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Abstract

We provide a general purpose result for the coupling of exploration processes of random
graphs, both undirected and directed, with their local weak limits when this limit is
a marked Galton–Watson process. This class includes in particular the configuration
model and the family of inhomogeneous random graphs with rank-1 kernel. Vertices in
the graph are allowed to have attributes on a general separable metric space and can
potentially influence the construction of the graph itself. The coupling holds for any
fixed depth of a breadth-first exploration process.
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1. Introduction

There is a growing literature of problems in physics, mathematics, computer science, and
operations research that are set up as processes, random or not, on large sparse graphs. The
range of problems being studied is wide, and includes problems related to the classification,
sorting, and ranking of large networks, as well as the analysis of Markov chains and interact-
ing particle systems on graphs. Popular among the types of graphs used for these purposes are
the locally tree-like random graph models such as the configuration model and the inhomoge-
neous random graph family (which includes the classical Erdős–Rényi model). These random
graph models are quite versatile in the types of graphs they can mimic, and have important
mathematical properties that make their analysis tractable.

In particular, the mathematical tractability of locally tree-like random graphs comes from
the fact that their local neighborhoods resemble trees. This property makes it easy to transfer
questions about the process of interest on a graph to the often easier analysis of the pro-
cess on the limiting tree. Mathematically, this transfer is enabled by the notion of local weak
convergence [1, 2, 3, 15]. However, as is the case for many problems involving usual weak
convergence of random variables, it is often desirable to construct the original set of random
variables and their corresponding weak limits on the same probability space; in other words, to
have a coupling. In addition, many problems studying processes on graphs require that we keep
track of additional vertex attributes not usually included in the local weak limits, attributes that
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may not be discrete. The recent work in [14] gives several examples of Markov chains and sys-
tems of equations on directed graphs whose analysis relies on the kind of couplings presented
here, and include the study of the personalized PageRank distribution [9, 15, 20], among oth-
ers. Further applications include the analysis of interacting diffusions [16, 17], where we may
wish to allow the vertex attributes to influence the dynamics of the processes being studied. The
results in this paper were designed to solve these two problems simultaneously by providing a
general-purpose coupling between the exploration of the neighborhood of a uniformly chosen
vertex in a locally tree-like graph and its local weak limit, including general vertex attributes
that may indirectly influence the construction of the graph.

The main results focus only on the two families of random graph models that are known to
converge, in the local weak sense, to a marked Galton–Watson process. It is worth mentioning
that other locally tree-like graphs like the preferential attachment models do not fall into this
category, since their local weak limits are continuous-time branching processes. In particular,
we focus on random graphs constructed according to either a configuration model or any of
the inhomogeneous random graph models with rank-1 kernels (see Sections 1.1 and 1.2 for
the precise definitions). Our results include both undirected and directed graphs, and are given
under minimal moment conditions in order to include scale-free graphs. In particular, under our
assumptions, it is possible for the offspring distribution in the limiting marked Galton–Watson
process to have infinite mean, and in the directed case for the limiting joint distribution of the
in-degree and out-degree of a vertex to have infinite covariance.

Before describing the two families of random graph models for which our coupling theo-
rems hold, we introduce some definitions to be used throughout the paper. We use G(Vn, En)
to denote a graph, or multigraph, having vertices Vn = {1, 2, . . . , n} and edges in the set En.
A directed edge from vertex i to vertex j is denoted by (i, j). For multigraphs, we also need to
keep track of the multiplicity of each edge or self-loop, so we use l(i) to denote the number of
self-loops of vertex i, and e(i, j) to denote the number of edges from vertex i to vertex j. If the
graph is undirected, we simply ignore the direction. In the undirected case, we use Di to denote
the degree of vertex i, which corresponds to the number of adjacent neighbors of vertex i. In the
directed case, we use D−

i to denote the in-degree of vertex i and D+
i to denote its out-degree;

the in-degree counts the number of inbound neighbors, and the out-degree the number of out-
bound ones. All our results are given in terms of the large-graph limit, which corresponds to
taking a sequence of graphs {G(Vn, En) : n ≥ 1} and taking the limit as |Vn| = n → ∞, where
|A| denotes the cardinality of set A. Both the configuration model and the family of inhomo-
geneous random graphs are meant to model large static graphs, since there may be no relation
between G(Vn, En) and G(Vm, Em) for n ≥ m. Strong couplings for evolving graphs such as the
preferential attachment models are a topic for future work.

1.1. Configuration model

The configuration model [4, 21] produces graphs from any prescribed (graphical) degree
sequence. In the undirected version of this model, each vertex is assigned a number of stubs
or half-edges equal to its target degree. Then, these half-edges are randomly paired to create
edges in the graph.

For an undirected configuration model (CM), we assume that each vertex i ∈ Vn is assigned
an attribute vector ai = (Di, bi), where Di ∈N is its degree, and bi encodes additional informa-
tion about vertex i that does not directly affect the construction of the graph but may depend
on Di. The attributes {bi} are assumed to take values on a separable metric space S ′. For
the sequence {Di : 1 ≤ i ≤ n} to define the degree sequence of an undirected graph, we must
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have that Ln := ∑n
i=1 Di is even. Note that this may require us to consider a double sequence

{a(n)
i : i ≥ 1, n ≥ 1} rather than a unique sequence, i.e. one where a(n)

i 	= a(m)
i for n 	= m. In appli-

cations it is often convenient to allow the vertex attributes to be random themselves; [14]
studies various stochastic recursions on graphs that include vertex attributes such as the ones
we envision here.

Assuming that Ln is even, enumerate all the stubs and pick one stub to pair; suppose that stub
belongs to vertex i. Next, choose one of the remaining Ln − 1 stubs uniformly at random, and
if the stub belongs to vertex j, draw an edge between vertices i and j. Then, pick another stub
to pair. In general, a stub being paired chooses uniformly at random from the set of unpaired
stubs, then identifies the vertex to which the chosen stub belongs, and creates an edge between
its vertex and the one to which the chosen stub belongs.

The directed version of the configuration model (DCM) is such that each vertex i ∈ Vn

is assigned an attribute of the form ai = (D−
i , D+

i , bi) ∈N2 × S ′. Similarly to the undirected
case, D−

i and D+
i denote the in-degree and the out-degree, respectively, of vertex i, and bi

is allowed to depend on (D−
i , D+

i ). The condition needed to ensure we can draw a graph is
now Ln := ∑n

i=1 D+
i =∑n

i=1 D−
i , which again may require us to consider a double sequence{

a(n)
i : i ≥ 1, n ≥ 1

}
.

As for the CM, we give to each vertex i a number D−
i of inbound stubs, and a number D+

i
of outbound stubs. To construct the graph, we start by choosing an inbound (outbound) stub,
say belonging to vertex i, and choose uniformly at random one of the Ln outbound (inbound)
stubs. If the chosen stub belongs to vertex j, draw an edge from j to i (from i to j); then pick
another inbound (outbound) stub to pair. In general, when pairing an inbound (outbound) stub,
we pick uniformly at random from all the remaining unpaired outbound (inbound) stubs. If the
stub being paired belongs to vertex i, and the one to which the chosen stub belongs to is j, we
draw a directed edge from j to i (from i to j).

We emphasize that both the CM and the DCM are in general multi-graphs, that is, they
can have self-loops and multiple edges (in the same direction) between a given pair of ver-
tices. However, provided the pairing process does not create self-loops or multiple edges, the
resulting graph is uniformly chosen among all graphs having the prescribed degree sequence.
It is well known that when the empirical degree distribution converges weakly and its second
moment converges to that of the limit, the pairing process results in a simple graph with a
probability that remains bounded away from zero even as the graph grows [10, 21].

We use Fn = σ (ai : 1 ≤ i ≤ n) to denote the sigma algebra generated by the attribute
sequence, which does not include the edge structure of the graph. To simplify the nota-
tion, we use Pn(·) = P(· | Fn) and En[·] =E[ · | Fn] to denote the conditional probability and
conditional expectation, respectively, given Fn.

1.2. Inhomogeneous random graphs

The second class of random graph models we consider is the family of inhomogeneous ran-
dom graphs (digraphs), in which the presence of an edge is determined by the toss of a coin,
independently of any other edge. This family includes the classical Erdős–Rényi graph [13],
but also several generalizations that allow the edge probabilities to depend on the two vertices
being connected, e.g. the Chung–Lu model [11], the Norros–Reittu model (or Poissonian ran-
dom graph) [19], and the generalized random graph [7], to name a few. Unlike the Erdős–Rényi
model, these generalizations are capable of producing graphs with inhomogeneous degree
sequences, and can mimic almost any degree distribution whose support is N (or N2 in the
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directed case). This paper focuses only on inhomogeneous random graphs (digraphs) having
rank-1 kernels (see [6]), which excludes models such as the stochastic block model.

Collectively, this family of models has a long history in the random graph literature, and
their connectivity properties, phase transitions, and degree distributions are well known. Rather
than attempting to name all the existing references where these models have appeared, we refer
the interested reader to the books [5, 12, 21, 22], where many of their properties have been
compiled.

To define an undirected inhomogeneous random graph (IR), assign to each vertex i ∈ Vn an
attribute ai = (Wi, bi) ∈R+ × S ′. The Wi will be used to determine how likely vertex i is to
have neighbors, while the bi can be used to include vertex characteristics that are not needed
for the construction of the graph but that are allowed to depend on Wi. If convenient, one
can consider using a double sequence

{
a(n)

i : i ≥ 1, n ≥ 1
}

as with the configuration model, but
this is not as important since the sequence Wn := {Wi : 1 ≤ i ≤ n} does not need to satisfy any
additional conditions in order for us to draw the graph. As with the CM (DCM), the vertex
attributes are allowed to be random.

We use the notation Fn = σ (ai : 1 ≤ i ≤ n), as for the configuration model, to denote the
sigma algebra generated by the vertex attributes, as well as the notation for the corresponding
conditional probability, Pn(·) = P(· | Fn), and expectation, En[·] =E[ · | Fn].

For the IR, the edge probabilities are given by

p(n)
ij := Pn((i, j) ∈ En) = 1 ∧ WiWj

θn
(1 + ϕn(Wi, Wj)), 1 ≤ i < j ≤ n,

where −1 < ϕn(Wi, Wj) = ϕ(n, Wi, Wj, Wn) almost surely (a.s.) is a function that may depend
on the entire sequence Wn, on the types of the vertices {i, j}, or exclusively on n, and 0 < θ <

∞ satisfies 1
n

∑n
i=1 Wi

P−→ θ , n → ∞. Throughout this paper, x ∧ y = min{x, y} and x ∨ y =
max{x, y}. Since the graph is to be simple by construction, p(n)

ii ≡ 0 for all i ∈ Vn.
For the directed version, which we refer to as an inhomogeneous random digraph (IRD),

the vertex attributes take the form ai = (W−
i , W+

i , bi) ∈R2+ × S ′. The parameter W−
i con-

trols the in-degree of vertex i, and W+
i its out-degree. If we write Wi = (W−

i , W+
i ), the edge

probabilities in the IRD are given by

p(n)
ij := Pn((i, j) ∈ En) = 1 ∧ W+

i W−
j

θn
(1 + ϕn(Wi, Wj)), 1 ≤ i 	= j ≤ n,

where −1 < ϕn(Wi, Wj) = ϕ(n, Wi, Wj, Wn) a.s. is a function that may depend on the entire
sequence Wn := {Wi : 1 ≤ i ≤ n}, on the types of the vertices {i, j}, or exclusively on n, and

0 < θ < ∞ satisfies 1
n

∑n
i=1 (W−

i + W+
i )

P−→ θ , n → ∞. Since the graphs are again simple by

construction, we have p(n)
ii ≡ 0 for all i ∈ Vn.

2. Main result for undirected graphs

For an undirected graph constructed according to one of the two models (CM or IR), our
main result shows that there exists a coupling between the breadth-first exploration of the
component of a uniformly chosen vertex and that of the root node of a marked Galton–Watson
process. Before we can state the theorem, we need to introduce some notation on the graph and
describe the Galton–Watson process that describes its local weak limit.
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Each vertex i in an undirected graph (multigraph) G(Vn, En) is given a vertex attribute of
the form

ai =
{

(Di, bi) if G(Vn, En) is a CM,

(Wi, bi) if G(Vn, En) is an IR.

In addition, define for each vertex i its full mark Xi = (Di, ai), where Di is the degree of
vertex i. We point out that the definition of Xi is redundant when the graph is a CM; how-
ever, this is not so if the graph is an IR. In both cases the vertex attributes are measurable with
respect to Fn, while the full marks are not if the graph is an IR.

The main assumption needed for the coupling to hold is given in terms of the empirical
measure for the vertex attributes, i.e.

νn(·) = 1

n

n∑
i=1

1(ai ∈ ·). (2.1)

In order to state the assumption, recall that the state space for the vertex attributes, S ′, is
assumed to be a separable metric space under metric ρ′. Now define the metric ρ(x, y) = |x1 −
y1| + |x2 − y2| + ρ′(x3, y3), x = (x1, x2, x3), y = (y1, y2, y3), on the space S := N×R× S ′,
which makes S a separable metric space as well. Using ρ, and for any probability measures
νn, μn on the conditional probability space (S, Fn, Pn), define the Wasserstein metric of order
one: W1(νn, μn) = inf

{
En
[
ρ(Ŷ, Y)

]
: law(Ŷ | Fn) = νn, law(Y | Fn) = μn

}
.

Assumption 2.1. (Undirected.) Let νn be defined according to (2.1), and suppose there exists

a non-random probability measure ν such that W1(νn, ν)
P−→ 0, n → ∞. In addition, assume

that the following conditions hold:

A. In the CM, let (D, B) be distributed according to ν, and suppose there exists a non-
random b0 ∈ S ′ such that E[D + ρ′(B, b0)] < ∞.

B. In the IR, let (W, B) be distributed according to ν, and suppose the following hold:

(i) En = 1
n

∑n
i=1

∑
1≤i 	=j≤n

∣∣p(n)
ij − (r(n)

ij ∧ 1)
∣∣ P−→ 0 as n → ∞, where r(n)

ij =
WiWj/(θn).

(ii) There exists a non-random b0 ∈ S ′ such that E[W + ρ′(B, b0)] < ∞.

Now that we have stated the assumptions for our theorem, we need to describe the local
neighborhood of a vertex in the graph G(Vn, En). To do this, let I ∈ Vn denote a uniformly
chosen vertex in G(Vn, En); vertices are identified with their labels in {1, 2, . . . , n}. Define
A0 = {I}, and let Ak denote the set of vertices at hop distance k from I. Now write G(k)

I to be
the subgraph of G(Vn, En) consisting of the vertices in

⋃k
r=0 Ar along with their (multiple)

edges and self-loops. We also use the notation G(k)
I (a) to refer to the graph G(k)

I including all
the attributes of its vertices.

Definition 2.1. We say that two simple graphs G(V, E) and G′(V ′, E′) are isomorphic if there
exists a bijection σ : V → V ′ such that edge (i, j) ∈ E if and only if edge (σ (i), σ (j)) ∈ E′.
We say that two multigraphs G(V, E) and G′(V ′, E′) are isomorphic if there exists a bijec-
tion σ : V → V ′ such that l(i) = l(σ (i)) and e(i, j) = e(σ (i), σ (j)) for all i ∈ V and all (i, j) ∈ E,
where l(i) is the number of self-loops of vertex i, and e(i, j) is the number of edges from vertex
i to vertex j. In both cases, we write G 
 G′.
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To describe the limit of G(k)
I as n → ∞, we construct a delayed marked Galton–Watson

process, denoted T (A), using the measure ν in Assumption 2.1. Here, ‘delayed’ refers to the
fact that the root will, in general, have a different distribution than all other nodes in the tree.

To start, let U := ⋃∞
k=0 N

k+ denote the set of labels for nodes in a tree, with the convention
that N0+ := {∅} contains the root. For a label i = (i1, . . . , ik) we write |i| = k to denote its
length, and use (i, j) = (i1, . . . , ik, j) to denote the index concatenation operation.

The tree T is constructed as follows. Let {(Ni, Ai) : i ∈ U} denote a sequence of independent
vectors in S , with {(Ni, Ai) : i ∈ U , i 	= ∅} independent and identically distributed (i.i.d.). For
any i ∈ U , Ni denotes the number of offspring of node i, and Ai denotes its attribute (mark).
As with the graph, we use the notation T to denote the tree without its attributes. Let A0 = {∅}
and recursively define Ak = {(i, j) : i ∈Ak−1, 1 ≤ j ≤Ni}, k ≥ 1, to be the kth generation of T .
To match the notation on the graph, we write X∅ = (N∅, A∅) and Xi = (Ni + 1, Ai), i 	= ∅. The
marked tree is then given by T (A) = {Xi : i ∈ T }; note that the marks include the number of
offspring of each node, from which the edges in the tree can be deduced. We denote by T (k)

(T (k)(A)) the restriction of T (T (A)) to its first k generations.
It only remains to identify the distribution of Xi, for both i = ∅ and i 	= ∅, in terms of the

probability measure ν in Assumption 2.1. For a CM, let A = (D, B) be distributed accord-
ing to ν; then, P(X∅ ∈ · ) = P((D, A) ∈ ·), and P(Xi ∈ ·) = (1/E[D])E[D1((D, A) ∈ ·)], i 	= ∅.
For an IR, let A = (W, B) be distributed according to ν; then, P(X∅ ∈ ·) = P((D, A) ∈ ·), and
P(Xi ∈ ·) = (1/E[W])E[W1((D + 1, A) ∈ ·)], i 	= ∅, where D is a mixed Poisson random vari-
able with mean W. Note that the distribution of Xi for i 	= ∅ corresponds to a size-biased version
of the distribution of X∅ with respect to its first coordinate.

We are now ready to state the main coupling theorem for undirected graphs.

Theorem 2.1. Suppose G(Vn, En) is either a CM or an IR satisfying Assumption 2.1. Then,
for any fixed k and G(k)

I (a) the depth-k neighborhood of a uniformly chosen vertex I ∈ Vn,
there exists a marked Galton–Watson tree T (k)(A) restricted to its first k generations whose

root corresponds to vertex I and which is such that Pn
(
G(k)

I 	
 T (k)
) P−→ 0, n → ∞; if we let

σ (i) ∈ Vn denote the vertex in the graph corresponding to node i ∈ T (k), and define for any

ε > 0 the event C(k,ε)
I = {⋂

i∈T (k){ρ(Xσ (i), Xi) ≤ ε}, G(k)
I 
 T (k)

}
, then En

[
ρ(XI, X∅)

] P−→ 0

and Pn
(
C(k,ε)

I

) P−→ 1, n → ∞. Moreover, for any fixed m, k ≥ 1, ε > 0, and {Ij : 1 ≤ j ≤ m}
i.i.d. random variables uniformly chosen in Vn, there exist i.i.d. copies of T (k)(A), denoted{
T (k)

∅(Ij)
(A) : 1 ≤ j ≤ m

}
, whose roots correspond to the vertices {Ij : 1 ≤ j ≤ m} in G(Vn, En),

such that
∑m

j=1 En
[
ρ(XIj , X∅(Ij))

] P−→ 0 and Pn
(⋂m

j=1 C(k,ε)
Ij

) P−→ 1, n → ∞.

Remark 2.1. Theorem 2.1 implies that the graph G(Vn, En) converges in the local weak sense
in probability, as introduced in [1, 2, 3] for undirected graphs and later extended in [15] to
marked undirected graphs. The statement involving more than one exploration is related to
the notion of propagation of chaos in the interacting particles literature (see, for example, [8,
Definition 4.1]), and can be of independent interest in that context.

3. Main result for directed graphs

In the directed case, our main result will allow us to couple the breadth-first exploration
of either the in-component or the out-component of a uniformly chosen vertex. Since the two
cases are clearly symmetric, we state our results only for the in-component.
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As with the undirected graph, each vertex i in the graph G(Vn, En) has an attribute,

ai =
{

(D−
i , D+

i , bi) if G(Vn, En) is a DCM,

(W−
i , W+

i , bi) if G(Vn, En) is an IRD.

The full mark of vertex i is now given by Xi = (D−
i , D+

i , ai), where D−
i and D+

i are the in-
degree and out-degree, respectively, of vertex i.

With some abuse of notation, we again use νn, as defined in (2.1), to denote the empir-
ical measure for the vertex attributes. However, the state space for the full marks is now
S := N2 ×R2 × S ′, equipped with the metric ρ(x, y) = |x1 − y1| + |x2 − y2| + |x3 − y3| +
|x4 − y4| + ρ′(x5, y5) for x = (x1, x2, x3, x4, x5) and y = (y1, y2, y3, y4, y5). The Wasserstein
metric W1 defined on the conditional probability space (S, Fn, Pn) remains the same after the
adjustments made to S and ρ.

Assumption 3.1. (Directed.) Let νn be defined according to (2.1), and suppose there exists a

non-random probability measure ν such that W1(νn, ν)
P−→ 0, n → ∞. In addition, assume

that the following conditions hold:

A. In the DCM, let (D−, D+, B) be distributed according to ν, and suppose there exists a
non-random b0 ∈ S ′ such that E[D− + D+ + ρ(B, b0)] < ∞.

B. In the IRD, let (W−, W+, B) be distributed according to ν, and suppose the following
hold:

(i) En = 1
n

∑n
i=1

∑
1≤i 	=j≤n

∣∣p(n)
ij − (r(n)

ij ∧ 1)
∣∣ P−→ 0 as n → ∞, where r(n)

ij =
W+

i W−
j /(θn).

(ii) There exists a non-random b0 ∈ S ′ such that E[W− + W+ + ρ(B, b0)] < ∞.

Since we will state our result for the exploration of the in-component of a uniformly chosen
vertex, the structure of the coupled tree will be determined by the vertices that we encounter
during a breadth-first exploration. This exploration starts with a uniformly chosen vertex I ∈
Vn, which is used to create the set A0 = {I}. We then explore each of the inbound edges of I to
discover all the vertices at inbound distance one from I, which become the set A1. In general, to
identify the vertices in the set Ak, we explore all the inbound edges of vertices in Ak−1. As we
perform the exploration, we also discover the out-degrees of the vertices we have encountered;
however, we do not follow any outbound edges. We then define G(k)

I to be the subgraph of
G(Vn, En) whose vertex set is

⋃k
r=0 Ar and whose edges are those that are encountered during

the breadth-first exploration we described. The notation G(k)
I (a) is used to refer to the graph

G(k)
I including the values of the full marks {Xi} for all of its vertices.

In the directed case, the limit of G(k)
I is again a delayed marked Galton–Watson pro-

cess, with the convention that all its edges are pointing towards the root. We denote the
tree T (A) as before; however, it will be constructed using a sequence of independent vec-
tors of the form {(Ni,Di, Ai) : i ∈ U}, with {(Ni,Di, Ai) : i ∈ U , i 	= ∅} i.i.d. In other words,
the full marks now take the form Xi = (Ni,Di, Ai), i ∈ U . The construction of the tree T is
done as in the undirected case using the {Ni : i ∈ U}, and the marked tree is given by T (A) =
{Xi : i ∈ T }. The notation T (k) (T (k)(A)) again refers to the restriction of T (T (A)) to its first k
generations.
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The distributions of the full marks Xi for both i = ∅ and i 	= ∅ are also different than in
the undirected case. For a DCM, let A = (D−, D+, B) be distributed according to ν; then,
P(X∅ ∈ ·) = P((D−, D+, A) ∈ ·), and P(Xi ∈ ·) = (1/E[D+])E[D+1((D−, D+, A) ∈ ·)], i 	= ∅.
For an IRD, let A = (W−, W+, B) be distributed according to ν; then, P(X∅ ∈ ·) =
P((D−, D+, A) ∈ ·), and P(Xi ∈ ·) = (1/E[W+])E[W+1((D−, D+ + 1, A) ∈ ·)], i 	= ∅, where
D− and D+ are conditionally independent (given (W−, W+)) Poisson random variables with
means cW− and (1 − c)W+, respectively, and c =E[W+]/E[W− + W+]. Note that in this case,
the distribution of Xi for i 	= ∅ corresponds to a size-biased version of the distribution of X∅
with respect to its second coordinate.

The following is our main coupling theorem for directed graphs.

Theorem 3.1. Suppose G(Vn, En) is either a DCM or an IRD satisfying Assumption 3.1.
Then, for any fixed k and G(k)

I (a) the depth-k neighborhood of a uniformly chosen vertex
I ∈ Vn, there exists a marked Galton–Watson tree T (k)(A) restricted to its first k generations,

whose root corresponds to vertex I, and such that Pn
(
G(k)

I 	
 T (k)
) P−→ 0, n → ∞, and if we let

σ (i) ∈ Vn denote the vertex in the graph corresponding to node i ∈ T (k), and define for any

ε > 0 the event C(k,ε)
I = {⋂

i∈T (k){ρ(Xσ (i), Xi) ≤ ε}, G(k)
I 
 T (k)

}
, then En[ρ(XI, X∅)]

P−→ 0

and Pn
(
C(k,ε)

I

) P−→ 1, n → ∞. Moreover, for any fixed m, k ≥ 1, ε > 0, and {Ij : 1 ≤ j ≤ m}
i.i.d. random variables uniformly chosen in Vn, there exist i.i.d. copies of T (k)(A), denoted
{T (k)

∅(Ij)
(A) : 1 ≤ j ≤ m}, whose roots correspond to the vertices {Ij : 1 ≤ j ≤ m} in G(Vn, En), such

that
∑m

j=1 En[ρ(XIj , X∅(Ij))]
P−→ 0 and Pn

(⋂m
j=1 C(k,ε)

Ij

) P−→ 1, n → ∞.

The remainder of the paper contains the proofs of Theorems 2.1 and 3.1.

4. Proofs

The proofs of Theorems 2.1 and 3.1 are based on an intermediate coupling between the
breadth-first exploration of the graph G(Vn, En) and a delayed marked Galton–Watson process
whose offspring distribution and marks still depend on the sigma algebra Fn. This intermediate
step consists in coupling G(k)

I with a marked tree denoted T̂ (k)(Â). Interestingly, this coupling
will be perfect, in the sense that the vertex/node marks in each of the two graphs will also be
identical to each other. The proofs of Theorem 2.1 and 3.1 will be complete once we show that
T̂ (k)(Â) can be coupled with the limiting T (k)(A).

To organize the exposition, we will separate the undirected case from the directed one.
Most of the proofs for the directed case have been established in prior work by the author, and
therefore will be omitted; the precise references and the missing details are given in Section 4.2.
Once the intermediate coupling theorems are proved, the coupling between the two trees can
be done similarly for the undirected and directed cases (on the trees, the direction of the edges
is irrelevant).

4.1. Discrete coupling for undirected graphs

As mentioned above, the main difference between the intermediate tree and the limiting
one lies in the distribution of the marks. As before, we start with the construction of the pos-
sibly infinite tree T̂ , which is done with the conditionally independent (given Fn) sequence
of random vectors in S , {(N̂i, Âi) : i ∈ U}, with {(N̂i, Âi) : i ∈ U , i 	= ∅} conditionally i.i.d. Let
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Â0 = {∅}, and recursively define Âk = {(i, j) : i ∈ Âk−1, 1 ≤ j ≤ N̂i}, k ≥ 1. Next, define the full
marks according to X̂∅ = (N̂∅, Â∅) and X̂i = (N̂i + 1, Âi), i 	= ∅, and let T̂(Â) = {X̂i : i ∈ T̂}.

For a CM, the distribution of the full marks is given by

Pn
(
X̂∅ ∈ · )= 1

n

n∑
i=1

1((Di, ai) ∈ ·),

Pn
(
X̂i ∈ · )=

n∑
i=1

Di

Ln
1((Di, ai) ∈ ·), i 	= ∅.

For the IR model, first let {bn} be a sequence such that bn
P−→ ∞ and bn/

√
n

P−→ 0 as n → ∞,
and use it to define W̄i = Wi ∧ bn and �n =∑n

i=1 W̄i. The marks on the coupled marked
Galton–Watson process are given by

Pn
(
X̂∅ ∈ · )= 1

n

n∑
i=1

P((Di, ai) ∈ · | ai),

Pn
(
X̂i ∈ · )=

n∑
i=1

W̄i

�n
P((Di + 1, ai) ∈ · | ai), i 	= ∅,

where conditionally on ai, Di is a Poisson random variable with mean �nW̄i/(θn).
We will also need to extend our definition of an isomorphism for marked graphs.

Definition 4.1. A graph G(V, E) is called a vertex-weighted graph if each of its vertices has
a mark (weight) assigned to it. We say that the two vertex-weighted simple graphs G(V, E)
and G(V ′, E′) are isomorphic if there exists a bijection σ : V → V ′ such that edge (i, j) ∈ E
if and only if edge (σ (i), σ (j)) ∈ E′, and in addition, the marks of i and σ (i) are the same.
For vertex-weighted multigraphs, we say that G(V, E) and G′(V ′, E′) are isomorphic if there
exists a bijection σ : V → V ′ such that l(i) = l(σ (i)) and e(i, j) = e(σ (i), σ (j)) for all i ∈ V and
all (i, j) ∈ E, where l(i) is the number of self-loops of vertex i and e(i, j) is the number of edges
from vertex i to vertex j, and in addition, the marks of i and σ (i) are the same. In both cases,
we write G 
 G′.

The intermediate coupling theorem is given below.

Theorem 4.1. Suppose G(Vn, En) is either a CM or an IR satisfying Assumption 2.1. Then, for
G(k)

I (a) the depth-k neighborhood of a uniformly chosen vertex I ∈ Vn, there exists a marked

Galton–Watson tree T̂ (k)(Â) restricted to its first k generations whose root corresponds to vertex

I and such that, for any fixed k ≥ 1, Pn
(
G(k)

I (a) 	
 T̂ (k)(Â)
) P−→ 0, n → ∞.

The proof of Theorem 4.1 is given separately for the two models being considered, the CM
and the IR.

4.1.1. Coupling for the configuration model. To explore the neighborhood of depth k of vertex
I ∈ G(Vn, En) we start by labeling the set of Ln stubs in such a way that stubs {1, . . . , D1}
belong to vertex 1, stubs {D1 + 1, . . . , D1 + D2} belong to vertex 2, and, in general, stubs
{D1 + · · · + Dm−1 + 1, . . . , D1 + Dm} belong to vertex m.
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For any k ≥ 0, define the sets:

Ak = set of vertices in G(Vn, En) at distance k from vertex I,

Jk = set of stubs belonging to vertices in Ak,

Vk =⋃k
r=0 Ar,

Âk = set of nodes in T̂ at distance k from the root ∅,

V̂k =⋃k
r=0 Âr.

These sets will be constructed as we explore the graph.
To do a breadth-first exploration of G(Vn, En), we start by selecting vertex I uniformly at

random. Next, let J0 denote the set of stubs belonging to vertex I and set A0 = {I}. For k ≥ 1,
step k in the exploration will identify all the stubs belonging to nodes in Ak:

Step k, k ≥ 1:

(a) Initialize the sets Ak = Jk =∅.

(b) For each vertex i ∈ Ak−1:

(i) For each of the unpaired stubs of vertex i:

(1) Pick an unpaired stub of vertex i and sample uniformly at random a stub from
the Ln available. If the chosen stub is the stub currently being paired, or if it had
already been paired, sample again until an unpaired stub is sampled.

(2) If the chosen stub belongs to vertex j, draw an edge between vertices i and j using
the chosen stub. If vertex j had not yet been discovered, add it to Ak and add all
of its unpaired stubs to Jk.

The exploration terminates at step k if Jk =∅, at which point the component of I will have
been fully explored.

To couple the construction of T̂ , initialize Â0 = {∅}, identify ∅ with vertex I in G(Vn, En),
and set N̂∅ = DI , a∅ = aI . For k ≥ 1, step k in the construction will identify all the nodes in Âk

by adding nodes in agreement with the exploration of the graph. Each node that is added to the
tree will have a number of stubs equal to the total number of stubs of the corresponding vertex
minus one (the one being used to create the edge), regardless of whether some of those stubs
may already have been paired.

Step k, k ≥ 1:

(a) Initialize the set Âk = ∅.

(b) For each node i = (i1, . . . , ik−1) ∈ Âk−1:

(i) For each 1 ≤ r ≤ N̂i:

(1) Pick a stub uniformly at random from the Ln available.

(2) If the chosen stub belongs to vertex j, then add node (i, r) to Âk and set N̂(i,r) =
Dj − 1, Â(i,r) = aj.

This process will end in step k if N̂i = 0 for all i ∈ Âk, or it may continue indefinitely.
Note that the coupling relies on using the same uniform random numbers in step (b)(i)(1)

for the two constructions. Specifically, there is one uniform for each of the Ln stubs which is
used in step (b)(i)(1) of the tree construction, and in the first pick in the acceptance–rejection
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step (b)(i)(1) of the graph exploration; in case of a rejection, independent uniforms are used
until a stub is accepted.

Definition 4.2. We say that the coupling breaks in generation τ = k if:

• the first time we have to resample a stub in step (b)(i)(1) occurs while exploring a stub
belonging to a vertex in Ak−1; or

• given that the above has not happened, a stub belonging to a vertex in Ak−1 is paired
with a stub belonging to a previously encountered vertex (this vertex could be in either
Ak−1 or the current set Ak).

Note that the exploration of the component of depth k of vertex I in G(Vn, En) and the
construction of the first k generations of the tree T̂ will be identical provided τ > k, meaning
G(k)

I (a) 
 T̂ (k)(Â) in the sense of Definition 4.1. This particular construction is standard in the
analysis of the configuration model, with small variations depending on whether we need to
keep track of completed generations or simply the number of stubs that have been paired. We
refer the reader to [22, Chapter 4] for the stub-by-stub version and a full history of the model.
Earlier versions of the coupling imposed finite second moment conditions that more recent
proofs can omit (see, e.g., [23]).

Proof of Theorem 4.1. (m = 1) for the CM. From the observation made above, it suffices to
show that the exploration of the k-neighborhood of vertex I does not require us to resample
any stub in step (b)(i)(1), nor does it sample a stub belonging to a vertex that had already been
discovered. To compute the probability of successfully completing k generations in T̂ before
the coupling breaks, write Pn

(
G(k)

I (a) 	= T̂ (k)(Â)
)≤ Pn(τ ≤ k).

The coupling breaks the first time we draw a stub belonging to a vertex that has already
been explored: either a stub already paired, or one that is unpaired but already attached to
the graph. The number of paired stubs when exploring a vertex in Ar−1 is less than or equal
to 2

∑r
j=1 |Aj| + |Jr|, which corresponds to two stubs for each of the vertices at distance at

most r of I and the unpaired stubs belonging to nodes in Jr. Note that up to the moment that
the coupling breaks, we have |Aj| = |Âj| for all 0 ≤ j ≤ r, and |Jr| = |Âr+1|, so the probability
that we break the coupling while exploring a vertex in Ar−1 is less than or equal to Pr :=
(2/Ln)

∑r+1
j=1 |Âj| ≤ 2|V̂r+1|/Ln, r ≥ 1.

It follows that, for any an > 0,

Pn(τ ≤ k) = Pn(τ ≤ k, |V̂k+1| ≤ an) + Pn(|V̂k+1| > an)

≤
k∑

r=1

Pn(τ = r, |V̂r+1| ≤ an) + Pn(|V̂k+1| > an)

≤
k∑

r=1

Pn(Bin(Âr−1, Pr) ≥ 1, |V̂r+1| ≤ an) + Pn(|V̂k+1| > an)

≤
k∑

r=1

Pn(Bin(an, 2an/Ln) ≥ 1) + Pn(|V̂k+1| > an)

≤
k∑

r=1

2a2
n

Ln
+ Pn(|V̂k+1| > an),
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where Bin(n, p) represents a binomial random variable with parameters (n, p). Hence, we have
Pn
(
G(k)

I (a) 	
 T̂ (k)(Â)
)≤ Pn(τ ≤ k) ≤ (2ka2

n/Ln) + Pn(|V̂k+1| > an).
To analyze the last probability we use the first part of Theorem 4.3 to obtain that, for any

fixed k ≥ 1, there exists a tree T (k) of depth k, whose distribution does not depend on Fn, such

that Pn
(
T̂ (k) 	
 T (k)

) P−→ 0 as n → ∞. Let |Ak| denote the size of the kth generation of that tree,

define |Vk+1| =∑k+1
j=0 |Aj|, and note that Pn

(
G(k)

I (a) 	
 T̂ (k)(Â)
)≤ (2ka2

n/Ln) + P(|Vk+1| >
an) + Pn

(
T̂ (k) 	
 T (k)

)
. Choosing an

P−→ ∞ so that a2
n/n

P−→ 0 as n → ∞, and observing that
|Vk+1| < ∞ a.s., completes the proof. �

4.1.2. Coupling for the inhomogeneous random graph. We couple the exploration of the com-
ponent of vertex I ∈ G(Vn, En) with a marked multi-type Galton–Watson process with n types,
one for each vertex in G(Vn, En). A node of type i ∈ {1, 2, . . . , n} in the tree will have a Poisson
number of offspring of type j with mean q(n)

ij = W̄iW̄j/(θn), 1 ≤ j ≤ n.
Similarly to the CM, define:

Ak = set of vertices in G(Vn, En) at distance k from vertex I,

Vk =⋃k
r=0 Ar,

Âk = set of nodes in T̂ at distance k from the root ∅,

B̂k = set of types of nodes in Âk,

V̂k =⋃k
r=0 Âr.

We again do a breadth-first exploration of G(Vn, En) starting from a uniformly chosen
vertex I. To start, let {Uij : i, j ≥ 1} be a sequence of i.i.d. Uniform[0, 1] random variables,
independent of Fn. We will use this sequence of i.i.d. uniforms to realize the Bernoulli ran-
dom variables that determine the presence/absence of edges in G(Vn, En). Set A0 = {I} and
initialize the set J =∅; the set J keeps track of the vertices that have been fully explored (all
its potential edges realized), and coincides with Vk−1 at the end of step k.

Step k, k ≥ 1:

(a) Initialize the set Ak =∅.

(b) For each vertex i ∈ Ak−1:

(i) Let Xij = 1(Uij > 1 − p(n)
ij ) for each j ∈ {1, 2, . . . , n} \ J.

(ii) If Xij = 1 draw an edge between vertices i and j and add vertex j to Ak.

(iii) Add vertex i to set J.

The exploration terminates at the end of step k if Ak =∅, at which point the component of I
will have been fully explored.

To couple the construction of T̂ , initialize Â0 = {∅} and identify ∅ with vertex I in G(Vn, En)
as before; let B̂0 = {I}. To construct the tree, we sample for a node of type i a Poisson number of
offspring of type j for each j ∈ {1, . . . , n}. To do this, let G(·; λ) be the cumulative distribution
function of a Poisson random variable with mean λ, and let G−1(u; λ) = inf{x ∈R : G(x; λ) ≥ u}
denote its pseudoinverse. In order to keep the tree coupled with the exploration of the graph
we use the same sequence of i.i.d. uniform random variables used to sample the edges in the
graph. Initialize the set Ĵ =∅, which will keep track of the types that have appeared and whose
offspring have been sampled. The precise construction is given below:
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Step k, k ≥ 1:

(a) Initialize the sets Âk = B̂k =∅.

(b) For each node i = (i1, . . . , ik−1) ∈ Âk−1:

(i) If i has type t /∈ Ĵ:

(1) For each type j ∈ {1, . . . , n} \ Ĵ, let Ztj = G−1(Utj; q(n)
tj ), and create Ztj children

of type j for node i. If Ztj ≥ 1, create Ztj children of type j for node i, each with
node attribute equal to aj, and add j to set B̂k.

(2) For each type j ∈ Ĵ, sample Z∗
tj ∼ Poisson(q(n)

tj ), independently of the sequence
{Uij : i, j ≥ 1} and any other random variables. If Z∗

tj ≥ 1 create Z∗
tj children of

type j for node i, each with attribute equal to aj.

(3) Randomly shuffle all the children created in steps (b)(i)(1) and (b)(i)(2) and
give them labels of the form (i, j), then add the labeled nodes to set Âk. The

node attributes will be denoted Â(i,j) = aj. (The shuffling avoids the label from
providing information about its type).

(4) Add type t to set Ĵ.

(ii) If i has type t ∈ Ĵ:

(1) For each type j ∈ {1, . . . , n}, sample Z∗
tj ∼ Poisson(q(n)

tj ), independently of the
sequence {Uij : i, j ≥ 1} and any other random variables; create Z∗

tj children of
type j for node i, each with attribute equal to aj.

(2) Randomly shuffle all the children created in step (b)(ii)(1) and give them labels
of the form (i, j), attributes Â(i,j) = aj, and add the labeled nodes to set Âk.

This construction may continue indefinitely, or may terminate at the end of step k if Âk =∅.
We point out that this coupling is not standard, since in most of the literature on IR models

the coupling is done between the binomial distribution (the degree of a vertex) and its coupled
Poisson limit (see [6] or [22, Chapter 3], where the proof uses the moments method). Moreover,
most of the existing couplings consider first a multi-type Galton–Watson process with finitely
many types, and then use a monotonicity argument to obtain the general case. The coupling
described above avoids the need for this second step since the number of types grows as
n → ∞, and since it is based on coupling the individual Bernoulli random variables (edges)
with their Poisson counterparts, it allows us to keep track of the vertex marks with no additional
effort.

Definition 4.3. We say that the coupling breaks in generation τ = k if, for any node in Âk−1,
either:

• in step (b)(i)(1) we have Ztj 	= Xtj for some j ∈ {1, . . . , n} \ Ĵ;

• in step (b)(i)(1) we have Ztj ≥ 1 for some j ∈ (B̂k−1 ∪ B̂k) \ Ĵ, in which case a cycle or
self-loop is created; or,

• in step (b)(i)(2) we have Z∗
tj ≥ 1 for some j ∈ Ĵ.
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We start by proving the following preliminary result. Throughout this section, let �n :=∫ 1
0

∣∣F−1
n (u) − F−1(u)

∣∣ du ≤ W1(νn, ν), where Fn(x) = 1
n

∑n
j=1 1(Wi ≤ x) and F(x) = P(W ≤ x).

We also use the notation Xn = OP(xn) as n → ∞ to mean that there exists a random variable Yn

such that |Xn| ≤st Yn and Yn/xn
P−→ K for some finite constant K.

Lemma 4.1. For any 1 ≤ i ≤ n we have Pn
(

max1≤j≤n,j 	=i |Xji − Zji| ≥ 1
)≤ min{1, 1(Wi >

bn) +Pn(i) + W̄iηn
}
, where Pn(i) =∑

1≤j≤n,j 	=i

∣∣p(n)
ji − (r(n)

ji ∧ 1)
∣∣, ηn = (�n + g(bn) +

b2
n/n + b2

n�n/(θn))/θ , and g(x) =E[(W − x)+].

Proof. Let Rij = 1(Uij > 1 − r(n)
ij ), with r(n)

ij = WiWj/(θn). The union bound gives

Pn

(
max

1≤j≤n,j 	=i
|Xij − Zij| ≥ 1

)
≤ 1(Wi > bn) + 1(Wi ≤ bn)

∑
1≤j≤n,j 	=i

Pn(|Xij − Zij| ≥ 1).

Now note that

Pn(|Xij − Zij| ≥ 1) = Pn(|Xij − Zij| ≥ 1, |Xij − Rij| ≥ 1)

+ Pn(|Xij − Zij| ≥ 1, |Xij − Rij| = 0)

≤ Pn(|Xij − Rij| ≥ 1) + Pn(|Rij − Zij| ≥ 1).

The first probability can be computed to be Pn(|Xij − Zij| ≥ 1) = ∣∣p(n)
ij − (

r(n)
ij ∧ 1

)∣∣.
To analyze each of the probabilities involving Rij and Zij, note that

Pn(|Rij − Zij| ≥ 1) = Pn(Rij = 0, Zij ≥ 1) + Pn(Rij = 1, Zij = 0) + Pn(Rij = 1, Zij ≥ 2)

=
(

1 − (
1 ∧ r(n)

ij

)− e−q(n)
ij

)+ +
(

e−q(n)
ij − 1 + (

1 ∧ r(n)
ij

))+

+ min
{

1 − e−q(n)
ij
(
1 + q(n)

ij

)
,
(
1 ∧ r(n)

ij

)}
=
∣∣∣1 − (

1 ∧ r(n)
ij

)− e−q(n)
ij

∣∣∣+ min
{(

1 ∧ r(n)
ij

)
, e−q(n)

ij
(
eq(n)

ij − 1 − q(n)
ij

)}
.

Now use the inequalities e−x ≥ 1 − x, e−x − 1 + x ≤ x2/2, and ex − 1 − x ≤ x2ex/2 for x ≥ 0,
to obtain that

Pn
(|Xij − Zij| ≥ 1

)≤ r(n)
ij − q(n)

ij +
∣∣∣1 − q(n)

ij − e−q(n)
ij

∣∣∣+ e−q(n)
ij

(
eq(n)

ij − 1 − q(n)
ij

)
= r(n)

ij − q(n)
ij + e−q(n)

ij − 1 + q(n)
ij + e−q(n)

ij

(
eq(n)

ij − 1 − q(n)
ij

)
≤ r(n)

ij − q(n)
ij + (

q(n)
ij

)2.

It follows that

1(Wi ≤ bn)
∑

1≤j≤n,j 	=i

Pn(|Xij − Zij| ≥ 1)

≤ 1(Wi ≤ bn)
∑

1≤j≤n,j 	=i

(∣∣p(n)
ij − (

r(n)
ij ∧ 1

)∣∣+ r(n)
ij − q(n)

ij + (
q(n)

ij

)2)

≤Pn(i) +
∑

1≤j≤n,j 	=i

W̄i(Wj − W̄j)

θn
+ (W̄i)2

(θn)2

∑
1≤j≤n,j 	=i

(W̄j)
2

≤Pn(i) + W̄i

θn

n∑
j=1

(Wj − bn)+ + (W̄i)2bn�n

(θn)2
.
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To further bound the second term, note that if we let W(n) denote a random variable distributed
according to Fn and W a random variable distributed according to F, then 1

n

∑n
j=1 (Wj −

bn)+ =En[(W(n) − bn)+] ≤En[|W(n) − W| + (W − bn)+] = �n + g(bn). And for the last term,

(W̄i)2bn�n

(θn)2
≤ W̄ib2

n

θ2n
·En[W(n)] ≤ W̄ib2

n

θ2n
(�n +E[W]).

We conclude that for En as defined in the statement of the lemma,

1(Wi ≤ bn)
∑

1≤j≤n,j 	=i

Pn(|Xij − Zij| ≥ 1)

≤Pn(i) + W̄i

θ
(�n + g(bn)) + W̄ib2

n

θ2n
(�n +E[W−])

≤Pn(i) + ηnW̄i,

which in turn yields Pn( max1≤j≤n,j 	=i |Xij − Zij| ≥ 1) ≤ min{1, 1(Wi > bn) +Pn(i)+
ηnW̄i}. �

Proof of Theorem 4.1. (m = 1) for the IR. We start by defining the following events:

Fi(I, J, L) =
{

max
j∈I

|Xji − Zji| = 0,
∑
j∈J

Z∗
ji +

∑
j∈L

Zji = 0

}
,

Bi = {current set B̂k−1 ∪ B̂k when the neighbors of i ∈ Ak−1 are explored},
Ji = {current set J when the neighbors of i are explored},

Hk =⋂
i∈Ak−1

Fi({1, . . . , n} \ Ji, Ji,Bi \ Ji),

Mk = {|V̂k| ≤ sn}.

Next, note that Pn(τ ≤ k) ≤ Pn(τ ≤ k, Mk) + Pn(Mc
k) ≤∑k

r=1
1
n

∑n
i=1 Pn,i(τ = r, Mr)+

Pn(Mc
k), where the last probability can be bounded using the first part of Theorem 4.3

as at the end of the proof of Theorem 4.1 for the CM. Specifically, Pn(Mc
k) ≤

P(|Vk+1| > sn) + Pn
(
T̂ (k) 	
 T (k)

)
, where |Vk+1| =∑k+1

j=0 |Aj| < ∞ a.s. and the distribution of

T (k) does not depend on Fn.
Now note that, for any r ≥ 1, Pn,i(τ = r, Mr) = Pn,i(Mr ∩⋂r−1

m=1 Hm ∩ Hc
r ), with the con-

vention that
⋂0

m=1 Hm = 
. Let Ft denote the sigma-algebra that contains the history of the
exploration process in the graph as well as that of its coupled tree, up to the end of step t of
the graph exploration process. It follows that we can write Pn,i(τ = r, Mr) =En,i

[
1
(
Mr−1 ∩⋂r−1

m=1 Hm
)
Pn(Mr ∩ Hc

r |Fr−1)
]
. To analyze the conditional probability inside the expectation

above, note that, conditionally on Fr−1, the set Ar−1 is known, and recall that the set J = Vr−2
at the beginning of step r (assuming r ≥ 2, otherwise J =∅). Therefore, by the union bound
and the independence among the edges, we have:

Pn(Mr ∩ Hc
r |Fr−1) = Pn

(
Mr ∩

⋃
i∈Ar−1

Fi({1, . . . , n} \ Ji, Ji,Bi \ Ji)
c |Fr−1

)

≤
∑

i∈Ar−1

Pn(Mr ∩ Fi({1, . . . , n} \ Ji, Ji,Bi \ Ji)
c |Fr−1)
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≤
∑

i∈Ar−1

min

{
1, Pn

(
max

j∈{1,...,n}\Ji
|Xji − Zji| ≥ 1 |Fr−1

)

+ Pn

(
Mr ∩

{∑
j∈Ji

Z∗
ji +

∑
j∈Bi\Ji

Zji ≥ 1

}
|Fr−1

)}
.

Now use the independence of the edges from the rest of the exploration process and Lemma 4.1
to obtain that

Pn

(
max

{1,...,n}\Jii
|Xji − Zji| ≥ 1 |Fr−1

)
≤ Pn

(
max

1≤j≤n,j 	=i
|Xji − Zji| ≥ 1

)
≤ 1(Wi > bn) +Pn(i) + W̄iηn.

Next, condition further on the exploration up to the moment we are about to explore the neigh-
bors of i, and use the independence of the edges from the rest of the exploration process to
obtain that

Pn

(
Mr ∩

{∑
j∈Ji

Z∗
ji +

∑
j∈Bi\Ji

Zji ≥ 1

}
|Fr−1

)

≤En

[
1(|V̂r| ≤ sn)

(
1 − exp

{
−
∑
j∈Bi

q(n)
ji

})
|Fr−1

]

=En

[
1(|V̂r| ≤ sn)

(
1 − exp

{
− W̄i

θn

∑
j∈∪Bi

W̄j

})
|Fr−1

]

≤En

[
1(|V̂r| ≤ sn)

(
1 − exp

{
− bnW̄i

θn
|Bi|

})
|Fr−1

]

≤ bnW̄i

θn
sn,

where in the last inequality we used 1 − e−x ≤ x for x ≥ 0 and |Bi| ≤ |V̂r| ≤ sn.
It follows that

Pn,i(τ = r, Mr) ≤En,i

[
1
(

Mr−1 ∩
r−1⋂
m=1

Hm

) ∑
j∈Ar−1

min

{
1, 1(Wi > bn) +Pn(j)

+ W̄iηn + bnW̄i

θn
sn

}]
.

To analyze this remaining expectation we note that on the event
⋂r−1

m=1 Hm the coupling has not
been broken yet, and therefore we can can replace Ar−1 with its tree counterpart Âr−1. Also,
note that by [18, Lemma 3.4], the types of the nodes in each of the sets Âk are independent of
the type of their parents. We will then identify the nodes in Âr−1 as

{
Y1, . . . , Y|Âr−1|

}
, where,

for any t ≥ 1, Pn(Yt = j) = W̄j/�n, j = 1, 2, . . . , n.

https://doi.org/10.1017/jpr.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.17


Strong couplings for random graphs 1277

It follows that

Pn,i(τ = r, Mr)

≤En,i

[
1(Mr−1)

|Âr−1|∑
t=1

min

{
1, 1(WYt > bn) +Pn(Yt) + W̄Ytηn + bnW̄Yt

θn
sn

}]

≤En,i

[ �sn�∑
t=1

min

{
1, 1(WYt > bn) +Pn(Yt) + W̄Ytηn + bnW̄Yt

θn
sn

}]

≤
�sn�∑
t=1

En,i

[
1(WYt > bn) +Pn(Yt) + W̄Ytηn + bnW̄Yt

θn
sn

]

= �sn�En

[
1(WY1 > bn) +Pn(Y1) + W̄Y1ηn + bnW̄Y1

θn
sn

]
.

To compute the last expectation, let (W(n), W) be constructed according to an optimal
coupling of Fn and F. Let W̄(n) = W(n) ∧ bn. Then, for any cn ≥ 1,

�sn�En

[
1(WY1 > bn) +Pn(Y1) + W̄Y1ηn + bnW̄Y1

θn
sn

]

≤ sn

n∑
j=1

W̄j

�n

(
1(Wj > bn) +Pn(j) + W̄jηn + bnW̄j

θn
sn

)

≤ snn

�n
· 1

n

n∑
j=1

(W̄j − cn)+ + snn

�n
· 1

n

n∑
j=1

cn

(
1(Wj > bn) +Pn(j) + W̄jηn + bnW̄j

θn
sn

)

= sn

En[W̄(n)]

(
En
[
(W̄(n) − cn)+

]+ cnPn(W(n) > bn) + cnEn

+En
[
W̄(n)](cnηn + cnbnsn

θn

))

= OP

(
sn

(
g(cn) + �n + cnP(W > bn) + cnEn + cnηn + cnbnsn

n

))

as n → ∞, and since ηn = OP(�n + g(bn) + b2
n/n), we conclude that Pn,i(τ = r, Mr) =

OP(sn(g(cn) + cnEn + cn�n + cng(bn) + cnb2
n/n)) as n → ∞. It now follows from the

beginning of the proof that Pn(τ ≤ k) ≤ OP(ksn(g(cn) + cnEn + cn�n + cng(bn) + cnb2
n/n)) +

P(|Vk+1| > sn) + Pn
(
T̂ (k) 	
 T (k)

)
as n → ∞. Since limx→∞ g(x) = 0, choosing cn = (En +

�n + g(bn) + b2
n/n)−1/2 and sn = (g(cn) + c−1/2

n )−1/2 proves the theorem. �

4.2. Discrete coupling for directed graphs

The equivalent of Theorem 4.1 (m = 1) for directed graphs has already been proved, under
conditions equivalent to those in Assumption 3.1, in [20, Theorem 6.3] for the DCM, and
in [18, Theorem 3.7] for the IRD. Hence, we only need to describe the distribution of the
intermediate tree and state the coupling theorem. The descriptions of the couplings follow,
with some adjustments, those from Sections 4.1.1 and 4.1.2. However, the precise descriptions
in the directed case can be found in [9, Section 5.2] for the DCM and [18, Section 3.2.2] for
the IRD.
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In the directed case, the intermediate tree T̂ is constructed using a sequence of condition-
ally independent (given Fn) random vectors {(N̂i, D̂i, Âi) : i ∈ U} in S , with {(N̂i, D̂i, Âi) : i ∈
U , i 	= ∅} conditionally i.i.d. The tree T̂ is constructed as in the undirected case using the {N̂i},
with all edges pointing towards the root, and the full marks take the form X̂i = (N̂i, D̂i, Âi),
i ∈ U . The marked tree is given by T̂(Â) = {X̂i : i ∈ T̂}.

We now specify the distribution of the full marks, which in the case of a DCM is
given by

Pn
(
X̂∅ ∈ · )= 1

n

n∑
i=1

1((D−
i , D+

i , ai) ∈ ·),

Pn
(
X̂i ∈ · )=

n∑
i=1

D+
i

Ln
1((D−

i , D+
i , ai) ∈ ·), i 	= ∅.

For the IRD model, first let {an} and {bn} be sequences such that an ∧ bn
P−→ ∞ and anbn/n

P−→ 0
as n → ∞, and use them to define W̄−

i = W−
i ∧ an and W̄+

i = W+
i ∧ bn, with �−

n =∑n
i=1 W̄−

i and �+
n =∑n

i=1 W̄+
i . The marks on the coupled marked Galton–Watson process are

given by

Pn
(
X̂∅ ∈ · )= 1

n

n∑
i=1

P((D−
i , D+

i , ai) ∈ · | ai),

Pn
(
X̂i ∈ · )=

n∑
i=1

W̄+
i

�+
n
P((D−

i , D+
i + 1, ai) ∈ · | ai), i 	= ∅,

where, conditionally on ai, D−
i and D+

i are independent Poisson random variables with means
�+

n W̄+
i /(θn) and �−

n W̄−
i /(θn), respectively.

The intermediate coupling theorem for directed graphs is given below, and it is a direct
consequence of [20, Theorem 6.3] and [18, Theorem 3.7].

Theorem 4.2. Suppose G(Vn, En) is either a DCM or an IRD satisfying Assumption 3.1. Then,
for G(k)

I (a) the depth-k neighborhood of a uniformly chosen vertex I ∈ Vn, there exists a marked

Galton–Watson tree T̂ (k)(Â), restricted to its first k generations, whose root corresponds to

vertex I and is such that, for any fixed k ≥ 1, Pn
(
G(k)

I (a) 	
 T̂ (k)(Â)
) P−→ 0, n → ∞.

4.3. Coupling between two trees

In view of Theorems 4.1 and 4.2, the proofs of the main theorems, Theorems 2.1 and 3.1
(m = 1), will be complete once we establish that with high probability the intermediate tree
T̂ (k) is isomorphic to the limiting tree T (k), and that the node marks in the two trees are within
ε distance of each other.

Note that there is no need to consider the undirected and directed cases separately, since they
only differ on the sample space for the full marks, X̂i / Xi, which take values in S =N×R× S ′
in the undirected case and S =N×N×R×R× S ′ in the directed one. For the directed case,
all edges in the trees point towards the root.

The coupling theorem between the two trees is the following. The proof of the main theo-
rems, Theorems 2.1 and 3.1 (m = 1), follow directly from combining Theorems 4.1 and 4.3 in
the undirected case, and Theorems 4.2 and 4.3 in the directed one.
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Theorem 4.3. Under Assumption 2.1 or 3.1, as appropriate, there exists a coupling of

T̂ (k)(Â) and T (k)(A) such that Pn
(
T̂ (k) 	
 T (k)

) P−→ 0, n → ∞, and such that, for any ε > 0,

En
[
ρ(X̂∅, X∅)

] P−→ 0 and Pn
(⋂

i∈T (k){ρ(X̂i, Xi) ≤ ε}, T̂ (k) 
 T (k)
) P−→ 1 as n → ∞.

Before proving Theorem 4.3, we need to prove a couple of technical lemmas. The first
establishes the existence of couplings for the node attributes, whose distributions are given by
νn(·) = Pn

(
Â ∈ · )= 1

n

∑n
i=1 1(ai ∈ ·) and ν(·) = P(A ∈ ·), and their size-biased versions. Recall

that in the undirected case the node attributes are of the form ai = (Di, bi) in the CM and
ai = (Wi, bi) in the IR, while in the directed case they take the form ai = (D−

i , D+
i , bi) in

the DCM and ai = (W−
i , W+

i , bi) in the IRD. In the undirected case, the size-bias is done
with respect to the first coordinate, while in the directed case with respect to the second one.
Specifically, the size-biased attributes in the undirected case take the form

Pn
(
Âb ∈ · )=

⎧⎨
⎩

L−1
n
∑n

i=1 Di1((Di, bi) ∈ ·) in the CM,

�−1
n
∑n

i=1 W̄i1((Wi, bi) ∈ ·) in the IR

and

P
(
Ab ∈ · )=

⎧⎨
⎩
E[D1((D, B) ∈ ·)]/E[D] in the CM,

E[W1((W, B) ∈ ·)]/E[W] in the IR,

while in the directed case they take the form

Pn
(
Âb ∈ · )=

⎧⎨
⎩

L−1
n
∑n

i=1 D+
i 1((D−

i , D+
i , bi) ∈ ·) in the DCM,

(�+
n )−1 ∑n

i=1 W̄+
i 1((W−

i , W+
i , bi) ∈ ·) in the IRD

and

P(Ab ∈ ·) =
⎧⎨
⎩
E[D+1((D−, D+, B) ∈ ·)]/E[D+] in the DCM,

E[W+1((W−, W+, B) ∈ ·)]/E[W+] in the IRD.

For the undirected case, let ρ′′ be the metric on S ′′ = [0, ∞) × S ′ given by ρ′′(x, y) =
|x1 − y1| + ρ′(x2, y2), x = (x1, x2), y = (y1, y2), and for the directed case let ρ′′ be the met-
ric on S ′′ = [0, ∞) × [0, ∞) × S ′ given by ρ′′(x, y) = |x1 − y1| + |x1 − y2| + ρ′(x3, y3), x =
(x1, x2, x3), y = (y1, y2, y3).

Lemma 4.2. Under Assumption 2.1 or 3.1, as appropriate, there exist couplings
(
Â, A

)
and(

Âb, Ab
)

constructed on the same probability space (S ′′, Fn, Pn) such that En
[
ρ′′(Â, A)

] P−→ 0,

ρ′′(Â, A
) P−→ 0, and ρ′′(Âb, Ab

) P−→ 0 as n → ∞.

Proof. Assumptions 2.1 and 3.1 state that W1(νn, ν)
P−→ 0 as n → ∞, and by the properties of

the Wasserstein metric (see [24, Theorem 4.1]), there exists an optimal coupling
(
Â, A

)
such

that En
[
ρ′′(Â, A)

]= W1(νn, ν)
P−→ 0 and ρ′′(Â, A

) P−→ 0 as n → ∞.
For the biased versions, note that it suffices to prove the lemma for the undirected case, since

a simple rearrangement of terms such as a′
i = (D′

i, b′
i) := (D+

i , D−
i , bi) or a′

i = (W ′
i , b′

i) :=
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(W+
i , W−

i , bi) reduces the directed case to the undirected one. Through the remainder of the
proof, we write Â = (Ŷ, B̂) and A = (Y, B) to avoid having to separate the CM and IR cases.

Next, note that we only need to show that Âb ⇒ Ab as n → ∞, where ⇒ denotes con-
vergence in distribution, since then we can take the almost sure representation to obtain that

ρ′′(Âb, Ab
) P−→ 0. To this end, let f : S ′′ →R be a bounded and continuous function, and let(

Â, A
)

be the one from the beginning of the proof. Let Ỹ = Ŷ if the graph is a CM or Ỹ = Ŷ ∧ bn

if it is an IR. Then,

∣∣En
[
f (Âb)

]−E[f (Ab)]
∣∣= ∣∣∣∣ 1

En[Ỹ]
En
[
Ỹf (Â)

]− 1

E[Y]
E[Yf (A)]

∣∣∣∣
≤ 1

En[Ỹ]

(∣∣En
[
(Ỹ − Y)f (Â)

]∣∣+ ∣∣En
[
Y(f (Â) − f (A))

]∣∣)

+
∣∣∣∣ 1

En[Ỹ]
− 1

E[Y]

∣∣∣∣∣∣E[Yf (A)]
∣∣

≤ 1

En[Ỹ]

(
En[|Ỹ − Y|] sup

a∈S ′′
|f (a)| + ∣∣En

[
Y(f (Â) − f (A))

]∣∣)

+ En[|Ỹ − Y|]
En[Ỹ]E[Y]

|E[Yf (A)]|

≤ 1

En[Ỹ]

(
En
[|Ỹ − Y|]2 sup

a∈S ′′
|f (a)| +En

[
Y|f (Â) − f (A)|]).

Since W1(νn, ν)
P−→ 0 implies that En[|Ŷ − Y|] P−→ 0 as n → ∞, we have En

[∣∣Ỹ − Y
∣∣]≤

En
[∣∣Ŷ − Y

∣∣]+E[Y1(Y > bn)]
P−→ 0 and En[Ỹ]

P−→E[Y] as n → ∞. And, by the dominated

convergence theorem, limn→∞ E
[
En
[
Y
∣∣f (Â) − f (A)

∣∣]]=E
[

limn→∞ Y
∣∣f (Â) − f (A)

∣∣]= 0.

Hence, En
[
Y
∣∣f (Â) − f (A)

∣∣] P−→ 0 as n → ∞, and Ab ⇒ Ab as required. �

The second technical lemma relates the convergence of the attributes to that of the full
marks.

Lemma 4.3. Suppose Assumption 2.1 or 3.1 holds, as appropriate, and let (Â, A) and (Âb, Ab)
be the couplings in Lemma 4.2. Then, there exist couplings for (X̂∅, X0) and (X̂, X) con-

structed on the same probability space as (Â, A) and (Âb, Ab), such that En
[
ρ(X̂∅, X0)

] P−→ 0,

ρ
(
X̂∅, X0

) P−→ 0, and ρ
(
X̂, X

) P−→ 0 as n → ∞.

Proof. For the two undirected models, CM and IR, write:

Â = (Ŷ, B̂), A = (Y, B),

Âb = (Ŷb, B̂b), Ab = (Yb, Bb).

For the two directed models, DCM and IRD, write:

Â = (Ŷ−, Ŷ+, B̂), A = (Y−, Y+, B),

Âb = (Ŷ−
b , Ŷ+

b , B̂b), Ab = (Y−
b , Y+

b , Bb).
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To obtain the statement of the lemma for the CM, simply set (X̂∅, X∅) = (Ŷ, Â, Y, A) and
(X̂1, X1) = (Ŷb, Âb, Yb, Ab). Similarly, for the DCM set (X̂∅, X∅) = (Ŷ−, Ŷ+, Â, Y−, Y+, A)
and (X̂1, X1) = (Ŷ−

b , Ŷ+
b , Âb, Y−

b , Y+
b , Ab).

For the IR, construct (Ŝ, S) = (�n(Ŷ ∧ bn)/(θn), Y). Note that our assumptions imply that

En
[|Ŝ − S|] P−→ 0 as n → ∞. Now let U ∼ Uniform[0, 1] be i.i.d. and independent of (Ŝ, S),

and take (X̂∅, X0) = (
G−1(U;Ŝ), Â, G−1(U; Y), A

)
, where G−1(u; λ) =∑∞

m=0 m1(G(m; λ) ≤
u < G(m + 1; λ)) is the generalized inverse of the Poisson distribution function with mean λ.
Note that since G(m; λ) is decreasing in λ for all m ≥ 0, we have Poi(λ) ≥st Poi(μ) whenever
λ ≥ μ, where ≥st denotes the usual stochastic order and Poi(α) denotes a Poisson random
variable with mean α. It follows that E

[∣∣G−1(U; λ) − G−1(U; μ)
∣∣]= |λ − μ|, which in turn

implies that En
[
ρ(X̂∅, X0)

]=En
[|Ŝ − S| + ρ′′(Â, A)

] P−→ 0, n → ∞.

For the size-biased versions, set (Ŝb, Sb) = (�n(Ŷb ∧ bn)/(θn), Yb), note that Lemma 4.2

gives |Ŝb − Sb| P−→ 0 as n → ∞, and let (X̂1, X1) = (
G−1(U; Ŝb) + 1, Âb, G−1(U; Yb) + 1, Ab

)
.

Now use the continuity in λ of G−1(u; λ) to obtain that ρ(X̂1, X1) = ∣∣G−1(U; Ŝb) −
G−1(U; Yb)

∣∣+ ρ′′(Âb, Ab)
P−→ 0, n → ∞.

The same steps also give the result for the IRD by setting

(Ŝ−, Ŝ+, S−, S+) = (
�+

n (Ŷ− ∧ an)/(θn), �−
n (Ŷ+ ∧ bn)/(θn), cY−, (1 − c)Y+),

(Ŝ−
b , Ŝ+

b , S−
b , S+

b ) = (
�+

n (Ŷ−
b ∧ an)/(θn), �−

n (Ŷ+
b ∧ bn)/(θn), cY−

b , (1 − c)Y+
b

)
,

where c =E[W+]/E[W− + W+], and setting

(X̂∅, X∅) = (
G−1(U; Ŝ−), G−1(U′; Ŝ+) + 1, Â, G−1(U; S−), G−1(U′; S+) + 1, A

)
,

(X̂1, X1) = (
G−1(U; Ŝ−

b ), G−1(U′; Ŝ+
b ) + 1, Âb, G−1(U′; S−

b ), G−1(U; S+
b ) + 1, Ab

)
for some U, U′ i.i.d. Uniform[0, 1] and independent of Fn; this completes the proof. �

Finally, we can give the proof of Theorem 4.3.

Proof of Theorem 4.3. By Lemma 4.3 there exist couplings (X̂∅, X∅) and (X̂1, X1) such that

En
[
ρ(X̂∅, X∅)

] P−→ 0 and ρ(X̂1, X1)
P−→ 0 as n → ∞. Now let {(X̂i, Xi) : i ∈ U , i 	= ∅} be i.i.d.

copies of (X̂1, X1), independent of (X̂∅, X∅). Recall that N̂i (Ni) can be determined from the
first coordinate of X̂i (Xi).

We will now use the sequence {(X̂i, Xi) : i ∈ U} to construct both T̂(Â) and T (A) by deter-
mining their nodes according to the recursions Âk = {(i, j) : i ∈ Âk−1, 1 ≤ j ≤ N̂i} and Ak =
{(i, j) : i ∈Ak−1, 1 ≤ j ≤Ni} for k ≥ 1. Without loss of generality, assume that 0 < ε < 1.

Now define the stopping time κ(ε) = inf
{
k ≥ 0 : ρ(X̂i, Xi) > ε for some i ∈ Âk

}
. Note that

since N̂i and Ni are integer-valued, ρ(X̂i, Xi) < 1 implies that N̂i =Ni. It follows that, for any
xn ≥ 1,

Pn
(
T̂ (k) 
 T (k))≥ Pn

(
k⋂

r=0

⋂
i∈Ar

{
ρ(X̂i, Xi) ≤ ε

}
, T̂ (k) 
 T (k)

)

= Pn(κ(ε) > k)

≥ 1 − Pn(κ(ε) ≤ k, |Vk| ≤ xn) − Pn(|Vk| > xn)

= 1 −
k∑

r=0

Pn(κ(ε) = r, |Vk| ≤ xn) − Pn(|Vk| > xn),
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where Vk =⋃k
r=0 Ar. To compute the last probabilities, note that Pn(κ(ε) = 0) ≤

ε−1En
[
ρ(X̂∅, X∅)

]
, and, for r ≥ 1,

Pn(κ(ε) = r, |Vk| ≤ xn) ≤ Pn

( ⋃
i∈Ar

{
ρ(X̂i, Xi) > ε

}
, |Ar| ≤ xn

)

≤En

[
1(|Ar| ≤ xn)

∑
i∈Ar

1
(
ρ(X̂i, Xi) > ε

)]

=En
[
1(|Ar| ≤ xn)|Ar|

]
Pn
(
ρ(X̂1, X1) > ε

)
≤ xnPn

(
ρ(X̂1, X1) > ε

)
,

where in the third step we used the independence of (X̂1, X1) from Ar. It follows that, if we

choose xn = Pn
(
ρ(X̂1, X1) > ε

)−1/2 P−→ ∞, then

Pn

(
k⋂

r=0

⋂
i∈Ar

{
ρ(X̂i, Xi) ≤ ε

}
, T̂ (k) 
 T (k)

)

≥ 1 − ε−1
En
[
ρ(X̂∅, X∅)

]− kxnPn
(
ρ(X̂1, X1) > ε

)− Pn(|Vk| > xn)

≥ 1 − ε−1
En
[
ρ(X̂∅, X∅)

]− kx−1/2
n − Pn

(|Vk| > xn
) P−→ 0

as n → ∞. This completes the proof. �

The last proof in the paper relates to the case m ≥ 2 for both Theorems 2.1 and 3.1. Since
the proof for the directed case follows exactly the same steps as for the undirected one, we
include here only the undirected case.

Proof of Theorem 2.1. (m ≥ 2). Start by sampling {Ij : 1 ≤ j ≤ m} independently and uni-
formly in Vn. Without loss of generality we can assume that I1 	= I2 	= · · · 	= Im. Next, note that
the couplings for G(k)

i (a) with their corresponding intermediate trees can be done simultane-

ously for all i ∈ Vn, so let T̂ (k)
∅(i)(Â) be the coupled tree for G(k)

i (a). Note that the
{
T̂ (k)

∅(Ij)
(Â) : 1 ≤

j ≤ m
}

are not independent of each other, but by Theorem 2.1 for the m = 1 case, they

satisfy
∑m

j=1 En
[
ρ(XIj , X̂∅(Ij))

] P−→ 0 and Pn
(⋃m

j=1

{
G(k)

Ij
(a) 	
 T̂ (k)

∅(Ij)
(Â)

}) P−→ 0 as n → ∞. We

now explain how to construct a set of i.i.d. copies of T̂ (k)
∅(I1)(Â), denoted

{
T̃ (k)

∅(Ij)
(Ã) : 1 ≤ j ≤ m

}
,

satisfying

Pn

(
m⋃

j=1

{
T̂ (k)

∅(Ij)
(Â) 	
 T̃ (k)

∅(Ij)
(Ã)

}) P−→ 0, n → ∞. (4.1)

To start, let T̃ (k)
∅(I1)(Ã) = T̂ (k)

∅(I1)(Â). Next, note that the trees
{
T̂ (k)

∅(Ij)
(Â) : 1 ≤ j ≤ m

}
are each

(delayed) marked Galton–Watson processes whose roots have distribution μ∗
n(·) = Pn

(
X̂∅ ∈ · )

and all other nodes have distribution μn(·) = Pn
(
X̂1 ∈ · ). Since each full mark X̂i contains the

vector Âi, we can see which vertex attributes have been sampled. Note that the possible vertex
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attributes are {a1, . . . , an}; they are such that p∗
i = Pn(Â∅ = ai) = 1/n, and pi = Pn(Â1 = ai) is

either equal to Di/Ln in the CM or to W̄i/�n in the IR. We need to keep track of the labels
{1, 2, . . . , n} of the vertex attributes {a1, a2, . . . , an}. To do this, let S be the set of labels
sampled in the construction of T̃ (k)

∅(I1)(Ã), and then construct each of T̃ (k)
∅(Ij)

(Ã), 2 ≤ j ≤ m, in a
breadth-first fashion according to the following rule:

• If a node in T̂ (k)
∅(Ij)

(Â) has a vertex attribute whose label is not in the set S, copy the node

onto T̃ (k)
∅(Ij)

(Ã) and add the new observed label to the set S.

• Otherwise, attach an independent copy of a Galton–Watson marked tree having full mark
distribution μn where the repeated node would be.

Since, as long as we do not sample any vertex attributes from the set S, we will have
T̃ (k)

∅(Ij)
(Ã) 
 T̂ (k)

∅(Ij)
(Â), for any xn > 0 and Mn equal to either Ln for a CM or �n for an IR,

we have

Pn

(
m⋃

j=1

{
T̂ (k)

∅(Ij)
(Â) 	
 T̃ (k)

∅(Ij)
(Ã)

})

≤ Pn

(
m⋃

j=1

{
T̂ (k)

∅(Ij)
(Â) 	
 T̃ (k)

∅(Ij)
(Ã)

}
,

m∑
j=1

∣∣T̂ (k)
∅(Ij)

∣∣≤ mxn,
∑
i∈S

pi ≤ mxn/Mn

)
(4.2)

+ Pn

({∑
i∈S

pi > mxn/Mn

}
∪
{

m∑
j=1

∣∣T̂ (k)
∅(Ij)

∣∣> mxn

})
. (4.3)

Now note that since, in the first probability,
∑m

j=1

∣∣T̂ (k)
∅(Ij)

∣∣≤ mxn and the chances of sampling a
label from S is at most mxn/Mn, we have that (4.2) is bounded by Pn(Bin(mxn, mxn/Mn) ≥ 1) ≤
m2x2

n/Mn, where Bin(n, p) is a binomial random variable with parameters (n, p). To analyze
(4.3), let Yi = piMn if Âi = ai, and note that

∑
i∈S pi =∑m

j=1
∑

i∈T̂(k)
∅(Ij)

Yi/Mn, so by the union

bound we obtain that (4.3) is bounded from above by

m∑
j=1

Pn

(∣∣T̂ (k)
∅(Ij)

∣∣∨ ∑
i∈T̂(k)

∅(Ij)

Yi > xn

)
= mPn

(∣∣T̂ (k)
∣∣∨ ∑

i∈T̂(k)

Yi > xn

)
.

Now use Theorem 4.3 to obtain that, for any ε > 0,

Pn

(∣∣T̂ (k)
∣∣∨ ∑

i∈T̂(k)

Yi > xn

)
≤ P

(∣∣T (k)
∣∣∨ ∑

i∈T (k)

(Yi + ε) > xn

)
+ o(1)

as n → ∞, where Yi is equal to the second component of Xi. Since |T (k)| < ∞ almost
surely and does not depend on Fn, and 1/Mn = OP(1/n) as n → ∞, choosing xn = n1/2/ log n
proves (4.1).
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Finally, use Theorem 4.3 applied to each of the
{
T̃ (k)

∅(Ij)
(Ã) : 1 ≤ j ≤ m

}
to obtain that there

exists an i.i.d. set
{
T (k)

∅(Ij)
(A) : 1 ≤ j ≤ m

}
having the same distribution as T (k)(A) such that, for

any ε ∈ (0, 1),
∑m

j=1 En
[
ρ(X̃∅(Ij), X∅(Ij))

] P−→ 0 and

Pn

(
m⋂

j=1

{ ⋂
i∈T (k)

∅(Ij)

{
ρ(X̃i, Xi) ≤ ε

}
, T̃ (k)

∅(Ij)

 T (k)

∅(Ij)

})
P−→ 1

as n → ∞. This completes the proof. �
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