following [17]. The Euclidean
space R? is equipped with the Euclidean scalar product (-, -). The volume is denoted by | - |.
Some of the sets we consider have dimension less than d. In fact, we consider three classes:
the convex hulls of k + 1 points, orthogonal projections to k-dimensinal linear subspaces, and
intersections with k-dimensional affine subspaces, where k € {0, . . ., d}. In this case, | - | stands
for the k-dimensional volume.
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The unit ball in R* is denoted by B*. For p >0, we write
/2
Kpi= —,
C(p/2+1)

where, for an integer k, we have k; = |]Bk l.

For k€ {0, ..., d}, the linear (respectively affine) Grassmannian of k-dimensional linear
(respectively affine) subspaces of R? is denoted by Gg k (respectively Ay k) and is equipped
with a unique rotation invariant (respectively rigid motion invariant) Haar measure vy
(respectively (4 1), normalized by

(1.1)

vak(Gai) =1

and
Hd.k ({E €Aqr: ENBY # QD = Kd—k,

respectively.
A compact convex subset K of R? with nonempty interior is called a convex body. We define
the intrinsic volumes of K by Kubota’s formula,

d
vk<l<>=(k) < / \PLK vai(dLD), (12)
Gy k

KkKd—k

where P7K denotes the image of K under the orthogonal projection to L.
For L € G4k (respectively E € Ay k), we denote by Ay (respectively Ag) the k-dimensional
Lebesgue measures on L (respectively E).

1.2. Affine transformation of spherically symmetric distribution

For a fixed ke {l,...,d}, consider random vectors Xy, ..., X € R4 (not necessarily
independent and identically distributed (i.i.d.)) with an arbitrary spherically symmetric joint
distribution. By this we mean that the (k + 1)-tuple (UXy, . . ., UXy) has the same distribution
for any orthogonal d x d matrix U. The convex hull

conv (X, ..., Xp)
is a k-dimensional simplex (maybe degenerate) with well-defined k-dimensional volume
| conv (Xo, - . ., Xp)|. (1.3)

How does the volume in (1.3) change under affine transformations? For k = d, the answer
is obvious: it is multiplied by the determinant of the transformation. The k < d case presents a
more delicate problem.

Theorem 1.1. Let A be any nonsingular d x d matrix, and let € be the ellipsoid defined by
&= {xeRd: xTATA)lx < 1}. (1.4)
Then we have

P:&
|conV(AX0,...,AXk)|3 IPsE]

| conv (Xp, ..., Xp)|, (1.5)

where Pg denotes the orthogonal projection to a uniformly chosen random k-dimensional
linear subspace & independent of Xy, . . . , Xk.
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Due to Kubota’s formula (see (1.2)), E |P¢£| is proportional to Vi(£). Thus, taking the
expectation in (1.5) and using the formula
d\ kg
vi(B) = |——
!B (k) Kd—k
readily implies the following corollary.

Corollary 1.1. Under the assumptions of Theorem 1.1, we have

Vi(E
E | conv (AXo, . . . , AXy)| = V&) g | conv (Xo, - . ., Xe)l- (1.6)

Vi (Bd)
For a formula of Vi(£), see [11]. Relation (1.6) can be generalized to higher moments using
the notion of generalized intrinsic volumes introduced in [4], but we shall skip to describing
details here.

The main ingredient of the proof of Theorem 1.1 is the following deterministic version of
(1.5).

Proposition 1.1. Let A and £ be as in Theorem 1.1. Consider x1, . .., X\ € R4 and denote by
L their span (linear hull). Then

| conv (0, Axyq, ..., Axp)| =

| conv (0, x1, ..., xp)|. (L.7)

[PLE]
Kk

Let us stress that here the origin is added to the convex hull.
Applying (1.7) to standard Gaussian vectors (details are in Section 2.3) leads to the
following representation.

Corollary 1.2. Under the assumptions of Theorem 1.1, we have

Peg| o (det(GTATAG) ) o [det (G]Gr) )"
ke det(GTG) “\det(G7G) )

(1.8)
where G is a random d x k matrix with i.i.d. standard Gaussian entries Ny and G;, is a random
d x k matrix with the entries ANy, where A1, . .., Aq denote the singular values of A.

Thus, we obtain the following version of (1.5).

Corollary 1.3. Under the assumptions of Theorem 1.1 and Corollary 1.2, we have
1/2

| (AX, AXp)| 2 det (G 47AG) / | (X Xl

conv e = — conv (Xo, - . .,

0 ¢ det (GTG) ‘ ‘

o (det(G)G,)
~ \ det (GTG)

The important special case k = 1 corresponds to the distance between two random points.

1/2
) | conv (Xp, ..., Xp)|.

Corollary 1.4. Under the assumptions of Theorem 1.1, we have
A2N? o+ A2N2
|AXo — AXy| = [ =L 41X — X1,
Ni+---+N;

where Ny, ..., Ny are i.i.d. standard Gaussian variables and A1, . . ., hq denote the singular
values of A.
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1.3. Random points in ellipsoids

Now suppose that Xp, . .., Xi are independent and uniformly distributed in some convex
body K € R?. A classical problem of stochastic geometry is to find the distribution of (1.3)
starting with its moments

1
E|conv(Xo, ..., X’ = |K|—k+1 /k“ | conv (xo, ..., x|’ dxo - - - dxg. (1.9)
K

The most studied case is d =2, k=p =1, when the problem reduces to calculating the
mean distance between two uniformly chosen random points in a planar convex set (see [1],
[2], [6], [13, Chapter 2], and [16, Chapter 4]).

For an arbitrary d and k = 1, there is an electromagnetic interpretation of (1.9) (see [8]): a
transmitter X and a receiver X are placed uniformly at random in K. It is empirically known
that the power received decreases with an inverse distance law of the form 1/|Xy — X1 |%, where
« is the so-called path-loss exponent, which depends on the environment in which both are
located (see [15]). Thus, with k = 1 and p = —na, (1.9) expresses the nth moment of the power
received (n < d/a).

The case of arbitrary k and d was studied only for K being a ball. In [14] it was shown (see
also [17, Theorem 8.2.3]) that, for X, ..., X uniformly distributed in the unit ball B¢ C R?
and for an integer p > 0,

kt+1
1 Kgtp Ki@d+py+d bak
(KDP 15 k1)) ba+p.k

E|conv (Xp, ..., Xp|’ = (1.10)

where kj is defined in (1.1) and for any real number g > k — 1 we write (see [17, Equation
(7.8)D)
_ wq7k+1 . .a)q

bgyi=—— 1 (1.11)
a)l e a)k

with w, := pk;, being equal to the area of the unit (p — 1)-dimensional sphere when p is integer.

In [10, Proposition 2.8] this relation was extended to all real p > —1. It should be noted
that Proposition 2.8 of [10] is formulated for real p > 0 only, but in the proof (see p. 23) it is
argued that by analytic continuation, the formula holds for all real p > —1 as well. Theorem 1.1
implies (for details see Section 2.4) the following generalization of (1.10) for ellipsoids. Recall
that P¢ denotes the orthogonal projection to a uniformly chosen random k-dimensional linear
subspace £ independent of X, . .., Xi.

Theorem 1.2. For X, ..., Xy uniformly distributed in some nondegenerate ellipsoid & C R?

and any real number p > —1, we have

k41
E | conv (Xp X|P = 1 Kapp Ki@ipy+d bax EIP:EF
e (KDP (5T k1) @p) baspk K

(1.12)

Note that (1.12) is indeed a generalization of (1.10) since PgBd =B as. and |Bk|P = K,f.
For k=1, (1.12) was recently obtained in [9].

For p =1, the right-hand side of (1.12) is proportional to the kth intrinsic volume of &
(see (1.2)), which implies the following result (for details, see Section 2.5).
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Corollary 1.5. For Xy, . .., Xy uniformly distributed in some nondegenerate ellipsoid £ C R?,
we have

Nk+1 k+1 2
E |conv Xy, ..., Xp)|= i @+ by ( Cax1 ) Vi(€).

2K ((d+ Dk + 1) \ K@D+
Very recently, for X, ..., Xi uniformly distributed in the unit ball B9, the formula for
the distribution of | conv (Xp, ..., Xz)| has been derived in [7]. For a random variable n and

o1, a2 >0, we write n ~ B(ag, a) to denote that n has a beta distribution with parameters
a1, g and the density

r
Tlon +02) wi-1 (g _pm-1 40, 1),
F(a)T (a2)
It was shown in [7] that, for Xo, . . ., Xi uniformly distributed in B9,
(k1> n(1 — ) [conv (Xo, ... XI* 2 (1 — 0V 1+ g, (1.13)
where 1, ', 11, . . ., nx are independent random variables independent of Xy, . . ., Xj such that
d kd d—k+i k—i
n~Bl=-+1,—], i~B| —, 1].
n,n <2 + ) > ni ( ) ) + >

Multiplying both sides of (1.13) by |P¢€ 2 //c,f and applying Theorem 1.1 and Corollary 1.2
(for details, see Section 2.4) leads to the following generalization of (1.13).

Theorem 1.3. For Xy, . .., Xy uniformly distributed in some nondegenerate ellipsoid € C RY,
we have

(kDn(1 — )| conv (Xo, - . ., Xp)I> = & 21— n)ny - - - il PeEJ?

det (G] G;)
D Nk A
=(1— A - ,
( n)m Tk ( det (GTG)
where the matrices G and G,,_are defined in Corollary 1.2 and Ay, . . ., Ag denote the length of

semi-axes of .
Taking k = 1 yields the distribution of the distance between two random points in £.

Corollary 1.6. Under the assumptions of Theorem 1.3, we have

AIN? 4.+ A2N2
n(l—n>|Xo—X1|22(1—n’>m< T dd

N} +---+N;

where Ny, ..., Ny are i.i.d. standard Gaussian variables.

1.4. Integral geometry formulae
Recall that G4 x and A4 denote the linear and affine Grassmannians defined in Section 1.1.
For an arbitrary convex compact body K, p > —d, and k = 1, it is possible to express (1.9)

in terms of the lengths of the one-dimensional sections of K (see [3] and [12]):

2dk,

K NEPHH dE).
@rpdtptD Jy, FOETT Ha D)

/2 lxo —x1|P dxodx; =
K
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This formula does not extend to k> 1. The next theorem shows that for ellipsoids this is
possible.

Theorem 1.4. For any nondegenerate ellipsoid £ C RY ke {0,1,...,d}, and any real
number p > —d + k — 1, we have

/[;m | conv (xg, ..., x| dxo ... dxg

k+1
1 Koy Kk@4pyrk bak
KDP (LT keeq 1)) Daipk

/ 1€ NEPTT 1y 1 (dE). (1.14)
Adk

The proof is given in Section 3.2.
Comparing this theorem with Theorem 1.2 readily gives the following connection between
the volumes of k-dimensional cross-sections and projections of ellipsoids.

Theorem 1.5. Under the assumptions of Theorem 1.4, we have

Kht! Kk(d+p)+k

St [ e o gt n =160 [ PP,
Adk

KT K(@pyd Gax

For p =0, we obtain the following integral formula.

Corollary 1.7. Under the assumptions of Theorem 1.4, we have

d+1
K Kd(k+1
f 1€ NEIH g () = g D g, (1.15)
Adk Ky Kk(d+1)

This result may be regarded as an affine version of the following integral formula of
Furstenberg and Tzkoni (see [5]):

Kd
[ ientituuan =gk
Gk Ka

Our next theorem generalizes this formula in the same way as (1.14) generalizes (1.15).
Theorem 1.6. For any nondegenerate ellipsoid £ CR?, ke{0,1,...,d), and any real

number p > —d + k, we have

k
1 Kayp bax
(k!)p Kf+d bd+p,k

/ | conv (0, x1, ..., xp)|P dx ... dx; = / 1€ N LPFH vy (dL).
gk Gk

In probabilistic language it may be formulated as

k
T
B[ conv (0, X1, ..., X = ———2 2k

(kD P+ by i

E|ENgPte,

where Xi, ..., Xy are independent uniformly distributed random vectors in £ and & is a
uniformly chosen random k-dimensional linear subspace in RY.
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2. Proofs: part I

2.1. Proof of Theorem 1.1 assuming Proposition 1.1
First note that, with probability 1, the equation
|P:E|
K

- | conv (Xo, ..., Xp)|=0
holds if and only if

| conv (AXp, ..., AXy)| =0,
which in turn is equivalent to

dim conv (Xo, ..., Xp) <k.

Therefore, to prove (1.5), it is enough to show that the conditional distributions of

P:&E
| conv (AXp, ...,AXy)| and 1P ||COHV(X0,...,Xk)|

Kk
given dim conv (Xp, . .., Xx) = k are equal. Thus, without loss of generality, we can assume
that the simplex conv (Xp, . .., Xi) is not degenerate with probability 1:

dimconv (Xg, ..., Xy) =k as. 2.1)

Our original proof was based on the Blaschke—Petkantschin formula and the characteristic
function uniqueness theorem. (The original proof can be found in the first version of this paper
available at https://arxiv.org/abs/1711.06578v1.) Later, Youri Davydov found a much simpler
and nicer proof which also allows us to get rid of the assumption about the existence of the

joint density of Xo, . .., Xi. Let us present this proof.
Since the joint distribution of Xp, ..., Xy is spherically symmetric, we have for any
orthogonal matrix U
| conv (AX, ..., AXy)| =|conv (0, A(X] — Xp), ..., AXx — Xo)| (2.2)

2 | conv (0, A(UX| — UXy), . . ., A(UXx — UXo)|.

Now let Y be a random orthogonal matrix chosen uniformly from SO(n) with respect to the
probabilistic Haar measure and independently of Xo, ..., Xi. By (2.1), with probability one
the span of X1 — X, ..., Xr — Xo is a k-dimensional linear subspace of R4. Thus, the span

& :=span(YX; — YXo, ..., YXx — TXp)

is a random uniformly chosen k-dimensional linear subspace in R independent of X, . . ., Xi.
Applying Proposition 1.1 to the vectors YX; — T X, ..., TX; — Y Xo, we obtain
| conv (0, A(YX; — YXp), ..., A(Y X — YXo)|

|Pe€]
=——|conv(0, YX; —YXp, ..., TX; —YTXo)|
K

|Pe€|
=——|conv(YXp, YX1, ..., YXp)|
Kk
P:E
2' ¢l | conv (Xo, X1, ..., Xp)|.
Kk

Combining this with (2.2) for U =Y completes the proof.

https://doi.org/10.1017/jpr.2019.4 Published online by Cambridge University Press


https://arxiv.org/abs/1711.06578v1
https://doi.org/10.1017/jpr.2019.4

46 F. GOTZE ET AL.

2.2. Proof of Proposition 1.1

To avoid trivialities, we assume that dim L =k, i.e. xp, ..., x; are in general position. Let
el,...,er <R be some orthonormal basis in L. Let Oy, and X denote d x k matrices whose
columns are ey, ..., e; and x1, .. ., Xk, respectively. It is easy to check that OLOIT isadxd
matrix corresponding to the orthogonal projection operator Py. Thus,

0,0} X =X. (2.3)
Recall that £ is defined by (1.4). It is known (see, e.g. [18, Appendix H]) that the orthogonal
projection P& is an ellipsoid in L and

PLE| = ki [det (0[H0L)] " (2.4)

where
H:=ATA.
A well-known formula for the volume of a k-dimensional parallelepiped implies that, for
any xq, ..., Xx eRd,

1/2

|conv (0, x1, ..., xp)| = %[det (XTX)] (2.5)

Therefore,

- 12 - 12
k!|conV(0,Ax1,...,Axk)|=[det((AX) AX)] =[det(X Hx)] .

Applying (2.3) produces
det (X HX) = det (X' 0,0] HOLO] X)
=det (O] HOL) det (X Or) det (O] X)
=det (0] HOL) det (X" 0,0/ X)
=det (0] HOL) det (X" X),
which together with (2.4) and (2.5) completes the proof.

2.3. Proof of Corollary 1.2

Denote by G1, ..., Gr € R the columns of the matrix G. Hence, AGq, ...,AGy € R9 are
the columns of the matrix AG. Using Proposition 1.1 with x; = G; and applying (2.5) to G and
AG gives

|det (6747 AG)] V2 IBE |det (GTG) | "

Kk
or

’

12
det (GTATAG)\? |P,€)
det (GTG) K
where 7 is the span of Gy, ..., G. Since Gy, . . ., Gy are i.i.d. standard Gaussian vectors, 7 is
uniformly distributed in G4 x with respect to vy x (given dim n = k which holds a.s.), therefore,

n 2 & and the corollary follows.
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2.4. Proofs of Theorem 1.2 and Theorem 1.3

For any nondegenerate ellipsoid &, there exists a unique symmetric positive-definite d x d
matrix A such that

E=AB? = {xeRd: HA_lx” < 1} = {xeRd: xTA_fo 1}.

Since X, . . ., X are i.i.d. random vectors uniformly distributed in £, then A%y, ..., ATIX,
are i.i.d. random vectors uniformly distributed in B¢, It follows from Theorem 1.1 that

|conv (Xo, . ... Xp)| = ‘conv (AA’IXO, - ,AA’IXk>‘
’ [P:E]
Ke

= ‘

conv (A—lxo, L ,A—lxk) (2.6)

Taking the pth moment and applying (1.10) implies Theorem 1.2.
Now apply (1.13) to A~ X, ..., A7 X}

2
kD2 (1 =) Joonv (471X, ... AN 2 (=Y

Multiplying by |P:E|/ K,f and applying (2.6) implies the first equation in Theorem 1.3. The
second equation follows from (1.8).

2.5. Proof of Corollary 1.5
From Kubota’s formula (see (1.2)) and Theorem 1.2, we have

E | conv (Xo, ..., X =aaxVi(E),
where

ket 1
1 K1 Kk@t+d  bak  Ka-k

KUkt ke an bavik ($ra

od k =

From the definitions of by  (see (1.11)) and «, (see (1.1)), we obtain

g — Ksﬂ Kk(d+1)+d (d+ 1=K Kg—g+1 Ka—k
’ IC5+1 Kt yd+1)  (d+ Dk Kd
_(d+1-h) T @d)2+1) !
_nmw+m(rw+np+n)
L@+ D@+ D2+ T@d+h/2+1) T @/2+1)
T (k+1)d+k)/2+ )T (d—k+1)/2+ 1) T ((d—k)/2+1)

Using Legendre’s duplication formula for the gamma function,

F@T (z+4) =2""%x'rea),
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the recursion I'(1 + z) = z I'(z), and the fact that k, d € Z, we obtain
d—=B!'T (k+1)d+1)/2+1) ['d/2+1/2)T(d/2+1)
k24! T (k+Dd+k)/2+ DT (d—k)/2+1/2)T (d—k)/2+ 1)
5 < T (d/2+1) >"+1

L (d+1)/2+1)

1 T(k+D@+1/2+1) rdrR+1 !
T QUTFT ((k+ Dd+ 02+ 1) (F (d+ D)2+ 1>>

k+1

2
1 (T (d/24+ 1) T (d/2+ 1 + 1/2))k+! ( kit )

Ad k=

- (Zﬁ)k I'((kd+d+k)/24+1)T ((kd+k+d)/24+141/2) \ k@+1)k+1)

@t gt Y
C 2k ((d+ D+ ) \ k@rnasn ]

3. Proofs: part II

3.1. Blaschke-Petkantschin formula

In our further calculations we will need to integrate some nonnegative measurable function
h of k-tuples of points in R?. To this end, we integrate first over the k-tuples of points in a fixed
k-dimensional linear subspace L with respect to the product measure )Li and then integrate
over Gy with respect to vy . The corresponding transformation formula is known as the
linear Blaschke—Petkantschin formula (see [17, Theorem 7.2.1]):

[Rd)k h(xl,...,xk)dxl... dxk (3.1)

= (kb s / /k h(x1, ..., xp)lconv (0, x1, ..., x4
Ggr JL

x Ap(dxy) - - - Ap(dxg)vg r(dL),

where by i is defined in (1.11).
A similar affine version (see [17, Theorem 7.2.7]) may be stated as follows:

/Rd " h(xg, ..., x;)dxg... dxg (3.2)
(RY

= (k1) bg / hxo, -, 1] conv (xo, ..., x|
Ad,k Ek+1
x Ap(dxo) - - - Ap(dxi) pa ,k(dE).

3.2. Proof of Theorem 1.4
Let

J::/ | conv (xg, ..., xp)|P dxo--- dxg
5k+|

k
Z/ dykt1 | conv (xo, ..., xp)I” 1_[ 1g (x;)dxg - - - dxy.
(R4 Pl
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Using the affine Blaschke—Petkantschin formula (see (3.2)) with

k
h(xg, ...,xr):=|conv (xg, ..., xp)|" l_[ 1e (x))
=0
yields

J =" *bg / | conv (x, . .., xp)|P T4k
Ad.k Ek+1

k
x [ ] e @re(dxo) . .. Ap(dxi)a x(dE)
i=0

= (k) by i

/ - | conv (x0, - . ., x) P T F Ap(dxo) - - - Ap(dxi) ta k(AE).
Agx J(ENE)

Now fix E € Ag k. Applying Theorem 1.2 to the ellipsoid £ N E gives

1
_ conv (xg, . . ., x)PH Fap(dxp) - - - Ap(dx
&N B /(Emg)k+l | (xo 3] E(dxo) - - - Ap(dxy)

Kt _
1 Kayp kk@apy+k  brk [ENEPTIF

RO g e @rp) batpk T

which leads to

1k Kk(d+p)+k  bdk
= azi ar s * p+d+1
I= (k)P  pHd+1 b / IENE] pa k(dE).
UK K(k+1)(d+p) Od+p.k JAgx

3.3. Proof of Theorem 1.6

The proof is similar to the previous proof. Let

J::/ | conv (0, x1, ..., x)|” dxy - -+ dxg
gk

k
=/ |conv(0,x1,...,xk)|pnlg (xj)dxq - - - dxy.
®RDE i=1
Using the linear Blaschke—Petkantschin formula (see (3.1)) with

k
Wy, ..o = eonv (0.x1, . x)l” [ 1e ()

i=1
gives

J=(k!)d—kbd,k/ /|conv(0,x1,...,xk)|”+d_k
Gy Lk

k
x [ [ 1e Gorcdxr) - - ar(dxi) va(dL)
i=1

= (k)" *by 4 / o |conv (0, x1, ..., x)P T4 ap(dxy) - - - Ap(dxpvar(dL). (3.3)
Ga J(LNEY
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Fix L € Gy . Since £ N L is an ellipsoid, there exists a linear transform Az : L — R¥ such that
Ar(€ N L) =Bk, Applying the coordinate transform x; =Ary;, i=1,2, ..., k, we get

/ o | conv (0, x1, ..., xp)P ¥ Far(dxy) - - - Ar(dxy)
(LN

|ENLptd _
= v /aw lconv (0, yy, ...,y Fdy, - dy,. (3.4)
K
k

It is known (see, e.g. [17, Theorem 8.2.2]) that

bk
bd+p,k

/( g | O YOy - dy = RO RC (3.5)

Substituting (3.5) and (3.4) into (3.3) completes the proof.
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